1
|
Huy VN, Methela NJ, Al‐Azawi TNI, Khan M, Faluku M, Brown A, Lee D, Das AK, Amir R, Lay L, Mun B, Kim Y, Hussian A, Yun B. Fulvic acid-releasing chitosan nanoparticles promote the growth and salt stress tolerance of soybean plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70254. [PMID: 40325609 PMCID: PMC12053295 DOI: 10.1111/ppl.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Nanotechnology offers several advantages over conventional inputs, with widespread application in agriculture. The current climate change crisis has accelerated the accumulation of salts in soils, which is a major challenge to global food security. Here, we synthesized fulvic acid-releasing chitosan nanoparticles (Ch-FANPs) for promoting soybean growth and salt stress tolerance. In a screening hydroponic experiment, 0.1 mM Ch-FANPs promoted plant growth and enhanced the growth parameters of pot-grown soybean plants significantly and modulated stomatal movement under control as well as salt stress conditions induced by 150 mM NaCl. Salt stress affected overall plant growth and reduced the chlorophyll content. However, plants treated with Ch-FANPs not only accumulated significantly higher chlorophyll under both control and salt conditions but also enhanced several above- and below-ground growth parameters by more than 50%. Interestingly, the Ch-FANP-treated salt-exposed plants accumulated ~30% less soluble proteins than untreated salt-stressed plants. Ch-FANPs-mediated protection against salt stress was related to the activation of antioxidant machinery as the highest ascorbate peroxidase (APX) activity was recorded in Ch-FANPs-treated salt-stressed plants along with significantly low MDA and H2O2 contents. ICP-MS analysis showed a tremendously higher accumulation of Na+ ions (~35 ppm) in the leaves of salt-stressed plants compared to 19 ppm Na+ ions when also treated with Ch-FANPs. Salt-exposed plants treated with Ch-FANPs had the highest K+ content (~76 ppm) and Ca2+ (62 ppm). Furthermore, Ch-FANPs-mediated protection against salt stress was associated with a significant increase in the expression of salt stress marker genes GmSOS1, GmSOS2, GmNHX1, and GmP5CS1.
Collapse
Affiliation(s)
- Vu Ngoc Huy
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Food Security and Agricultural DevelopmentKyungpook National UniversityRepublic of Korea
| | - Nusrat Jahan Methela
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Tiba Nazar Ibrahim Al‐Azawi
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Murtaza Khan
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Mwondha Faluku
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Food Security and Agricultural DevelopmentKyungpook National UniversityRepublic of Korea
| | - Alexander Brown
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Food Security and Agricultural DevelopmentKyungpook National UniversityRepublic of Korea
| | - Da‐Sol Lee
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Ashim Kumar Das
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Rabia Amir
- Atta‐ur‐Rahman School of Applied Biosciences, National University of Sciences and TechnologyPakistan
| | - Liny Lay
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Bong‐Gyu Mun
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuRepublic of Korea
| | - Yoohna Kim
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| | - Adil Hussian
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
- Department of AgricultureAbdul Wali Khan University MardanKhyber PakhtunkhwaPakistan
| | - Byung‐Wook Yun
- Institute of International Research and Development, Kyungpook National UniversityRepublic of Korea
- Department of Applied BiosciencesCollege of Agriculture and Life Sciences, Kyungpook National UniversityRepublic of Korea
| |
Collapse
|
2
|
Hersch‐Green EI, Fay PA, Hass HB, Smith NG. Mechanistic insights into plant community responses to environmental variables: genome size, cellular nutrient investments, and metabolic tradeoffs. THE NEW PHYTOLOGIST 2025; 245:2336-2349. [PMID: 39722202 PMCID: PMC11798896 DOI: 10.1111/nph.20374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Affecting biodiversity, plants with larger genome sizes (GS) may be restricted in nutrient-poor conditions. This pattern has been attributed to their greater cellular nitrogen (N) and phosphorus (P) investments and hypothesized nutrient-investment tradeoffs between cell synthesis and physiological attributes associated with growth. However, the influence of GS on cell size and functioning may also contribute to GS-dependent growth responses to nutrients. To test whether and how GS is associated with cellular nutrient, stomata, and/or physiological attributes, we examined > 500 forbs and grasses from seven grassland sites conducting a long-term N and P fertilization experiment. Larger GS plants had increased cellular nutrient contents and larger, but fewer stomata than smaller GS plants. Larger GS grasses (but not forbs) also had lower photosynthetic rates and water-use efficiencies. However, nutrients had no direct effect on GS-dependent physiological attributes and GS-dependent physiological changes likely arise from how GS influences cells. At the driest sites, large GS grasses displayed high water-use efficiency mostly because transpiration was reduced relative to photosynthesis in these conditions. We suggest that climatic conditions and GS-associated cell traits that modify physiological responses, rather than resource-investment tradeoffs, largely explain GS-dependent growth responses to nutrients (especially for grasses).
