1
|
Zhan Y, Li M, Gong R. Protein mimics of fusion core from SARS-CoV-1 can inhibit SARS-CoV-2 entry. Biochem Biophys Res Commun 2024; 736:150857. [PMID: 39490155 DOI: 10.1016/j.bbrc.2024.150857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus (subgenus Sarbecovirus) and shares significant genomic and phylogenetic similarities with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). SARS-CoV-2 infection occurs through membrane fusion between the virus and host cell membranes, which is facilitated by the spike glycoprotein subunit 2 (S2). The folding of three heptad-repeat regions 1 (HR1) into a central trimeric core structure, along with the binding of three heptad-repeat regions 2 (HR2) in an antiparallel manner within the groove formed between the HR1 regions, which provides the driving force for membrane fusion. In this study, trimeric and monomeric six-helix bundles (6HB) were created by combining various truncations of the sequences from SARS-CoV-2 HR1 and HR2. In addition, monomeric five-helix bundles (5HB) were constructed using a similar method. Finally, we demonstrated a protein mimic, 5HB_V1 (from SARS-CoV-1), that exhibits activity in inhibiting SARS-CoV-2. These findings suggest a strategy to design monomeric 6HB and 5HB based on the SARS-CoV-2 fusion core: maintain the flanking sequences outside the α-helix region in HR2 and introduce point mutations to enhance hydrogen bonding between the helix bundles. The 5HB could be a target for designing new inhibitors against SARS-CoV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yancheng Zhan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moxuan Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
2
|
Yeritsyan KV, Badasyan AV. Differential scanning calorimetry of proteins and Zimm-Bragg model in water. Arch Biochem Biophys 2024; 760:110132. [PMID: 39181382 DOI: 10.1016/j.abb.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm-Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds h¯=4.2±1.5 kJ/mol and the average energy of water-protein bonds as hps¯=3.8±1.5 kJ/mol. This is an important illustration of a tiny disbalance between the water-protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter σ belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein-water and intraprotein H-bonding energies, not accessible within the two-state paradigm.
Collapse
Affiliation(s)
- Knarik V Yeritsyan
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Artem V Badasyan
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
3
|
Zhang C, Bye JW, Lui LH, Zhang H, Hales J, Brocchini S, Curtis RA, Dalby PA. Enhanced Thermal Stability and Reduced Aggregation in an Antibody Fab Fragment at Elevated Concentrations. Mol Pharm 2023; 20:2650-2661. [PMID: 37040431 PMCID: PMC10155210 DOI: 10.1021/acs.molpharmaceut.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The aggregation of protein therapeutics such as antibodies remains a major challenge in the biopharmaceutical industry. The present study aimed to characterize the impact of the protein concentration on the mechanisms and potential pathways for aggregation, using the antibody Fab fragment A33 as the model protein. Aggregation kinetics were determined for 0.05 to 100 mg/mL Fab A33, at 65 °C. A surprising trend was observed whereby increasing the concentration decreased the relative aggregation rate, ln(v) (% day-1), from 8.5 at 0.05 mg/mL to 4.4 at 100 mg/mL. The absolute aggregation rate (mol L-1 h-1) increased with the concentration following a rate order of approximately 1 up to a concentration of 25 mg/mL. Above this concentration, there was a transition to an apparently negative rate order of -1.1 up to 100 mg/mL. Several potential mechanisms were examined as possible explanations. A greater apparent conformational stability at 100 mg/mL was observed from an increase in the thermal transition midpoint (Tm) by 7-9 °C, relative to those at 1-4 mg/mL. The associated change in unfolding entropy (△Svh) also increased by 14-18% at 25-100 mg/mL, relative to those at 1-4 mg/mL, indicating reduced conformational flexibility in the native ensemble. Addition of Tween or the crowding agents Ficoll and dextran, showed that neither surface adsorption, diffusion limitations nor simple volume crowding affected the aggregation rate. Fitting of kinetic data to a wide range of mechanistic models implied a reversible two-state conformational switch mechanism from aggregation-prone monomers (N*) into non-aggregating native forms (N) at higher concentrations. kD measurements from DLS data also suggested a weak self-attraction while remaining colloidally stable, consistent with macromolecular self-crowding within weakly associated reversible oligomers. Such a model is also consistent with compaction of the native ensemble observed through changes in Tm and △Svh.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Jordan W Bye
