1
|
Cottam NC, Ofori K, Stoll KT, Bryant M, Rogge JR, Hekmatyar K, Sun J, Charvet CJ. From Circuits to Lifespan: Translating Mouse and Human Timelines with Neuroimaging-Based Tractography. J Neurosci 2025; 45:e1429242025. [PMID: 39870528 PMCID: PMC11925001 DOI: 10.1523/jneurosci.1429-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/21/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging. The timeline of human developmental circuits is well known, but it is unclear how such timelines compare with those in mice. We lack age alignments across the lifespan of mice and humans. Here, we build upon our Translating Time resource, which is a tool that equates corresponding ages during development. We collected 1,125 observations from age-related changes in body, bone, dental, and brain processes to equate corresponding ages across humans, mice, and rats to boost power for comparison across humans and mice. We acquired high-resolution diffusion MR scans of mouse brains (n = 16) of either sex at sequential stages of postnatal development [postnatal day (P)3, 4, 12, 21, 60] to track brain circuit maturation (e.g., olfactory association, transcallosal pathways). We found heterogeneity in white matter pathway growth. Corpus callosum growth largely ceases days after birth, while the olfactory association pathway grows through P60. We found that a P3-4, mouse equates to a human at roughly GW24 and a P60 mouse equates to a human in teenage years. Therefore, white matter pathway maturation is extended in mice as it is in humans, but there are species-specific adaptations. For example, olfactory-related wiring is protracted in mice, which is linked to their reliance on olfaction. Our findings underscore the importance of translational tools to map common and species-specific biological processes from model systems to humans.
Collapse
Affiliation(s)
- Nicholas C Cottam
- Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Kwadwo Ofori
- Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Kevin T Stoll
- Idaho College of Osteopathic Medicine, Meridian, Idaho 83642
| | - Madison Bryant
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849
| | - Jessica R Rogge
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849
| | - Khan Hekmatyar
- Center for Biomedical and Brain Imaging Center, University of Delaware, Wilmington, Delaware 19716
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, Georgia 30303
| | - Jianli Sun
- Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Christine J Charvet
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
2
|
Charvet CJ, de Sousa AA, Vassilopoulos T. Translating time: Challenges, progress, and future directions. Brain Res Bull 2025; 221:111212. [PMID: 39824228 PMCID: PMC11904871 DOI: 10.1016/j.brainresbull.2025.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Mice are the dominant model system to study human health and disease. Yet, there is a pressing need to use diverse model systems to address long-standing issues in biomedical sciences. Mice do not spontaneously recapitulate many of the diseases we seek to study. Accordingly, the relevance of studying mice to understand human disease is limited. We discuss examples associated with limitations of the mouse model, and how the inclusion of a richer array of model systems can help address long standing issues in biomedical sciences. We also discuss a tool called Translating Time, an online resource (www.translatingtime.org) that equates corresponding ages across model systems and humans. The translating time resource can be used to bridge the gap across species and make predictions when data are sparse or unavailable as is the case for human fetal development. Moreover, the Translating Time tool can map findings across species, make inferences about the evolution of shared neuropathologies, and inform the optimal model system for studying human biology in health and in disease. Resources such as these can be utilized to integrate information across diverse model systems to improve the study of human biology in health and disease.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Alexandra A de Sousa
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Cerrito P, Gascon E, Roberts AC, Sawiak SJ, Burkart JM. Neurodevelopmental timing and socio-cognitive development in a prosocial cooperatively breeding primate ( Callithrix jacchus). SCIENCE ADVANCES 2024; 10:eado3486. [PMID: 39475609 PMCID: PMC11804945 DOI: 10.1126/sciadv.ado3486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 02/09/2025]
Abstract
Primate brain development is shaped by inputs received during critical periods. These inputs differ between independent and cooperative breeders: In cooperative breeders, infants interact with multiple caregivers. We study how the neurodevelopmental timing of the cooperatively breeding common marmoset maps onto behavioral milestones. To obtain structure-function co-constructions, we combine behavioral, neuroimaging (anatomical and functional), and neural tracing experiments. We find that brain areas critically involved in observing conspecifics interacting (i) develop in clusters, (ii) have prolonged developmental trajectories, (iii) differentiate during the period of negotiations between immatures and multiple caregivers, and (iv) do not share stronger connectivity than with other regions. Overall, developmental timing of social brain areas correlates with social and behavioral milestones in marmosets and, as in humans, extends into adulthood. This rich social input is likely critical for the emergence of their strong socio-cognitive skills. Because humans are cooperative breeders too, these findings have strong implications for the evolution of human social cognition.
