1
|
Chen D, Wang C, Liu Y, Shen W, Cuimu Q, Zhang D, Zhu B, Chen L, Tan C. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops. BMC PLANT BIOLOGY 2025; 25:290. [PMID: 40045187 PMCID: PMC11883967 DOI: 10.1186/s12870-025-06296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
The Brassicaceae family includes Arabidopsis thaliana, various vegetables and oil crops. The R2R3-MYB genes of the S6 subfamily are crucial for regulating anthocyanin biosynthesis, however, their systematic identification in Brassicaceae plants is still incomplete. Here, we systematically identified homologous genes of R2R3-MYB transcription factors from the S6 subfamily across 31 Brassicaceae species. A total of 92 homologous genes were identified, with species representation ranging from 0 to 10 genes per species. Phylogenetic analysis classified these homologous genes into six distinct groups. Notably, approximately 70% of the homologous genes were found within the G6 group, indicating a high degree of evolutionary conservation. Furthermore, a phylogenetic analysis was conducted on 35 homologous genes obtained from six species within the U's triangle Brassica plants. The findings provided evidence of significant conservation among orthologous genes across species and demonstrated strong collinearity on subgenomic chromosomes, with notable tandem duplications observed on chromosomes A7 and C6. Subsequently, we predicted the cis-acting elements of these 35 homologous genes, and analyzed their structures, conserved motifs, and characteristic conserved domains, confirming the significant similarities between orthologous genes. Additionally, we employed white and purple flower rapeseed specimens to conduct qRT-PCR validation of the key genes and transcriptional regulators associated with the anthocyanin synthesis pathway. The results revealed significant differential expression of BnaPAP2.A7.b in purple flowers, alongside the differential expression of BnaPAP2.C6.d. Ultimately, based on previous research and the findings of this study, we propose a transcriptional regulatory framework to govern anthocyanin accumulation in distinct tissues or organs of B. napus. Our findings offer a novel perspective on the functional diversification of R2R3-MYB transcription factors within the S6 subfamily homologous genes, while also shedding light on the regulatory network governing anthocyanin biosynthesis in Brassicaceae species.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Qiushi Cuimu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Zhang M, Tian M, Weng Z, Yang Y, Pan N, Shen S, Zhao H, Du H, Qu C, Yin N. Genome-Wide Identification Analysis of the 4-Coumarate: Coa Ligase (4CL) Gene Family in Brassica U's Triangle Species and Its Potential Role in the Accumulation of Flavonoids in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2025; 14:714. [PMID: 40094609 PMCID: PMC11902127 DOI: 10.3390/plants14050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
4-Coumarate: CoA ligase (4CL) is a key branch point enzyme at the end of the phenylpropanoid metabolic pathway. It regulates the synthesis of various metabolites and participates in plant growth and development by catalyzing the formation of CoA ester compounds. However, 4CL family members have not been identified and analyzed among U's triangle species in Brassica. In this study, 53 4CL genes were identified in Brassica U's triangle species and divided into 4 groups (group I, II, III and IV) according to phylogenetic relationship. Based on phylogenetics, gene structure, conserved motifs, chromosome localization and collinearity analysis, 4CLs were relatively conserved in the evolution of Brassica U's triangle species. The promoter region contains a large number of cis-acting elements, implying the functional diversity of 4CLs. Further combining transcriptome data and reverse transcription quantitative PCR (RT-qPCR), we found that Bna4CLs have tissue specificity and can not only respond to exogenous phytohormone changes but also regulate the flavonoid biosynthetic pathway in the yellow- and black-seeded B. napus. Our results complement the lack of research on the 4CL gene family in Brassica, clarify the sequence characteristics and functional diversity of these genes and lay a foundation for further exploration of 4CL genes in response to abiotic stress and regulation of seed coat flavonoid accumulation.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengjiao Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ziwuyun Weng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yaping Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nian Pan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
3
|
