1
|
Jiang D, Lin S, Xie L, Chen M, Shi Y, Chen K, Li X, Wu B, Zhang B. UDP-glycosyltransferase PpUGT74F2 is involved in fruit immunity via modulating salicylic acid metabolism. HORTICULTURE RESEARCH 2025; 12:uhaf049. [PMID: 40265127 PMCID: PMC12010879 DOI: 10.1093/hr/uhaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/06/2025] [Indexed: 04/24/2025]
Abstract
Flesh fruits are essential for human health, but pathogen infection poses a threat to fruit production and postharvest storage. The hormone salicylic acid (SA) and its metabolites, such as sugar conjugates and methyl salicylate (MeSA), play a crucial role in regulating plant immune responses. However, the UDP-glycosyltransferases (UGTs) responsible for modulating SA metabolism in fruit have yet to be identified, and further investigation is needed to elucidate its involvement in fruit immune response. Here, we identified PpUGT74F2 as an enzyme with the highest transcription level in peach fruit, responsible for catalyzing the biosynthesis of SA glucoside (SAG), but not for MeSAG formation in fruit. Furthermore, infection of peach fruit with Monilinia fructicola, which causes brown rot disease, led to reduced expression of PpUGT74F2, resulting in a significant decrease in SAG content and an increase in MeSA levels. Transgenic tomatoes expressing heterologous PpUGT74F2 increased susceptibility to gray mold. Interestingly, overexpressing PpUGT74F2 did not affect SA levels but dramatically reduced MeSA levels in response to pathogen infection, accompanied by significantly reduced expression of pathogen-related (PR) genes in transgenic tomatoes. This study highlights that PpUGT74F2 acts as a negative regulatory factor for fruit immunity through a distinct mechanism not previously reported in plants.
Collapse
Affiliation(s)
- Dan Jiang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Siyin Lin
- Hainan Institute of Zhejiang University, Zhenzhou Road, Sanya, Hainan 572000, China
| | - Linfeng Xie
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Miaojing Chen
- Melting Peach Research Institute of Fenghua District, 37 Gongyuan Road, Xikou Town, Fenghua district, Ningbo 315502, China
| | - Yanna Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Boping Wu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, 666 Wushu Street, Linan district, Hangzhou 311300, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Zhenzhou Road, Sanya, Hainan 572000, China
| |
Collapse
|
2
|
Hu H, Liu H, Zeng Z, Xiao Y, Mai Y, Zhang Y, Meyers BC, Hao Y, Xia R. Genetic variation in a tandemly duplicated TPS gene cluster contributes to the diversity of aroma in lychee fruit. THE NEW PHYTOLOGIST 2025; 246:2652-2665. [PMID: 40148923 DOI: 10.1111/nph.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Fruits undergo a similar ripening process, yet they exhibit a range of differences in color, taste, and shape, both across different species and within the same species. How does this diversity arise? We uncovered a conserved fruit ripening process in lychee fruit in which a NAC transcription factor, LcNAC1, acts as a master regulator. LcNAC1 regulates the expression of two terpene synthase genes, LcTPSa1 and LcTPSa2, which belong to a gene cluster consisting of four TPS genes. LcTPSa1-LcTPSa3 are responsible for catalyzing the production of farnesol, which in turn dictates the aromatic diversity in fruit of different lychee varieties. Through comparative, transcriptomic, and genomic analyses across various lychee varieties, we found these four TPS genes exhibit distinct expression levels due to natural genetic variation. These include copy number variations, presence/absence variations, insertions and deletions, and single nucleotide polymorphisms, many of which affect the binding affinity of LcNAC1. A single nucleotide mutation in LcTPSa1 caused a premature translational termination, resulting in a truncated version of the TPS protein, which surprisingly remains functional. All these genomic changes in the LcNAC1-regulated TPS genes are likely to contribute to the great aromatic diversity observed in lychee fruit. This diversification of fruit aroma in lychee varieties offers a compelling example of how species- or variety-specific traits evolve - the phenotypic diversity is primarily derived from natural genetic variation accumulated in downstream structural genes within an evolutionarily conserved regulatory circuit.