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - Lok H Lui
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Hongyu Zhang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - John Hales
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Steve Brocchini
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
4
|
Zhang C, Dalby PA. Assessing and Engineering Antibody Stability Using Experimental and Computational Methods. Methods Mol Biol 2023; 2552:165-197. [PMID: 36346592 DOI: 10.1007/978-1-0716-2609-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering increased stability into antibodies can improve their developability. While a range of properties need to be optimized, thermal stability and aggregation are two key factors that affect the antibody yield, purity, and specificity throughout the development and manufacturing pipeline. Therefore, an ideal goal would be to apply protein engineering methods early-on, such as in parallel to affinity maturation, to screen out potential drug molecules with the desired conformational and colloidal stability. This chapter introduces our methods to computationally characterize an antibody Fab fragment, propose stabilizing variants, and then experimentally verify these predictions.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemical Engineering, University College London, London, UK
| | - Paul Anthony Dalby
- Department of Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
5
|
Wood VE, Groves K, Wong LM, Kong L, Bird C, Wadhwa M, Quaglia M, Matejtschuk P, Dalby PA. Protein Engineering and HDX Identify Structural Regions of G-CSF Critical to Its Stability and Aggregation. Mol Pharm 2021; 19:616-629. [PMID: 34965730 DOI: 10.1021/acs.molpharmaceut.1c00754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The protein engineering and formulation of therapeutic proteins for prolonged shelf-life remain a major challenge in the biopharmaceutical industry. Understanding the influence of mutations and formulations on the protein structure and dynamics could lead to more predictive approaches to their improvement. Previous intrinsic fluorescence analysis of the chemically denatured granulocyte colony-stimulating factor (G-CSF) suggested that loop AB could subtly reorganize to form an aggregation-prone intermediate state. Hydrogen deuterium exchange mass spectrometry (HDX-MS) has also revealed that excipient binding increased the thermal unfolding transition midpoint (Tm) by stabilizing loop AB. Here, we have combined protein engineering with biophysical analyses and HDX-MS to reveal that increased exchange in a core region of the G-CSF comprising loop AB (ABI, a small helix, ABII) and loop CD packed onto helix B and the beginning of loop BC leads to a decrease in Tm and higher aggregation rates. Furthermore, some mutations can increase the population of the aggregation-prone conformation within the native ensemble, as measured by the greater local exchange within this core region.
Collapse
Affiliation(s)
- Victoria E Wood
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Kate Groves
- National Measurement Laboratory at LGC Ltd, Queens Road, Teddington TW11 0LY, U.K
| | - Lok Man Wong
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Luyan Kong
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Christopher Bird
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - Meenu Wadhwa
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - Milena Quaglia
- National Measurement Laboratory at LGC Ltd, Queens Road, Teddington TW11 0LY, U.K
| | - Paul Matejtschuk
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
6
|
Thermostable designed ankyrin repeat proteins (DARPins) as building blocks for innovative drugs. J Biol Chem 2021; 298:101403. [PMID: 34793836 PMCID: PMC8683736 DOI: 10.1016/j.jbc.2021.101403] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr. We then transferred the Asp17Leu mutation to various backgrounds, including clinically validated DARPin domains, such as the vascular endothelial growth factor-binding domain of the DARPin abicipar pegol. In all cases, these proteins showed improvements in the thermostability on the order of 8 °C to 16 °C, suggesting the replacement of Asp17 could be generically applicable to this drug class. Molecular dynamics simulations showed that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, this beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development, indicating this mutation could be partly responsible for the very high melting temperature (>90 °C) of this promising anti-COVID-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.