Liu Z, Shen S, Li C, Zhang C, Chen X, Fu Y, Yu T, Zhou R, Liu D, Yang QY, Song X. SoIR: a comprehensive Solanaceae information resource for comparative and functional genomic study. Nucleic Acids Res 2025; 53:D1623-D1632. [PMID: 39526372 PMCID: PMC11701577 DOI: 10.1093/nar/gkae1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The Solanaceae family, which includes economically important crops such as tomatoes, potatoes and peppers, has experienced a rapid expansion in genomic data due to advancements in sequencing technologies. However, existing databases are limited by incomplete species representation, a lack of comprehensive comparative genomic tools and the absence of systematic pan-genomic analyses. To address these gaps, we developed the Solanaceae Information Resource (SoIR, https://soir.bio2db.com), a comprehensive genomics database for the Solanaceae family. SoIR integrates genomic data from 81 species and transcriptomic data from 41 species, encompassing a total of 3 908 408 gene annotations derived from Gene Ontology, nonredundant protein, Pfam, Swiss-Prot and TrEMBL databases. The resource also includes 3 437 115 CRISPR guide sequences, 212 395 transcription factors and 19 086 genes associated with methylation modification. In addition to species-specific analyses, SoIR provides extensive bioinformatics tools for investigating gene family evolution, phylogenetic relationships and karyotype reconstruction across 25 fully sequenced genomes. With advanced tools such as Blast, Synteny and Sequence Alignment, the platform provides users with interactive and intuitive visualizations for conducting cross-species comparative genomics. As the first comprehensive pan-genomic resource for the entire Solanaceae family, SoIR facilitates in-depth cross-species analysis, supporting global research initiatives in plant evolution, functional genomics and crop improvement.
Collapse
Affiliation(s)
- Zhuo Liu
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shaoqin Shen
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chenhao Zhang
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Engineering Technology Research Center of Agricultural Big Data, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhong Fu
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Food Science, Aarhus University, Aarhus 8200, Denmark
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Engineering Technology Research Center of Agricultural Big Data, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Engineering Technology Research Center of Agricultural Big Data, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Song
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
4
|
Liu Z, Zhang C, He J, Li C, Fu Y, Zhou Y, Cao R, Liu H, Song X. plantGIR: a genomic database of plants. HORTICULTURE RESEARCH 2024; 11:uhae342. [PMID: 39712867 PMCID: PMC11661351 DOI: 10.1093/hr/uhae342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Zhuo Liu
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chenhao Zhang
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jinghua He
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yanhong Fu
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Rui Cao
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Haibin Liu
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaoming Song
- School of Life Sciences/School of Basic Medical Sciences/ Key Laboratory For Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
5
|
Cantila AY, Chen S, Siddique KHM, Cowling WA. Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera. Genome 2024; 67:464-481. [PMID: 39412080 DOI: 10.1139/gen-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.
Collapse
Affiliation(s)
- Aldrin Y Cantila
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
6
|
Wang S, Wei S, Deng Y, Wu S, Peng H, Qing Y, Zhai X, Zhou S, Li J, Li H, Feng Y, Yi Y, Li R, Zhang H, Wang Y, Zhang R, Ning L, Yao Y, Fei Z, Zheng Y. HortGenome Search Engine, a universal genomic search engine for horticultural crops. HORTICULTURE RESEARCH 2024; 11:uhae100. [PMID: 38863996 PMCID: PMC11165154 DOI: 10.1093/hr/uhae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
Horticultural crops comprising fruit, vegetable, ornamental, beverage, medicinal and aromatic plants play essential roles in food security and human health, as well as landscaping. With the advances of sequencing technologies, genomes for hundreds of horticultural crops have been deciphered in recent years, providing a basis for understanding gene functions and regulatory networks and for the improvement of horticultural crops. However, these valuable genomic data are scattered in warehouses with various complex searching and displaying strategies, which increases learning and usage costs and makes comparative and functional genomic analyses across different horticultural crops very challenging. To this end, we have developed a lightweight universal search engine, HortGenome Search Engine (HSE; http://hort.moilab.net), which allows for the querying of genes, functional annotations, protein domains, homologs, and other gene-related functional information of more than 500 horticultural crops. In addition, four commonly used tools, including 'BLAST', 'Batch Query', 'Enrichment analysis', and 'Synteny Viewer' have been developed for efficient mining and analysis of these genomic data.