Collapse
Affiliation(s)
- Huimin Hu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongsen Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zaohai Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yaxuan Xiao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yingxiao Mai
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanqing Zhang
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Blake C Meyers
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Yanwei Hao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Rui Xia
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
3
|
Liu GS, Gao Y, Fu DQ. Two Master Transcription Factors for Fruit Ripening, NOR and Its Homologue NOR-like1: Multiple Roles in tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10692-10700. [PMID: 40287839 DOI: 10.1021/acs.jafc.5c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Non-ripening (NOR) and NOR-like1, two members of the tomato NAC transcription factor (TF) family, exhibit a high degree of homology and are well-recognized for their robust control of fruit ripening. The discovery of NOR and NOR-like1 has greatly advanced our understanding of the regulation of tomato fruit ripening and their function studies beyond fruit ripening. This review systematically summarizes the current perception of nor natural mutant (nor mutant), as well as the roles of NOR and NOR-like1 in tomato fruit ripening and beyond. Additionally, this review highlights the functional similarity and divergence of NOR and NOR-like1. In summary, we discuss the functional diversity and underlying mechanisms of NOR and NOR-like1 in tomato and propose a molecular regulatory network dominated by NOR and NOR-like1.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ying Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Dai J, Zhu J, Cheng X, Xu Z, Kang T, Xu Y, Lu Z, Ma K, Wang X, Hu Y, Zhao C. NAC transcription factor PpNAP4 positively regulates the synthesis of carotenoid and abscisic acid (ABA) during peach ripening. Int J Biol Macromol 2025; 306:141647. [PMID: 40032094 DOI: 10.1016/j.ijbiomac.2025.141647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Yellow-fleshed peaches (Prunus persica (L.) Batsch) are recognized as an excellent dietary source of carotenoids. The metabolic process of carotenoids in plants has been extensively characterized; however, the molecular mechanisms controlling carotenoid accumulation in peaches, particularly the transcriptional regulators upstream this process, remain poorly understood. Here, we initially determined the expression profiles of carotenogenic genes, observing a predominant up-regulation during ripening phase in both yellow- and white-fleshed peaches. This finding, in conjunction with prior research, suggested a conserved biosynthetic pathway for carotenoid synthesis during peach ripening, irrespective of flesh colour. NAC transcription factor, PpNAP4, previously established as a central regulator in peach ripening, is implicated as a potential modulator of carotenoid synthesis. Overexpression assays in peach and tomato nor mutant demonstrated a significant up-regulation of multiple carotenoid components by PpNAP4. Subsequent biochemical experiments revealed that PpNAP4 directly targeted the promoters of carotenogenic genes, thereby activating their expression. Next, PpNAP4 was found to be involved in the synthesis of abscisic acid (ABA) through transcriptional activation of PpNCED2/3. Additionally, we discovered that PpNAP4 acts synergistically with PpNAP6 to jointly regulate carotenoid accumulation and ABA biosynthesis. Collectively, our findings highlight PpNAP4's regulatory function in carotenoids and ABA synthesis during peach fruit ripening.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Jingwen Zhu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Xi Cheng
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Ze Xu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, PR China
| | - Tongyang Kang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Yuting Xu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Zhanling Lu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Kaisheng Ma
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Xiaoyu Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Yanan Hu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China.