Collapse
|
7
|
Taher R, de Rosny E. A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra. Biochim Biophys Acta Gen Subj 2020; 1865:129810. [PMID: 33309686 DOI: 10.1016/j.bbagen.2020.129810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. METHODS The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. RESULTS We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. CONCLUSION Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. GENERAL SIGNIFICANCE We bring new input on the so far poorly described Zra system and notably on ZraS.
Collapse
Affiliation(s)
- Raleb Taher
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France; University of California, Irvine, Medical Science Building B, CA 92697, United States of America
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Wood VE, Groves K, Cryar A, Quaglia M, Matejtschuk P, Dalby PA. HDX and In Silico Docking Reveal that Excipients Stabilize G-CSF via a Combination of Preferential Exclusion and Specific Hotspot Interactions. Mol Pharm 2020; 17:4637-4651. [PMID: 33112626 DOI: 10.1021/acs.molpharmaceut.0c00877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assuring the stability of therapeutic proteins is a major challenge in the biopharmaceutical industry, and a better molecular understanding of the mechanisms through which formulations influence their stability is an ongoing priority. While the preferential exclusion effects of excipients are well known, the additional presence and impact of specific protein-excipient interactions have proven to be more elusive to identify and characterize. We have taken a combined approach of in silico molecular docking and hydrogen deuterium exchange-mass spectrometry (HDX-MS) to characterize the interactions between granulocyte colony-stimulating factor (G-CSF), and some common excipients. These interactions were related to their influence on the thermal-melting temperatures (Tm) for the nonreversible unfolding of G-CSF in liquid formulations. The residue-level interaction sites predicted in silico correlated well with those identified experimentally and highlighted the potential impact of specific excipient interactions on the Tm of G-CSF.
Collapse
Affiliation(s)
- Victoria E Wood
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Kate Groves
- National Measurement Laboratory at LGC Ltd., Queens Road, Teddington TW11 0LY, United Kingdom
| | - Adam Cryar
- National Measurement Laboratory at LGC Ltd., Queens Road, Teddington TW11 0LY, United Kingdom
| | - Milena Quaglia
- National Measurement Laboratory at LGC Ltd., Queens Road, Teddington TW11 0LY, United Kingdom
| | - Paul Matejtschuk
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Real-Hohn A, Groznica M, Löffler N, Blaas D, Kowalski H. nanoDSF: In vitro Label-Free Method to Monitor Picornavirus Uncoating and Test Compounds Affecting Particle Stability. Front Microbiol 2020; 11:1442. [PMID: 32676065 PMCID: PMC7333345 DOI: 10.3389/fmicb.2020.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Thermal shift assays measure the stability of macromolecules and macromolecular assemblies as a function of temperature. The Particle Stability Thermal Release Assay (PaSTRy) of picornaviruses is based on probes becoming strongly fluorescent upon binding to hydrophobic patches of the protein capsid (e.g., SYPRO Orange) or to the viral RNA genome (e.g., SYTO-82) that become exposed upon heating virus particles. PaSTRy has been exploited for studying the stability of viral mutants, viral uncoating, and the effect of capsid-stabilizing compounds. While the results were usually robust, the thermal shift assay with SYPRO Orange is sensitive to surfactants and EDTA and failed at least to correctly report the effect of excipients on an inactivated poliovirus 3 vaccine. Furthermore, interactions between the probe and capsid-binding antivirals as well as mutual competition for binding sites cannot be excluded. To overcome these caveats, we assessed differential scanning fluorimetry with a nanoDSF device as a label-free alternative. NanoDSF monitors the changes in the intrinsic tryptophan fluorescence (ITF) resulting from alterations of the 3D-structure of proteins as a function of the temperature. Using rhinovirus A2 as a model, we demonstrate that nanoDFS is well suited for recording the temperature-dependence of conformational changes associated with viral uncoating with minute amounts of sample. We compare it with orthogonal methods and correlate the increase in viral RNA exposure with PaSTRy measurements. Importantly, nanoDSF correctly identified the thermal stabilization of RV-A2 by pleconaril, a prototypic pocket-binding antiviral compound. NanoDFS is thus a label-free, high throughput-customizable, attractive alternative for the discovery of capsid-binding compounds impacting on viral stability.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Heinrich Kowalski