Collapse
Affiliation(s)
- Sen Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Shangxiao Wei
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Yuling Deng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Shaoyuan Wu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Haixu Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - You Qing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Xuyang Zhai
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Shijie Zhou
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Jinrong Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Hua Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Yijian Feng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Yating Yi
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Rui Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Yiding Wang
- College of Intelligent Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Renlong Zhang
- College of Intelligent Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lu Ning
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
- Library, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
7
|
Feng S, Li N, Chen H, Liu Z, Li C, Zhou R, Zhang Y, Cao R, Ma X, Song X. Large-scale analysis of the ARF and Aux/IAA gene families in 406 horticultural and other plants. MOLECULAR HORTICULTURE 2024; 4:13. [PMID: 38589963 PMCID: PMC11003162 DOI: 10.1186/s43897-024-00090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
The auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA) family of genes are central components of the auxin signaling pathway and play essential roles in plant growth and development. Their large-scale analysis and evolutionary trajectory of origin are currently not known. Here, we identified the corresponding ARF and Aux/IAA family members and performed a large-scale analysis by scanning 406 plant genomes. The results showed that the ARF and Aux/IAA gene families originated from charophytes. The ARF family sequences were more conserved than the Aux/IAA family sequences. Dispersed duplications were the common expansion mode of ARF and Aux/IAA families in bryophytes, ferns, and gymnosperms; however, whole-genome duplication was the common expansion mode of the ARF and Aux/IAA families in basal angiosperms, magnoliids, monocots, and dicots. Expression and regulatory network analyses revealed that the Arabidopsis thaliana ARF and Aux/IAA families responded to multiple hormone, biotic, and abiotic stresses. The APETALA2 and serum response factor-transcription factor gene families were commonly enriched in the upstream and downstream genes of the ARF and Aux/IAA gene families. Our study provides a comprehensive overview of the evolutionary trajectories, structural functions, expansion mechanisms, expression patterns, and regulatory networks of these two gene families.
Collapse
Affiliation(s)
- Shuyan Feng
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Nan Li
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Huilong Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Chunjin Li
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, 8200, Denmark
| | - Yingchao Zhang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066600, China.
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
8
|
Wu T, Liu Z, Yu T, Zhou R, Yang Q, Cao R, Nie F, Ma X, Bai Y, Song X. Flowering genes identification, network analysis, and database construction for 837 plants. HORTICULTURE RESEARCH 2024; 11:uhae013. [PMID: 38585015 PMCID: PMC10995624 DOI: 10.1093/hr/uhae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024]
Abstract
Flowering is one of the most important biological phenomena in the plant kingdom, which not only has important ecological significance, but also has substantial horticultural ornamental value. In this study, we undertook an exhaustive review of the advancements in our understanding of plant flowering genes. We delved into the identification and conducted comparative analyses of flowering genes across virtually all sequenced angiosperm plant genomes. Furthermore, we established an extensive angiosperm flowering atlas, encompassing a staggering 183 720 genes across eight pathways, along with 10 155 ABCDE mode genes, which play a pivotal role in plant flowering regulation. Through the examination of expression patterns, we unveiled the specificities of these flowering genes. An interaction network between flowering genes of the ABCDE model and their corresponding upstream genes offered a blueprint for comprehending their regulatory mechanisms. Moreover, we predicted the miRNA and target genes linked to the flowering processes of each species. To culminate our efforts, we have built a user-friendly web interface, named the Plant Flowering-time Gene Database (PFGD), accessible at http://pfgd.bio2db.com/. We firmly believe that this database will serve as a cornerstone in the global research community, facilitating the in-depth exploration of flowering genes in the plant kingdom. In summation, this pioneering endeavor represents the first comprehensive collection and comparative analysis of flowering genes in plants, offering valuable resources for the study of plant flowering genetics.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus 8200, Denmark
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fulei Nie
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066600, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
9
|
Liu Z, Shen S, Wang Y, Sun S, Yu T, Fu Y, Zhou R, Li C, Cao R, Zhang Y, Li N, Sun L, Song X. The genome of Stephania japonica provides insights into the biosynthesis of cepharanthine. Cell Rep 2024; 43:113832. [PMID: 38381605 DOI: 10.1016/j.celrep.2024.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Stephania japonica is an early-diverging eudicotyledon plant with high levels of cepharanthine, proven to be effective in curing coronavirus infections. Here, we report a high-quality S. japonica genome. The genome size is 688.52 Mb, and 97.37% sequences anchor to 11 chromosomes. The genome comprises 67.46% repetitive sequences and 21,036 genes. It is closely related to two Ranunculaceae species, which diverged from their common ancestor 55.90-71.02 million years ago (Mya) with a whole-genome duplication 85.59-96.75 Mya. We further reconstruct ancestral karyotype of Ranunculales. Several cepharanthine biosynthesis genes are identified and verified by western blot. Two genes (Sja03G0243 and Sja03G0241) exhibit catalytic activity as shown by liquid chromatography-mass spectrometry. Then, cepharanthine biosynthesis genes, transcription factors, and CYP450 family genes are used to construct a comprehensive network. Finally, we construct an early-diverging eudicotyledonous genome resources (EEGR) database. As the first genome of the Menispermaceae family to be released, this study provides rich resources for genomic studies.