| |
Collapse
|
5
|
Dai J, Xu Z, Zhang X, Fang Z, Zhu J, Kang T, Xu Y, Hu Y, Cao L, Zhao C. PpNAP4 and ethylene act in a regulatory loop to modulate peach fruit ripening and softening. Int J Biol Macromol 2025; 291:138791. [PMID: 39706437 DOI: 10.1016/j.ijbiomac.2024.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening. Here, we revealed that one NAP member PpNAP4, along with ethylene, positively regulated peach ripening and softening. Positive regulation of fruit ripening by PpNAP4 was demonstrated by overexpressing PpNAP4 in both peaches and tomatoes, resulting in enhanced fruit ripening through targeted modulation of specific ethylene biosynthesis and cell wall degradation-related genes. Further investigation revealed that PpNAP4 targets and upregulates key ethylene biosynthesis genes PpACS1, PpACO1 and PpEIN2, which is the core component of ethylene signaling. PpNAP4 positively modulates fruit softening by binding to and activating the promoters of cell wall degradation-related genes PpPL1 and PpPL15. Additionally, expression of PpPL1 and PpPL15 was directly affected by ethylene, with further investigation revealing that their promoters were clearly induced by ethylene. Our findings demonstrated a synergistic role played by the interaction between PpNAP4 and PpNAP6, enhancing the expression of PpACS1, PpACO1, PpPL1, PpPL15 and PpEIN2, thereby contributing to fruit ripening and softening. Overall, our study revealed the intricate mechanisms responsible for PpNAP4, PpNAP6, and ethylene roles during peach fruit ripening, highlighting a regulatory loop in which PpNAP4 and ethylene mutually enhance each other during the ripening process. These enhancements further contribute to peach fruit softening by upregulating specific cell wall degradation-related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Jingwen Zhu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
6
|
Su Q, Feng Y, Li X, Wang Z, Zhong Y, Zhao Z, Yang H. Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples. MOLECULAR HORTICULTURE 2025; 5:3. [PMID: 39828743 PMCID: PMC11744834 DOI: 10.1186/s43897-024-00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 01/22/2025]
Abstract
Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F1 hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years. A total of 11 candidate intervals were identified on chromosomes 03, 05, 06, 07, 13, and 16 via BSA-seq analysis. We characterized a major QTL on chromosome 16 and selected a candidate gene encoding expansin MdEXP-A1 by combining RNA-seq analysis. Furthermore, the genotype of Del-1166 (homozygous deletion) in the MdEXP-A1 promoter was closely associated with the super-hard phenotype of F1 hybrids, which could be used as a functional marker for marker-assisted selection (MAS) in apple. Functional identification revealed that MdEXP-A1 positively expedited fruit softening in both apple fruits and tomatoes that overexpressed MdEXP-A1. Moreover, the promoter sequence of TE-1166 was experimentally validated containing two binding motifs of MdNAC1, and the absence of the MdEXP-A1 promoter fragment reduced its transcription activity. MdNAC1 also promotes the expression of MdEXP-A1, indicating its potential modulatory role in quality breeding. These findings provide novel insight into the genetic control of flesh firmness by MdEXP-A1.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifeng Feng
- College of Horticulture and Forestry, Tarim University, Alaer, 843300, Xinjiang, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zidun Wang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Liu L, Wang Y, Guo J, Han Z, Yu K, Song Y, Chen H, Gao H, Yang Y, Zhao Z. Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple. HORTICULTURE RESEARCH 2025; 12:uhae284. [PMID: 39866962 PMCID: PMC11758708 DOI: 10.1093/hr/uhae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025]
Abstract
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits. Here, the whole genomes of 294 F 1 hybrids of 'Fuji' and 'Cripp's Pink' were resequenced, and a high-density binmap was constructed using 5014 bin markers with a total map distance of 2213.23 cM and an average map distance of 0.44 cM. Quantitative trait loci (QTLs) of traits related to fruit were mapped, and an A-T allele variant identified in the coding region of MdNAC5 was found to potentially regulate fruit firmness and ripening. The overexpression of MdNAC5 A resulted in higher production of methionine and 1-aminocyclopropanecarboxylic acid compared to MdNAC5 T , leading to reduced fruit firmness and accelerated ripening in apples and tomatoes. Furthermore, the activities of MdNAC5 A and MdNAC5 T were enhanced through their differential binding to the promoter regions of MdACS1 and MdERF3. Spatial variations in MdNAC5 A and MdNAC5 T caused changes in MdACS1 expression following their interaction with MdERF3. Ultimately, utilizing different MdNAC5 alleles offers a strategy to manipulate fruit firmness in apple breeding.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhua Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziqi Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaxiao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yazhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Wang Z, Xie J, Duan W, Zhang Z, Meng L, Zhu L, Wang Q, Song H, Xu X. DNA Methylation Is Crucial for 1-Methylcyclopropene Delaying Postharvest Ripening and Senescence of Tomato Fruit. Int J Mol Sci 2024; 26:168. [PMID: 39796026 PMCID: PMC11720368 DOI: 10.3390/ijms26010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected. The results showed that the 1-MCP treatment decreased the accumulation of lycopene, maintained the content of vitamin C, and delayed the ripening and senescence of tomato fruit. The quantitative real-time PCR and bisulfite sequencing analysis showed that 1-MCP treatment changed the expression and the DNA methylation level of CpG islands related to the ethylene signaling pathway genes, among which the DNA methylation change of LeEIN3 was the most significant. Compared with the control, 1-MCP treatment increased the DNA methylation level of the CpG island of the LeEIN3 gene, reduced the expression of LeEIN3 in tomato fruit, and was involved in 1-MCP delaying the postharvest senescence of tomato fruit. The results indicated that DNA methylation changes of ethylene signaling genes were involved in ethylene synthesis and signal transduction and played an important role in the regulation of 1-methylcyclopropene, delaying postharvest ripening and senescence of tomato fruit.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Jinmei Xie
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
| | - Wenhui Duan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Zhengke Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
| | - Lanhuan Meng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
| | - Lisha Zhu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Hongmiao Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
| | - Xiangbin Xu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (J.X.); (W.D.); (Z.Z.); (L.M.); (L.Z.)