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Paraskevopoulou V, Artiaga VG, Rowlinson R, Winkler GS, Gellert P, Stolnik S, Overman R, Falcone FH. Introduction of a C-terminal hexa-lysine tag increases thermal stability of the LacDiNac binding adhesin (LabA) exodomain from Helicobacter pylori. Protein Expr Purif 2019; 163:105446. [DOI: 10.1016/j.pep.2019.105446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 12/20/2022]
|
11
|
Thermodynamics of protein folding: methodology, data analysis and interpretation of data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:305-316. [DOI: 10.1007/s00249-019-01362-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 01/17/2023]
|
12
|
Singh RK, Blossom BM, Russo DA, van Oort B, Croce R, Jensen PE, Felby C, Bjerrum MJ. Thermal unfolding and refolding of a lytic polysaccharide monooxygenase fromThermoascus aurantiacus. RSC Adv 2019; 9:29734-29742. [PMID: 35531517 PMCID: PMC9072093 DOI: 10.1039/c9ra05920b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
TaLPMO9A regains its catalytic power after a thermal unfolding and refolding cycle.
Collapse
Affiliation(s)
- Raushan K. Singh
- Department of Chemistry
- University of Copenhagen
- Copenhagen
- Denmark
| | - Benedikt M. Blossom
- Department of Geosciences and Natural Resource Management
- University of Copenhagen
- Frederiksberg C
- Denmark
| | - D. A. Russo
- Department of Plant and Environmental Sciences
- University of Copenhagen
- Frederiksberg C
- Denmark
| | - B. van Oort
- Biophysics of Photosynthesis
- Vrije Universiteit Amsterdam
- Amsterdam
- Netherlands
| | - R. Croce
- Biophysics of Photosynthesis
- Vrije Universiteit Amsterdam
- Amsterdam
- Netherlands
| | - P. E. Jensen
- Department of Plant and Environmental Sciences
- University of Copenhagen
- Frederiksberg C
- Denmark
| | - C. Felby
- Department of Geosciences and Natural Resource Management
- University of Copenhagen
- Frederiksberg C
- Denmark
| | - M. J. Bjerrum
- Department of Chemistry
- University of Copenhagen
- Copenhagen
- Denmark
| |
Collapse
|
13
|
Siligardi G, Hughes CS, Hussain R. Characterisation of sensor kinase by CD spectroscopy: golden rules and tips. Biochem Soc Trans 2018; 46:1627-1642. [PMID: 30514767 PMCID: PMC6299240 DOI: 10.1042/bst20180222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023]
Abstract
This is a review that describes the golden rules and tips on how to characterise the molecular interactions of membrane sensor kinase proteins with ligands using mainly circular dichroism (CD) spectroscopy. CD spectroscopy is essential for this task as any conformational change observed in the far-UV (secondary structures (α-helix, β-strands, poly-proline of type II, β-turns, irregular and folding) and near-UV regions [local environment of the aromatic side-chains of amino acid residues (Phe, Tyr and Trp) and ligands (drugs) and prosthetic groups (porphyrins, cofactors and coenzymes (FMN, FAD, NAD))] upon ligand addition to the protein can be used to determine qualitatively and quantitatively ligand-binding interactions. Advantages of using CD versus other techniques will be discussed. The difference CD spectra of the protein-ligand mixtures calculated subtracting the spectra of the ligand at various molar ratios can be used to determine the type of conformational changes induced by the ligand in terms of the estimated content of the various elements of protein secondary structure. The highly collimated microbeam and high photon flux of Diamond Light Source B23 beamline for synchrotron radiation circular dichroism (SRCD) enable the use of minimal amount of membrane proteins (7.5 µg for a 0.5 mg/ml solution) for high-throughput screening. Several examples of CD titrations of membrane proteins with a variety of ligands are described herein including the protocol tips that would guide the choice of the appropriate parameters to conduct these titrations by CD/SRCD in the best possible way.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K
| | - Charlotte S Hughes
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K.