Collapse
Affiliation(s)
- Erika I. Hersch‐Green
- Department of Biological SciencesMichigan Technological UniversityHoughtonMI49931USA
| | - Philip A. Fay
- USDA ARS Grassland Soil and Water Research LabTempleTX76502USA
| | - Hailee B. Hass
- Department of Biological SciencesMichigan Technological UniversityHoughtonMI49931USA
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAL35487USA
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| |
Collapse
|
3
|
Karavolias NG, Patel‐Tupper D, Gallegos Cruz A, Litvak L, Lieberman SE, Tjahjadi M, Niyogi KK, Cho M, Staskawicz BJ. Engineering quantitative stomatal trait variation and local adaptation potential by cis-regulatory editing. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3442-3452. [PMID: 39425265 PMCID: PMC11606412 DOI: 10.1111/pbi.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 10/21/2024]
Abstract
Cis-regulatory element editing can generate quantitative trait variation that mitigates extreme phenotypes and harmful pleiotropy associated with coding sequence mutations. Here, we applied a multiplexed CRISPR/Cas9 approach, informed by bioinformatic datasets, to generate genotypic variation in the promoter of OsSTOMAGEN, a positive regulator of rice stomatal density. Engineered genotypic variation corresponded to broad and continuous variation in stomatal density, ranging from 70% to 120% of wild-type stomatal density. This panel of stomatal variants was leveraged in physiological assays to establish discrete relationships between stomatal morphological variation and stomatal conductance, carbon assimilation and intrinsic water use efficiency in steady-state and fluctuating light conditions. Additionally, promoter alleles were subjected to vegetative drought regimes to assay the effects of the edited alleles on developmental response to drought. Notably, the capacity for drought-responsive stomatal density reprogramming in stomagen and two cis-regulatory edited alleles was reduced. Collectively our data demonstrate that cis-regulatory element editing can generate near-isogenic trait variation that can be leveraged for establishing relationships between anatomy and physiology, providing a basis for optimizing traits across diverse environments.