Collapse
Affiliation(s)
- Paola Cerrito
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
- Collegium Helveticum, Zürich, Switzerland
| | - Eduardo Gascon
- Aix Marseille Université, CNRS, INT, Institut Neurosciences de la Timone, Marseille, France
| | - Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stephen J. Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Judith M. Burkart
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Biazzi RB, Takahashi DY, Ghazanfar AA. Altricial brains and the evolution of infant vocal learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620895. [PMID: 39553938 PMCID: PMC11565719 DOI: 10.1101/2024.10.29.620895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human infant vocal development is strongly influenced by interactions with caregivers who reinforce more speech-like sounds. This trajectory of vocal development in humans is radically different from those of our close phylogenetic relatives, Old World monkeys and apes. In these primates most closely related to humans on the evolutionary tree, social feedback plays no significant role in their vocal development. Oddly, infant marmoset monkeys, a more distantly related New World primate, do exhibit socially guided vocal learning. To explore what developmental mechanism could have evolved to account for these behavioral differences, we hypothesized that the evolution of human and marmoset vocal learning in early infancy in both species is because they are born neurally altricial relative to other primate and in a cooperative breeding social environment. Our analysis found that, indeed, human and marmoset brain are growing faster at birth when compared with chimpanzees and rhesus macaques, making them altricial relative to these primates. We formalized our hypothesis using a logistic growth model showing that the maturation of a system dependent on the rate of brain growth and the amount of social stimuli benefits from an altricial brain and a cooperative breeding environment. Our data suggest that in primates, the evolution of socially guided vocal learning during early infancy in humans and marmosets was afforded by infants with a relatively altricial brain and behavior, sustained and stimulated by cooperative breeding environments. Significance statement Humans rely on social feedback from caregivers to learn how to produce species-typical sounds, whereas other primates like macaque monkeys or chimpanzees do not. What accounts for this difference in developmental strategies? We tested the hypothesis that being born with a more immature (thus more plastic) brain may be the reason by using marmoset monkeys. This species is more distantly related to humans but exhibit the same type of vocal learning and who have a similar socially rich infant care environment. We found that, indeed, human and marmoset brain are growing faster at birth when compared with chimpanzees and rhesus macaques, making them altricial relative to these primates and this explains their similar vocal developmental strategies.
Collapse
|
5
|
Cusack R, Ranzato M, Charvet CJ. Helpless infants are learning a foundation model. Trends Cogn Sci 2024; 28:726-738. [PMID: 38839537 PMCID: PMC11310914 DOI: 10.1016/j.tics.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Humans have a protracted postnatal helplessness period, typically attributed to human-specific maternal constraints causing an early birth when the brain is highly immature. By aligning neurodevelopmental events across species, however, it has been found that humans are not born with especially immature brains compared with animal species with a shorter helpless period. Consistent with this, the rapidly growing field of infant neuroimaging has found that brain connectivity and functional activation at birth share many similarities with the mature brain. Inspired by machine learning, where deep neural networks also benefit from a 'helpless period' of pre-training, we propose that human infants are learning a foundation model: a set of fundamental representations that underpin later cognition with high performance and rapid generalisation.
Collapse
|
6
|
Gómez-Robles A, Nicolaou C, Smaers JB, Sherwood CC. The evolution of human altriciality and brain development in comparative context. Nat Ecol Evol 2024; 8:133-146. [PMID: 38049480 PMCID: PMC10781642 DOI: 10.1038/s41559-023-02253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
Human newborns are considered altricial compared with other primates because they are relatively underdeveloped at birth. However, in a broader comparative context, other mammals are more altricial than humans. It has been proposed that altricial development evolved secondarily in humans due to obstetrical or metabolic constraints, and in association with increased brain plasticity. To explore this association, we used comparative data from 140 placental mammals to measure how altriciality evolved in humans and other species. We also estimated how changes in brain size and gestation length influenced the timing of neurodevelopment during hominin evolution. Based on our data, humans show the highest evolutionary rate to become more altricial (measured as the proportion of adult brain size at birth) across all placental mammals, but this results primarily from the pronounced postnatal enlargement of brain size rather than neonatal changes. In addition, we show that only a small number of neurodevelopmental events were shifted to the postnatal period during hominin evolution, and that they were primarily related to the myelination of certain brain pathways. These results indicate that the perception of human altriciality is mostly driven by postnatal changes, and they point to a possible association between the timing of myelination and human neuroplasticity.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, University College London, London, UK.
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|