1
|
Guo X, Su J, Xue H, Sun Y, Lian M, Ma J, Lei T, He Y, Li Q, Chen S, Yao L. Genome-wide identification and expression analyses of ABSCISIC ACID-INSENSITIVE 5 (ABI5) genes in Citrus sinensis reveal CsABI5-5 confers dual resistance to Huanglongbing and citrus canker. Int J Biol Macromol 2025; 306:141611. [PMID: 40024407 DOI: 10.1016/j.ijbiomac.2025.141611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Huanglongbing (HLB) and citrus canker are two major destructive bacterial diseases in the citrus industry caused by Candidatus Liberibacter asiaticus (CLas) and Xanthomonas citri subsp. citri (Xcc), respectively. ABI5 transcription factors are crucial for plant growth and development as well as for responses to various abiotic and biotic stresses, including viruses and fungi. This study aimed to identify and characterize ABI5 genes in the Citrus sinensis genome and investigate their functions in response to CLas and Xcc infections. We identified five putative CsABI5 genes on three citrus chromosomes, designated CsABI5-1 through CsABI5-5, which share high identity with Arabidopsis ABI5 subfamily proteins and function in the nucleus. The expression of CsABI5s was differentially altered in citrus leaves under HLB and citrus canker stress, as well as in response to exogenous phytohormones. Notably, CsABI5-5 was upregulated by abscisic acid (ABA), salicylic acid (SA), and ethylene, whereas it was downregulated by methyl jasmonate, CLas, and Xcc. Overexpression of CsABI5-5 inhibited the propagation of CLas in citrus hairy roots and reduced leaf susceptibility to Xcc. This resistance was associated with increased levels of SA, jasmonic acid, callose, and reactive oxygen species, along with decreased ABA, compared to non-transgenic samples. This study highlights the critical role of CsABI5-5 in regulating plant resistance to biotic stresses and demonstrates its potential utility as a powerful gene for biotechnology-assisted plant breeding aimed at improving citrus resistance to bacterial diseases.
Collapse
Affiliation(s)
- Xingru Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juan Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Hao Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yijia Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Mengyao Lian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Tiangang Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| | - Lixiao Yao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| |
Collapse
|
2
|
Lovelace AH, Wang C, Levy A, Ma W. Transcriptomic Profiling of ' Candidatus Liberibacter asiaticus' in Different Citrus Tissues Reveals Novel Insights into Huanglongbing Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:56-71. [PMID: 39499195 DOI: 10.1094/mpmi-08-24-0102-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is a gram-negative bacterial pathogen associated with citrus huanglongbing (HLB) or greening disease. Las is transmitted by the Asian citrus psyllid (ACP) where it colonizes the phloem tissue, resulting in substantial economic losses to the citrus industry worldwide. Despite extensive efforts, effective management strategies against HLB remain elusive, necessitating a deeper understanding of the pathogen's biology. Las undergoes cell-to-cell movement through phloem flow and colonizes different tissues in which Las may have varying interactions with the host. Here, we investigate the transcriptomic landscape of Las in citrus seed coat vasculatures, enabling a complete gene expression profiling of Las genome and revealing unique transcriptomic patterns compared with previous studies using midrib tissues. Comparative transcriptomics between seed coat, midrib, and ACP identified specific responses and metabolic states of Las in different host tissue. Two Las virulence factors that exhibit higher expression in seed coat can suppress callose deposition. Therefore, they may contribute to unclogging sieve plate pores during Las colonization in seed coat vasculature. Furthermore, analysis of regulatory elements uncovers a potential role of LuxR-type transcription factors in regulating Liberibacter effector gene expression during plant colonization. Together, this work provides novel insights into the pathogenesis of the devastating citrus HLB. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Amelia H Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
3
|
Mphande K, Gleason ML, Beattie GA. A Bioassay That Yields Quantifiable Symptoms of Cucurbit Yellow Vine Disease Caused by Serratia marcescens. PLANT DISEASE 2025; 109:198-205. [PMID: 39254844 DOI: 10.1094/pdis-07-24-1401-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cucurbit yellow vine disease (CYVD), which is caused by the gram-negative bacterium Serratia marcescens and transmitted by squash bugs (Anasa tristis DeGeer), is a devastating disease of cucurbit crops that is emerging rapidly in the eastern half of the United States. The lack of a robust pathogenicity assay for CYVD in the laboratory has hampered functional tests using genomic sequences to investigate the biology of this phytopathogen. In this study we developed and validated a bioassay that yielded consistent and quantifiable CYVD symptoms on squash in the laboratory. We compared inoculation by wounding with a multipronged floral pin frog to inoculation by injection in which a needle was moved in and out of the stem multiple times in each of multiple piercings to mimic the feeding behavior of squash bugs. We found that inoculation by needle injection of ≥108 CFU/ml of S. marcescens into the stem of squash (Cucurbita pepo) plants at the cotyledon growth stage reproducibly induced CYVD symptoms, whereas injecting 106 or 107 CFU/ml did not. Additionally, we found that S. marcescens induced symptoms on all of the squash cultivars tested, and induced symptoms that have not been previously reported, including stem elongation and leaf cupping. In short, through our injection approach of mimicking the natural process of S. marcescens transmission by squash bug feeding, we obtained robust and quantifiable CYVD symptoms. This laboratory bioassay provides a crucial tool for investigating the biology and pathology of this emerging pathogen and for plant breeding screens aimed at combatting CYVD.