Collapse
Affiliation(s)
- Nicholas G. Karavolias
- Innovative Genomics InstituteBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
| | - Dhruv Patel‐Tupper
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
| | | | | | | | | | - Krishna K. Niyogi
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Brian J. Staskawicz
- Innovative Genomics InstituteBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
4
|
Li G, Zhao X, Yang J, Hu S, Ponnu J, Kimura S, Hwang I, Torii KU, Hou H. Water wisteria genome reveals environmental adaptation and heterophylly regulation in amphibious plants. PLANT, CELL & ENVIRONMENT 2024; 47:4720-4740. [PMID: 39076061 DOI: 10.1111/pce.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Heterophylly is a phenomenon whereby an individual plant dramatically changes leaf shape in response to the surroundings. Hygrophila difformis (Acanthaceae; water wisteria), has recently emerged as a model plant to study heterophylly because of its striking leaf shape variation in response to various environmental factors. When submerged, H. difformis often develops complex leaves, but on land it develops simple leaves. Leaf complexity is also influenced by other factors, such as light density, humidity, and temperature. Here, we sequenced and assembled the H. difformis chromosome-level genome (scaffold N50: 60.43 Mb, genome size: 871.92 Mb), which revealed 36 099 predicted protein-coding genes distributed over 15 pseudochromosomes. H. difformis diverged from its relatives during the Oligocene climate-change period and expanded gene families related to its amphibious habit. Genes related to environmental stimuli, leaf development, and other pathways were differentially expressed in submerged and terrestrial conditions, possibly modulating morphological and physiological acclimation to changing environments. We also found that auxin plays a role in H. difformis heterophylly. Finally, we discovered candidate genes that respond to different environmental conditions and elucidated the role of LATE MERISTEM IDENTITY 1 (LMI1) in heterophylly. We established H. difformis as a model for studying interconnections between environmental adaptation and morphogenesis.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Hu
- Laboratory of Marine Biological Resources Development and Utilization, Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M, Cheng S. The genome of Eleocharis vivipara elucidates the genetics of C 3-C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2505-2527. [PMID: 39177373 PMCID: PMC11583847 DOI: 10.1111/jipb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.
Collapse
Affiliation(s)
- Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6708 WB, The Netherlands
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matt Stata
- Plant Resilience Institute, Michigan State University, East Lansing, 48824, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, MI, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
6
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
7
|
Donnelly RC, Nippert JB, Wedel ER, Ferguson CJ. Grass leaf structural and stomatal trait responses to climate gradients assessed over the 20th century and across the Great Plains, USA. AOB PLANTS 2024; 16:plae055. [PMID: 39430436 PMCID: PMC11489733 DOI: 10.1093/aobpla/plae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Abstract. Using herbarium specimens spanning 133 years and field-collected measurements, we assessed intraspecific trait (leaf structural and stomatal) variability from grass species in the Great Plains of North America. We focused on two widespread, closely related grasses from the tribe Paniceae: Dichanthelium oligosanthes subsp. scribnerianum (C3) and Panicum virgatum (C4). Thirty-one specimens per taxon were sampled from local herbaria from the years 1887 to 2013 to assess trait responses across time to changes in atmospheric [CO2] and growing season precipitation and temperature. In 2021 and 2022, the species were measured from eight grasslands sites to explore how traits vary spatially across natural continental precipitation and temperature gradients. Δ13C increased with atmospheric [CO2] for D. oligosanthes but decreased for P. virgatum, likely linked to increases in precipitation in the study region over the past century. Notably, this is the first record of decreasing Δ13C over time for a C4 species illustrating 13C linkages to climate. As atmospheric [CO2] increased, C:N increased and δ15N decreased for both species and %N decreased for D. oligosanthes. Across a large precipitation gradient, D. oligosanthes leaf traits were more responsive to changes in precipitation than those of P. virgatum. In contrast, only two traits of P. virgatum responded to increases in temperature across a gradient: specific leaf area (increase) and leaf dry matter content (decrease). The only shared significant trend between species was increased C:N with precipitation. Our work demonstrates that these closely related grass species with different photosynthetic pathways exhibited various trait responses across temporal and spatial scales, illustrating the key role of scale of inquiry for forecasting leaf trait responses to future environmental change.