| |
Collapse
|
9
|
Li Y, Chang Y, Wang Y, Gan C, Li C, Zhang X, Guo YD, Zhang N. Protein phosphatase PP2C2 dephosphorylates transcription factor ZAT5 and modulates tomato fruit ripening. PLANT PHYSIOLOGY 2024; 197:kiaf017. [PMID: 39797905 DOI: 10.1093/plphys/kiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.). Overexpression of SlZAT5 delayed ripening, while its knockout accelerated it, confirming its role as a negative regulator. SlZAT5 functions as a transcriptional repressor by directly inhibiting ripening-related genes, including SlACS4, SlPL8, and SlGRAS38, thereby delaying ripening. Furthermore, SlZAT5 interacts with the type 2C protein phosphatase SlPP2C2, which regulates the repressor activity of SlZAT5 by dephosphorylating SlZAT5 at Ser-65. This interaction is crucial in modulating ethylene production, thereby influencing the ripening process. These findings reveal a regulatory function of SlZAT5 in tomato fruit development, offering insights into the SlZAT5-SlPP2C2 module and potential targets for genetic modification to improve fruit quality and extend fruit shelf life.
Collapse
Affiliation(s)
- Yafei Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanan Chang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yiran Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chaolin Gan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chonghua Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Qi Y, Xie W, Zhang R, Wang F, Wen Q, Hu Y, Liu Q, Shen J. Transcription factor Pofst3 regulates Pleurotus ostreatus development by targeting multiple biological pathways. Fungal Biol 2024; 128:2295-2304. [PMID: 39643396 DOI: 10.1016/j.funbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024]
Abstract
Pleurotus ostreatus is a popular edible mushroom cultivated worldwide. However, the mechanism of P. ostreatus primordia formation is unclear. Pofst3 is a MHR superfamily transcription factor, which has the function of regulating primordia formation. In this study, the target genes of Pofst3 in P. ostreatus were identified by DAP-Seq approach at the genome level, 1481 peaks were obtained and the Pofst3 binding motif sequence was GARGRVGARGAR. The interaction between transcription factor Pofst3 and this motif was confirmed in vitro and in vivo through electrophoretic mobility shift (EMSA) and yeast one-hybrid screening (Y1H) assays. Among the top 20 GO enrichment results, most were related to transcriptional regulation, and some transcription factor encoding genes, such as HMG-box (gene_5346), MADS-box (gene_86), FOG (gene_6211) and RFX (gene_3496) were obtained. Besides basic metabolism, MAPK signaling pathway, Inositol phosphate metabolism, Glycosylphosphatidylinositol (GPI)-anchor biosynthesis and Pentose phosphate pathway were significantly enriched in the KEGG pathway analysis. The expression levels of randomly selected 11 genes, some transcription factor genes, and genes involved in metabolic pathways in wild and Pofst3 transgenic P. ostreatus strains indicated that target genes likely involved in the development of the P. ostreatus primordia. These results indicated that transcription factor Pofst3 ultimately negatively regulated the development of P. ostreatus primordia very likely through regulating a series of biological pathways.