Collapse
Affiliation(s)
- Kephas Mphande
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Mark L Gleason
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Gwyn A Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
4
|
Zhang S, Wang X, Zhao T, Zhou C. Effector CLas0185 targets methionine sulphoxide reductase B1 of Citrus sinensis to promote multiplication of 'Candidatus Liberibacter asiaticus' via enhancing enzymatic activity of ascorbate peroxidase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e70002. [PMID: 39215961 PMCID: PMC11365454 DOI: 10.1111/mpp.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Citrus huanglongbing (HLB) has been causing enormous damage to the global citrus industry. As the main causal agent, 'Candidatus Liberibacter asiaticus' (CLas) delivers a set of effectors to modulate host responses, while the modes of action adopted remain largely unclear. Here, we demonstrated that CLIBASIA_00185 (CLas0185) could attenuate reactive oxygen species (ROS)-mediated cell death in Nicotiana benthamiana. Transgenic expression of CLas0185 in Citrus sinensis 'Wanjincheng' enhanced plant susceptibility to CLas. We found that methionine sulphoxide reductase B1 (CsMsrB1) was targeted by the effector, and its abundance was elevated in CLas0185-transgenic citrus plants. Their interaction promoted CLas proliferation. We then determined that CsMsrB1 sustained redox state and enzymatic activity of ascorbate peroxidase 1 (CsAPX1) under oxidative stress. The latter reduced H2O2 accumulation and was associated with host susceptibility to CLas infection. Consistently, citrus plants expressing CLas0185 and CsMsrB1 conferred enhanced APX activity and decreased H2O2 content. Taken together, these findings revealed how CLas0185 benefits CLas colonization by targeting CsMsrB1, which facilitated the antioxidant activity and depressed ROS during pathogen infection.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Xuefeng Wang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Changyong Zhou
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| |
Collapse
|
5
|
Thakre N, Carver M, Paredes-Montero JR, Mondal M, Hu J, Saberi E, Ponvert N, Qureshi JA, Brown JK. UV-LASER adjuvant-surfactant-facilitated delivery of mobile dsRNA to tomato plant vasculature and evidence of biological activity by gene knockdown in the potato psyllid. PEST MANAGEMENT SCIENCE 2024; 80:2141-2153. [PMID: 38146104 DOI: 10.1002/ps.7952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Double-stranded RNA (dsRNA) biopesticides are of interest for the abatement of insect vectors of pathogenic bacteria such as 'Candidatus Liberibacter', which infects both its psyllid and plant hosts. Silencing of genes essential for psyllids, or for Liberibacter, is anticipated to lead to mortality or impeded bacterial multiplication. Foliar delivery is preferred for biopesticide application; however, the cuticle impedes dsRNA penetration into the vasculature. Here, conditions were established for wounding tomato leaves using ultraviolet light amplification by stimulated emissions of radiation (UV-LASER) to promote dsRNA penetration into leaves and vasculature. RESULTS UV-LASER treatment with application of select adjuvants/surfactants resulted in vascular delivery of 100-, 300- and 600-bp dsRNAs that, in general, were correlated with size. The 100-bp dsRNA required no pretreatment, whereas 300- and 600-bp dsRNAs entered the vasculature after UV-LASER treatment only and UV-LASER adjuvant/surfactant treatment, respectively. Of six adjuvant/surfactants evaluated, plant-derived oil combined with an anionic organosilicon compound performed most optimally. Localization of dsRNAs in the tomato vasculature was documented using fluorometry and fluorescence confocal microscopy. The biological activity of in planta-delivered dsRNA (200-250 bp) was determined by feeding third-instar psyllids on tomato leaves post UV-LASER adjuvant/surfactant treatment, with or without psyllid cdc42- and gelsolin dsRNAs. Gene knockdown was quantified by quantitative, real-time polymerase chain reaction with reverse transcription (RT-qPCR) amplification. At 10 days post the ingestion-access period, knockdown of cdc42 and gelsolin expression was 61% and 56%, respectively, indicating that the dsRNAs delivered to the tomato vasculature were mobile and biologically active. CONCLUSION Results indicated that UV-LASER adjuvant/surfactant treatments facilitated the delivery of mobile, biologically active dsRNA molecules to the plant vasculature. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Thakre