Collapse
Affiliation(s)
- Zhuo Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yujie Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuqi Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tong Yu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rui Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanshu Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Liangdan Sun
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
10
|
Feng S, Liu Z, Chen H, Li N, Yu T, Zhou R, Nie F, Guo D, Ma X, Song X. PHGD: An integrative and user-friendly database for plant hormone-related genes. IMETA 2024; 3:e164. [PMID: 38868516 PMCID: PMC10989150 DOI: 10.1002/imt2.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 12/17/2023] [Indexed: 06/14/2024]
Abstract
Plant Hormone Gene Database (PHGD) database platform construction pipeline. First, we collected all reported hormone-related genes in the model plant Arabidopsis thaliana, and combined with the existing experimental background, mapped the hormone-gene interaction network to provide a blueprint. Next, we collected 469 high-quality plant genomes. Then, bioinformatics was used to identify hormone-related genes in these plants. Finally, these genetic data were programmed to be stored in a database and a platform website PHGD was built. PHGD was divided into eight modules, namely Home, Browse, Search, Resources, Download, Tools, Help, and Contact. We provided data resources and platform services to facilitate the study of plant hormones.
Collapse
Affiliation(s)
- Shuyan Feng
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhuo Liu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Huilong Chen
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Nan Li
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tong Yu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Rong Zhou
- Department of Food ScienceAarhus UniversityAarhusDenmark
| | - Fulei Nie
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Di Guo
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiao Ma
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
- College of Horticultural Science & Technology, Hebei NormalUniversity of Science & TechnologyQinhuangdaoHebeiChina
| | - Xiaoming Song
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
11
|
Dai G, Liu Y, Shen W, Zhu B, Chen L, Chen D, Tan C. Molecular evolution analysis of MYB5 in Brassicaceae with specific focus on seed coat color of Brassica napus. BMC PLANT BIOLOGY 2024; 24:52. [PMID: 38229007 DOI: 10.1186/s12870-023-04718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND MYB transcription factors are splay a vital role in plant biology, with previous research highlighting the significant impact of the R2R3-MYB-like transcription factor MYB5 on seed mucilage biosynthesis, trichome branching, and seed coat development. However, there is a dearth of studies investigating its role in the regulation of proanthocyanidin (PA) biosynthesis. RESULTS In this study, a total of 51 MYB5 homologous genes were identified across 31 species belonging to the Brassicaceae family, with particular emphasis on Brassica napus for subsequent investigation. Through phylogenetic analysis, these genes were categorized into four distinct subclasses. Protein sequence similarity and identity analysis demonstrated a high degree of conservation of MYB5 among species within the Brassicaceae family. Additionally, the examination of selection pressure revealed that MYB5 predominantly underwent purifying selection during its evolutionary history, as indicated by the Ka/Ks values of all MYB5 homologous gene pairs being less than one. Notably, we observed a higher rate of non-synonymous mutations in orthologous genes compared to paralogous genes, and the Ka/Ks value displayed a stronger correlation with Ka. In B. napus, an examination of expression patterns in five tissues revealed that MYB5 exhibited particularly high expression in the black seed coat. The findings from the WGCNA demonstrated a robust correlation between MYB5 and BAN(ANR) associated with PA biosynthesis in the black seed coat, providing further evidence of their close association and co-expression. Furthermore, the results obtained from of the analysis of protein interaction networks offer supplementary support for the proposition that MYB5 possesses the capability to interact with transcriptional regulatory proteins, specifically TT8 and TT2, alongside catalytic enzymes implicated in the synthesis of PAs, thereby making a contribution to the biosynthesis of PAs. These findings imply a plausible and significant correlation between the nuique expression pattern of MYB5 and the pigmentation of rapeseed coats. Nevertheless, additional research endeavors are imperative to authenticate and substantiate these findings. CONCLUSIONS This study offers valuable insights into the genetic evolution of Brassicaceae plants, thereby serving as a significant reference for the genetic enhancement of Brassicaceae seed coat color.