Collapse
Affiliation(s)
- Ryan C Donnelly
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Emily R Wedel
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Carolyn J Ferguson
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Brown A, Al-Azawi TNI, Methela NJ, Rolly NK, Khan M, Faluku M, Huy VN, Lee DS, Mun BG, Hussian A, Yun BW. Chitosan-fulvic acid nanoparticles enhance drought tolerance in maize via antioxidant defense and transcriptional reprogramming. PHYSIOLOGIA PLANTARUM 2024; 176:e14455. [PMID: 39073158 DOI: 10.1111/ppl.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Nanoparticles are promising alternatives to synthetic fertilizers in the context of climate change and sustainable agriculture. Maize plants were grown under gradient concentrations (50 μM, 100 μM, 200 μM, 500 μM, and 1 mM) of chitosan (Ch), fulvic acid (FA) or chitosan-fulvic acid nanoparticles (Ch-FANPs). Based on the overall phenotypic assessment, 100 μM was selected for downstream experiments. Maize plants grown under this optimized concentration were thereafter subjected to drought stress by water withholding for 14 days. Compared to the individual performances, the combined treatment of Ch-FANPs supported the best plant growth over chitosan, fulvic acid, or sole watered plants and alleviated the adverse effects of drought by enhancing root and shoot growth, and biomass by an average 20%. In addition, Ch-FANPs-treated plants exhibited a significant reduction in hydrogen peroxide (H2O2) content (~10%), with a concomitant increase in ascorbate peroxidase (APX) activity (>100%) while showing a reduced lipid peroxidation level observed by the decrease in malondialdehyde (MDA) content (~100%) and low electrolyte leakage level. Furthermore, chlorophyll content increased significantly (>100%) in maize plants treated with Ch-FANPs compared to Ch or FA and control in response to drought. The expression of drought-induced transcription factors, ZmDREB1A, ZmbZIP1, and ZmNAC28, and the ABA-dependent ZmCIPK3 was upregulated by Ch-FANPs. Owing to the above, Ch-FANPs are proposed as a growth-promoting agent and elicitor of drought tolerance in maize via activation of antioxidant machinery and transcriptional reprogramming of drought-related genes.
Collapse
Affiliation(s)
- Alexander Brown
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Tiba Nazar Ibrahim Al-Azawi
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Murtaza Khan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Mwondha Faluku
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Vu Ngoc Huy
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussian
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Byung-Wook Yun
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| |
Collapse
|
9
|
Earley AM, Nolting KM, Donovan LA, Burke JM. Trait variation and performance across varying levels of drought stress in cultivated sunflower ( Helianthus annuus L.). AOB PLANTS 2024; 16:plae031. [PMID: 39011498 PMCID: PMC11247526 DOI: 10.1093/aobpla/plae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e. stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.
Collapse
Affiliation(s)
- Ashley M Earley
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- The Plant Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Silva‐Alvim FAL, Alvim JC, Harvey A, Blatt MR. Speedy stomata of a C 4 plant correlate with enhanced K + channel gating. PLANT, CELL & ENVIRONMENT 2024; 47:817-831. [PMID: 38013592 PMCID: PMC10953386 DOI: 10.1111/pce.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Stomata are microscopic pores at the surface of plant leaves that facilitate gaseous diffusion to support photosynthesis. The guard cells around each stoma regulate the pore aperture. Plants that carry out C4 photosynthesis are usually more resilient than C3 plants to stress, and their stomata operate over a lower dynamic range of CO2 within the leaf. What makes guard cells of C4 plants more responsive than those of C3 plants? We used gas exchange and electrophysiology, comparing stomatal kinetics of the C4 plant Gynandropsis gynandra and the phylogenetically related C3 plant Arabidopsis thaliana. We found, with varying CO2 and light, that Gynandropsis showed faster changes in stomata conductance and greater water use efficiency when compared with Arabidopsis. Electrophysiological analysis of the dominant K+ channels showed that the outward-rectifying channels, responsible for K+ loss during stomatal closing, were characterised by a greater maximum conductance and substantial negative shift in the voltage dependence of gating, indicating a reduced inhibition by extracellular K+ and enhanced capacity for K+ flux. These differences correlated with the accelerated stomata kinetics of Gynandropsis, suggesting that subtle changes in the biophysical properties of a key transporter may prove a target for future efforts to engineer C4 stomatal kinetics.