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jiahuai Hu
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Esmaeil Saberi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Robledo J, Welker S, Shtein I, Bernardini C, Vincent C, Levy A. Phloem and Xylem Responses Are Both Implicated in Huanglongbing Tolerance of Sugar Belle. PHYTOPATHOLOGY 2024; 114:441-453. [PMID: 37551959 DOI: 10.1094/phyto-05-23-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Although huanglongbing (HLB) is a devastating citrus disease, improved tolerant cultivars, such as Sugar Belle (SB) mandarin, have been identified. To understand the responses that HLB-affected SB undergoes, we compared 14CO2 fixation, carbohydrate export, phloem callose accumulation, relative expression of plant defense activators, and anatomical changes between healthy and infected SB trees versus susceptible Pineapple (PA) sweet orange. Eight- to ten-week-old leaves of infected SB showed a 2.5-fold increase in 14CO2 fixation and a 13% decrease in 14C-carbohydrate export, whereas HLB-affected PA presented a decrease of 33 and 50%, respectively. The mean distance of a callose deposit to its closest neighbor was 36% smaller in infected SB versus healthy, whereas in HLB-affected PA, it was 33% higher. Expression of papain-like cysteine proteases (PLCPs) was upregulated in SB but downregulated in PA. Infected SB showed minor alterations in the number of xylem vessels, a 16% larger xylem vessel lumen area, and a 14% increase in the proportional area of the xylem. In contrast, PA showed a 2.4-fold increase in the xylem vessel number and a 2% increase in the proportional xylem area. Three complementary mechanisms of tolerance in SB are hypothesized: (i) increased carbohydrate availability induced by greater CO2 fixation, mild effect in carbohydrate export, and local accumulation of callose in the phloem; (ii) activation of defense response via upregulation of PLCPs, and (iii) increased investment in the xylem structure. Thus, phloem and xylem modifications seem to be involved in SB tolerance.
Collapse
Affiliation(s)
- Jacobo Robledo
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Ilana Shtein
- Eastern Region Research and Development Center, Ariel, Israel
| | - Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Christopher Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
7
|
Ebert TA, Shawer D, Brlansky RH, Rogers ME. Seasonal Patterns in the Frequency of Candidatus Liberibacter Asiaticus in Populations of Diaphorina citri (Hemiptera: Psyllidae) in Florida. INSECTS 2023; 14:756. [PMID: 37754724 PMCID: PMC10532026 DOI: 10.3390/insects14090756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is one of the putative causal agents of huanglongbing, which is a serious disease in citrus production. The pathogen is transmitted by Diaphorina citri Kuwayama (Hemiptera: Psyllidae). As an observational study, six groves in central Florida and one grove at the southern tip of Florida were sampled monthly from January 2008 through February 2012 (50 months). The collected psyllids were sorted by sex and abdominal color. Disease prevalence in adults peaked in November, with a minor peak in February. Gray/brown females had the highest prevalence, and blue/green individuals of either sex had the lowest prevalence. CLas prevalence in blue/green females was highly correlated with the prevalence in other sexes and colors. Thus, the underlying causes for seasonal fluctuations in prevalence operated in a similar fashion for all psyllids. The pattern was caused by larger nymphs displacing smaller ones from the optimal feeding sites and immunological robustness in different sex-color morphotypes. Alternative hypotheses were also considered. Improving our understanding of biological interactions and how to sample them will improve management decisions. We agree with other authors that psyllid management is critical year-round.
Collapse
Affiliation(s)
- Timothy A. Ebert
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| | - Dalia Shawer
- Department of Economic Entomology, Faculty of Agriculture, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Ron H. Brlansky
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| | - Michael E. Rogers
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| |
Collapse
|