Collapse
Affiliation(s)
- Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
12
|
Liu Z, Fu Y, Wang H, Zhang Y, Han J, Wang Y, Shen S, Li C, Jiang M, Yang X, Song X. The high-quality sequencing of the Brassica rapa 'XiangQingCai' genome and exploration of genome evolution and genes related to volatile aroma. HORTICULTURE RESEARCH 2023; 10:uhad187. [PMID: 37899953 PMCID: PMC10611556 DOI: 10.1093/hr/uhad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023]
Abstract
'Vanilla' (XQC, brassica variety chinensis) is an important vegetable crop in the Brassica family, named for its strong volatile fragrance. In this study, we report the high-quality chromosome-level genome sequence of XQC. The assembled genome length was determined as 466.11 Mb, with an N50 scaffold of 46.20 Mb. A total of 59.50% repetitive sequences were detected in the XQC genome, including 47 570 genes. Among all examined Brassicaceae species, XQC had the closest relationship with B. rapa QGC ('QingGengCai') and B. rapa Pakchoi. Two whole-genome duplication (WGD) events and one recent whole-genome triplication (WGT) event occurred in the XQC genome in addition to an ancient WGT event. The recent WGT was observed to occur during 21.59-24.40 Mya (after evolution rate corrections). Our findings indicate that XQC experienced gene losses and chromosome rearrangements during the genome evolution of XQC. The results of the integrated genomic and transcriptomic analyses revealed critical genes involved in the terpenoid biosynthesis pathway and terpene synthase (TPS) family genes. In summary, we determined a chromosome-level genome of B. rapa XQC and identified the key candidate genes involved in volatile fragrance synthesis. This work can act as a basis for the comparative and functional genomic analysis and molecular breeding of B. rapa in the future.
Collapse
Affiliation(s)
- Zhaokun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Huan Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu 215008, China
| | - Jianjun Han
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yingying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mingmin Jiang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xuemei Yang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
13
|
Wu T, Yang Q, Zhou R, Yu T, Shen S, Cao R, Ma X, Song X. Large-scale analysis of trihelix transcription factors reveals their expansion and evolutionary footprint in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14039. [PMID: 37882297 DOI: 10.1111/ppl.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The trihelix transcription factor (TTF) gene family is an important class of transcription factors that play key roles in regulating developmental processes and responding to various stresses. To date, no comprehensive analysis of the TTF gene family in large-scale species has been performed. A cross-genome exploration of its origin, copy number variation, and expression pattern in plants is also unavailable. Here, we identified and characterized the TTF gene family in 110 species representing typical plant phylogenetic taxa. Interestingly, we found that the number of TTF genes was significantly expanded in Chara braunii compared to other species. Based on the available plant genomic datasets, our comparative analysis suggested that the TTF gene family likely originated from the GT-1-1 group and then expanded to form other groups through duplication or deletion of some domains. We found evidence that whole-genome duplication/triplication contributed most to the expansion of the TTF gene family in dicots, monocots and basal angiosperms. In contrast, dispersed and proximal duplications contributed to the expansion of the TTF gene family in algae and bryophyta. The expression patterns of TTF genes and their upstream and downstream genes in different treatments showed a functional divergence of TTF-related genes. Furthermore, we constructed the interaction network between TTF genes and the corresponding upstream and downstream genes, providing a blueprint for their regulatory pathways. This study provided a cross-genome comparative analysis of TTF genes in 110 species, which contributed to understanding their copy number expansion and evolutionary footprint in plants.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
- College of Horticultural Science & Technology, Hebei Normal University Of Science & Technology, Qinhuangdao, Hebei, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
14
|
Amas JC, Thomas WJW, Zhang Y, Edwards D, Batley J. Key Advances in the New Era of Genomics-Assisted Disease Resistance Improvement of Brassica Species. PHYTOPATHOLOGY 2023:PHYTO08220289FI. [PMID: 36324059 DOI: 10.1094/phyto-08-22-0289-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.