Collapse
Affiliation(s)
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Andy Harvey
- Physics & AstronomyUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| |
Collapse
|
11
|
Falquetto-Gomes P, Silva WJ, Siqueira JA, Araújo WL, Nunes-Nesi A. From epidermal cells to functional pores: Understanding stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154163. [PMID: 38118303 DOI: 10.1016/j.jplph.2023.154163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Stomata, small hydromechanical valves in the leaf epidermis, are fundamental in regulating gas exchange and water loss between plants and the environment. Stomatal development involves a series of coordinated events ranging from the initial cell division that determines the meristemoid mother cells to forming specialized structures such as guard cells. These events are orchestrated by the transcription factors SPEECHLESS, FAMA, and MUTE through signaling networks. The role of plant hormones (e.g., abscisic acid, jasmonic acid, and brassinosteroids) in regulating stomatal development has been elucidated through these signaling cascades. In addition, environmental factors, such as light availability and CO2 concentration, also regulate the density and distribution of stomata in leaves, ultimately affecting overall water use efficiency. In this review, we highlight the mechanisms underlying stomatal development, connecting key signaling processes that activate or inhibit cell differentiation responsible for forming guard cells in the leaf epidermis. The factors responsible for integrating transcription factors, hormonal responses, and the influence of climatic factors on the signaling network that leads to stomatal development in plants are further discussed. Understanding the intricate connections between these factors, including the metabolic regulation of plant development, may enable us to maximize plant productivity under specific environmental conditions in changing climate scenarios.
Collapse
Affiliation(s)
- Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Welson Júnior Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Bernardo EL, Sales CRG, Cubas LA, Vath RL, Kromdijk J. A comparison of stomatal conductance responses to blue and red light between C3 and C4 photosynthetic species in three phylogenetically-controlled experiments. FRONTIERS IN PLANT SCIENCE 2023; 14:1253976. [PMID: 37828928 PMCID: PMC10565490 DOI: 10.3389/fpls.2023.1253976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Introduction C4 photosynthesis is an adaptation that has independently evolved at least 66 times in angiosperms. C4 plants, unlike their C3 ancestral, have a carbon concentrating mechanism which suppresses photorespiration, often resulting in faster photosynthetic rates, higher yields, and enhanced water use efficiency. Moreover, the presence of C4 photosynthesis greatly alters the relation between CO2 assimilation and stomatal conductance. Previous papers have suggested that the adjustment involves a decrease in stomatal density. Here, we tested if C4 species also have differing stomatal responses to environmental cues, to accommodate the modified CO2 assimilation patterns compared to C3 species. Methods To test this hypothesis, stomatal responses to blue and red-light were analysed in three phylogenetically linked pairs of C3 and C4 species from the Cleomaceae (Gynandropsis and Tarenaya), Flaveria, and Alloteropsis, that use either C3 or C4 photosynthesis. Results The results showed strongly decreased stomatal sensitivity to blue light in C4 dicots, compared to their C3 counterparts, which exhibited significant blue light responses. In contrast, in C3 and C4 subspecies of the monocot A. semialata, the blue light response was observed regardless of photosynthetic type. Further, the quantitative red-light response varied across species, but the presence or absence of a significant stomatal red-light response was not directly associated with differences in photosynthetic pathway. Interestingly, stomatal density and morphology patterns observed across the three comparisons were also not consistent with patterns commonly asserted for C3 and C4 species. Discussion The strongly diminished blue-light sensitivity of stomatal responses in C4 species across two of the comparisons suggests a common C4 feature that may have functional implications. Altogether, the strong prevalence of species-specific effects clearly emphasizes the importance of phylogenetic controls in comparisons between C3 and C4 photosynthetic pathways.