Collapse
Affiliation(s)
- Yuancheng Qi
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wenfeng Xie
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ruixia Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fengqin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qing Wen
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanru Hu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qing Liu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jinwen Shen
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Li C, Cui J, Lu X, Shi M, Xu J, Yu W. Function of DNA methylation in fruits: A review. Int J Biol Macromol 2024; 282:137086. [PMID: 39500431 DOI: 10.1016/j.ijbiomac.2024.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Advances in the detection and mapping of DNA methylation redefine our understanding of the modifications as epigenetic regulation. In plants, the most prevalent DNA methylation plays crucial and dynamic roles in a wide variety of processes, such as stress responses, seedlings growth, fruit ripening and so on. Here, we discuss firstly the changes of DNA methylation (CG, CHG, and CHH) dynamic in plants. Second, we review the latest research progress on DNA methylation in the pigment accumulation of fruits including apple, grape, pear, kiwifruit, sweet orange, peach, cucumber, and tomato. Thirdly, the roles of DNA methylation in fruit development and ripening also are summarized. Moreover, DNA methylation is also associates with disease resistance, and flavor and nutritional quality in fruits. Lastly, we also provide some perspectives on future research of the unknown DNA methylation in fruits.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meimei Shi
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Zhu X, Xu X, Jiang F, Li Q, Zhang A, Li J, Zhang H. Insights into the aroma volatiles and the changes of expression of ester biosynthesis candidate genes during postharvest storage of European pear. FRONTIERS IN PLANT SCIENCE 2024; 15:1498658. [PMID: 39678004 PMCID: PMC11638670 DOI: 10.3389/fpls.2024.1498658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024]
Abstract
During the storage period after harvest, the presence of volatile esters is essential for European pear aroma. Nevertheless, the specific molecular process underlying the production of volatile esters in European pear remains elusive. In this research, head space solid phase microextraction and gas chromatography-mass spectrometry were employed to examine the volatile compounds of two varieties of European pear. The results revealed the identification of a collective of 149 volatile compounds, which were categorized into 8 groups: esters (37), alcohols (25), alkanes (24), aldehydes (22), terpenes (15), acids (8), ketones (6) and other categories (12). Notably, there were 79 volatile compounds that coexisted in both varieties, which esters are the primary group of volatile compounds found in both varieties. Through transcriptome analysis, we identified 12 candidate genes associated with ester biosynthesis and established their correlation with firmness, ethylene production, and predominant volatile esters. The results from gene expression analysis revealed significant up-regulation of PcFAD2 and PcLIP2 in both varieties and PcFAD6 exhibits low expression levels. The results indicate that the involvement of these three genes in the synthesis of esters in European pear may have a significant level of importance. This study enhances our understanding of the mechanisms involved in the formation of European pear flavor.
Collapse
Affiliation(s)
- Xinxin Zhu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Xiaofei Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Aidi Zhang
- School of Food Engineering, Ludong University, Yantai, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong, China
| |
Collapse
|
13
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
14
|
Cao X, Su Y, Zhao T, Zhang Y, Cheng B, Xie K, Yu M, Allan A, Klee H, Chen K, Guan X, Zhang Y, Zhang B. Multi-omics analysis unravels chemical roadmap and genetic basis for peach fruit aroma improvement. Cell Rep 2024; 43:114623. [PMID: 39146179 DOI: 10.1016/j.celrep.2024.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Selection of fruits with enhanced health benefits and superior flavor is an important aspect of peach breeding. Understanding the genetic interplay between appearance and flavor chemicals remains a major challenge. We identify the most important volatiles contributing to consumer preferences for peach, thus establishing priorities for improving flavor quality. We quantify volatiles of a peach population consisting of 184 accessions and demonstrate major reductions in the important flavor volatiles linalool and Z-3-hexenyl acetate in red-fleshed accessions. We identify 474 functional gene regulatory networks (GRNs), among which GRN05 plays a crucial role in controlling both red flesh and volatile content through the NAM/ATAF1/2/CUC (NAC) transcription factor PpBL. Overexpressing PpBL results in reduced expression of PpNAC1, a positive regulator for Z-3-hexenyl acetate and linalool synthesis. Additionally, we identify haplotypes for three tandem PpAATs that are significantly correlated with reduced gene expression and ester content. We develop genetic resources for improvement of fruit quality.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210014, China
| | - Bo Cheng
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kaili Xie
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210014, China
| | - Andrew Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
| | - Yuyan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210014, China.
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
15
|
Zhang L, Wang X, Dong K, Tan B, Zheng X, Ye X, Wang W, Cheng J, Feng J. Tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of the PpPGF to regulate peach softening during fruit ripening. PLANT MOLECULAR BIOLOGY 2024; 114:46. [PMID: 38630415 DOI: 10.1007/s11103-024-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/19/2024]
Abstract
Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.
Collapse
Affiliation(s)
- Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaofei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kang Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|