Collapse
Affiliation(s)
- Junrey C Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - William J W Thomas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Yueqi Zhang
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| |
Collapse
|
15
|
Chen B, Liu Y, Xiang C, Zhang D, Liu Z, Liu Y, Chen J. Identification and in vitro enzymatic activity analysis of the AOP2 gene family associated with glucosinolate biosynthesis in Tumorous stem mustard ( Brassica juncea var. tumida). FRONTIERS IN PLANT SCIENCE 2023; 14:1111418. [PMID: 36909383 PMCID: PMC9992552 DOI: 10.3389/fpls.2023.1111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The major enzyme encoded by the glucosinolate biosynthetic gene AOP2 is involved in catalyzing the conversion of glucoiberin (GIB) into sinigrin (SIN) in Brassicaceae crops. The AOP2 proteins have previously been identified in several Brassicaceae species, but not in Tumorous stem mustard. As per this research, the five identified members of the AOP2 family from the whole genome of Brassica juncea named BjuAOP2.1-BjuAOP2.5 were found to be evenly distributed on five chromosomes. The subcellular localization results implied that BjuAOP2 proteins were mainly concentrated in the cytoplasm. Phylogenetic analysis of the AOP2 proteins from the sequenced Brassicaceae species in BRAD showed that BjuAOP2 genes were more closely linked to Brassica carinata and Brassica rapa than Arabidopsis. In comparison with other Brassicaceae plants, the BjuAOP2 members were conserved in terms of gene structures, protein sequences, and motifs. The light response and hormone response elements were included in the BjuAOP2 genes' cis-regulatory elements. The expression pattern of BjuAOP2 genes was influenced by the different stages of development and the type of tissue being examined. The BjuAOP2 proteins were used to perform the heterologous expression experiment. The results showed that all the five BjuAOP2 proteins can catalyze the conversion of GIB to SIN with different catalytic activity. These results provide the basis for further investigation of the functional study of BjuAOP2 in Tumorous stem mustard glucosinolate biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yihua Liu
- *Correspondence: Yihua Liu, ; Jingjing Chen,
| | | |
Collapse
|
16
|
Yu T, Ma X, Liu Z, Feng X, Wang Z, Ren J, Cao R, Zhang Y, Nie F, Song X. TVIR: a comprehensive vegetable information resource database for comparative and functional genomic studies. HORTICULTURE RESEARCH 2022; 9:uhac213. [PMID: 36483087 PMCID: PMC9719039 DOI: 10.1093/hr/uhac213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 06/17/2023]
Abstract
Vegetables are an indispensable part of the daily diet of humans. Therefore, it is vital to systematically study the genomic data of vegetables and build a platform for data sharing and analysis. In this study, a comprehensive platform for vegetables with a user-friendly Web interface-The Vegetable Information Resource (TVIR, http://tvir.bio2db.com)-was built based on the genomes of 59 vegetables. TVIR database contains numerous important functional genes, including 5215 auxin genes, 2437 anthocyanin genes, 15 002 flowering genes, 79 830 resistance genes, and 2639 glucosinolate genes of 59 vegetables. In addition, 2597 N6-methyladenosine (m6A) genes were identified, including 513 writers, 1058 erasers, and 1026 readers. A total of 2 101 501 specific clustered regularly interspaced short palindromic repeat (CRISPR) guide sequences and 17 377 miRNAs were detected and deposited in TVIR database. Information on gene synteny, duplication, and orthologs is also provided for 59 vegetable species. TVIR database contains 2 346 850 gene annotations by the Swiss-Prot, TrEMBL, Gene Ontology (GO), Pfam, and Non-redundant (Nr) databases. Synteny, Primer Design, Blast, and JBrowse tools are provided to facilitate users in conducting comparative genomic analyses. This is the first large-scale collection of vegetable genomic data and bioinformatic analysis. All genome and gene sequences, annotations, and bioinformatic results can be easily downloaded from TVIR. Furthermore, transcriptome data of 98 vegetables have been collected and collated, and can be searched by species, tissues, or different growth stages. TVIR is expected to become a key hub for vegetable research globally. The database will be updated with newly assembled vegetable genomes and comparative genomic studies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyuan Wang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jun Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yingchao Zhang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fulei Nie
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | | |
Collapse
|