Collapse
Affiliation(s)
- Emmanuel L. Bernardo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños, Laguna, Philippines
| | | | - Lucía Arce Cubas
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Richard L. Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Al-Salman Y, Ghannoum O, Cano FJ. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1661-1676. [PMID: 37300871 DOI: 10.1111/tpj.16346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Most studies assume midday gas exchange measurements capture the leaf's daytime performance. However, stomatal conductance (gs ) and photosynthesis (An ) fluctuate diurnally due to endogenous and environmental rhythms, which can affect intrinsic water use efficiency (iWUE). Six Sorghum lines with contrasting stomatal anatomical traits were grown in environmentally controlled conditions, and leaf gas exchange was measured three times a day. Stomatal anatomy and kinetic responses to light transients were also measured. The highest An and gs and the lowest iWUE were observed at midday for most lines. Diurnally averaged iWUE correlated positively with morning and midday iWUE and negatively with the time taken for stomata to close after transition to low light intensity (kclose ). There was significant variation among sorghum lines for kclose , and smaller kclose correlated with lower gs and higher stomatal density (SD) across the lines. In turn, gs was negatively correlated with SD and regulated by the operational stomatal aperture regardless of stomatal size. Altogether, our data suggest a common physiology to improve iWUE in sorghum related to the control of water loss without impacting photosynthesis relying on higher SD, lower stomatal aperture and faster stomatal closing in response to low light intensity.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Francisco Javier Cano
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| |
Collapse
|
14
|
Pathoumthong P, Zhang Z, Roy SJ, El Habti A. Rapid non-destructive method to phenotype stomatal traits. PLANT METHODS 2023; 19:36. [PMID: 37004073 PMCID: PMC10064510 DOI: 10.1186/s13007-023-01016-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Stomata are tiny pores on the leaf surface that are central to gas exchange. Stomatal number, size and aperture are key determinants of plant transpiration and photosynthesis, and variation in these traits can affect plant growth and productivity. Current methods to screen for stomatal phenotypes are tedious and not high throughput. This impedes research on stomatal biology and hinders efforts to develop resilient crops with optimised stomatal patterning. We have developed a rapid non-destructive method to phenotype stomatal traits in three crop species: wheat, rice and tomato. RESULTS The method consists of two steps. The first is the non-destructive capture of images of the leaf surface from plants in their growing environment using a handheld microscope; a process that only takes a few seconds compared to minutes for other methods. The second is to analyse stomatal features using a machine learning model that automatically detects, counts and measures stomatal number, size and aperture. The accuracy of the machine learning model in detecting stomata ranged from 88 to 99%, depending on the species, with a high correlation between measures of number, size and aperture using the machine learning models and by measuring them manually. The rapid method was applied to quickly identify contrasting stomatal phenotypes. CONCLUSIONS We developed a method that combines rapid non-destructive imaging of leaf surfaces with automated image analysis. The method provides accurate data on stomatal features while significantly reducing time for data acquisition and analysis. It can be readily used to phenotype stomata in large populations in the field and in controlled environments.
Collapse
Affiliation(s)
- Phetdalaphone Pathoumthong
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
- The Waite Research Institute, Urrbrae, 5064, Australia
| | - Zhen Zhang
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, 5000, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
- The Waite Research Institute, Urrbrae, 5064, Australia
- Australian Research Council Industrial Transformation Training Centre for Future Crops Development, The University of Adelaide, Urrbrae, 5064, Australia
| | - Abdeljalil El Habti
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia.
- The Waite Research Institute, Urrbrae, 5064, Australia.
| |
Collapse
|
15
|
Wang Y, Wang Y, Tang Y, Zhu XG. Stomata conductance as a goalkeeper for increased photosynthetic efficiency. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102310. [PMID: 36376162 DOI: 10.1016/j.pbi.2022.102310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
100-120 words. References should not be included. Abbreviations should be avoided as far as possible. Low stomatal conductance (gs) poses a major constraint for improving photosynthetic efficiency for greater yield. Options at the molecular, leaf, canopy, and even the whole plant scales can be developed to enhance gs for greater light and water use efficiencies. Among these, many genes regulating stomatal development and stomatal movement have been discovered and manipulated to increase light and water use efficiencies under well-watered, drought, or facility agriculture conditions with the manual-controlled growth environmental. Optimization of canopy conductance to increase whole plant photosynthesis with full consideration of the heterogeneities in gs, microclimates and leaf ontology inside the canopy represents a largely uncharted area to improve crop efficiency.
Collapse
Affiliation(s)
- Yin Wang
- College of Urban and Environmental Sciences, Peking University, China
| | - Yizhou Wang
- College of Agriculture and Biotechnology, Zhejiang University, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, Peking University, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|