| |
Collapse
|
14
|
Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc Natl Acad Sci U S A 2018; 115:E11043-E11052. [PMID: 30404916 PMCID: PMC6255212 DOI: 10.1073/pnas.1810324115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple mutations are typically required to significantly improve protein stability or aggregation kinetics. However, when several substitutions are made in a single protein, the mutations can potentially interact in a nonadditive manner, resulting in epistatic effects, which can hamper protein-engineering strategies to improve thermostability or aggregation kinetics. Here, we have examined the role of protein dynamics in mediating epistasis between pairs of mutations. With Escherichia coli transketolase (TK) as a model, we explored the epistatic interactions between two single variants H192P and A282P, and also between the double-mutant H192P/A282P and two single variants, I365L or G506A. Epistasis was determined for several measures of protein stability, including the following: the free-energy barrier to kinetic inactivation, ∆∆G ‡; thermal transition midpoint temperatures, T m; and aggregation onset temperatures, T agg Nonadditive epistasis was observed between neighboring mutations as expected, but also for distant mutations located in the surface and core regions of different domains. Surprisingly, the epistatic behaviors for each measure of stability were often different for any given pairwise recombination, highlighting that kinetic and thermodynamic stabilities do not always depend on the same structural features. Molecular-dynamics simulations and a pairwise cross-correlation analysis revealed that mutations influence the dynamics of their local environment, but also in some cases the dynamics of regions distant in the structure. This effect was found to mediate epistatic interactions between distant mutations and could therefore be exploited in future protein-engineering strategies.
Collapse
|
15
|
Zhang C, Samad M, Yu H, Chakroun N, Hilton D, Dalby PA. Computational Design To Reduce Conformational Flexibility and Aggregation Rates of an Antibody Fab Fragment. Mol Pharm 2018; 15:3079-3092. [PMID: 29897777 DOI: 10.1021/acs.molpharmaceut.8b00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computationally guided semirational design has significant potential for improving the aggregation kinetics of protein biopharmaceuticals. While improvement in the global conformational stability can stabilize proteins to aggregation under some conditions, previous studies suggest that such an approach is limited, because thermal transition temperatures ( Tm) and the fraction of protein unfolded ( fT) tend to only correlate with aggregation kinetics where the protein is incubated at temperatures approaching the Tm. This is because under these conditions, aggregation from globally unfolded protein becomes dominant. However, under native conditions, the aggregation kinetics are presumed to be dependent on local structural fluctuations or partial unfolding of the native state, which reveal regions of high propensity to form protein-protein interactions that lead to aggregation. In this work, we have targeted the design of stabilizing mutations to regions of the A33 Fab surface structure, which were predicted to be more flexible. This Fab already has high global stability, and global unfolding is not the main cause of aggregation under most conditions. Therefore, the aim was to reduce the conformational flexibility and entropy of the native protein at various locations and thus identify which of those regions has the greatest influence on the aggregation kinetics. Highly dynamic regions of structure were identified through both molecular dynamics simulation and B-factor analysis of related X-ray crystal structures. The most flexible residues were mutated into more stable variants, as predicted by Rosetta, which evaluates the ΔΔ GND for each potential point mutation. Additional destabilizing variants were prepared as controls to evaluate the prediction accuracy and also to assess the general influence of conformational stability on aggregation kinetics. The thermal conformational stability, and aggregation rates of 18 variants at 65 °C, were each examined at pH 4, 200 mM ionic strength, under which conditions the initial wild-type protein was <5% unfolded. Variants with decreased Tm values led to more rapid aggregation due to an increase in the fraction of protein unfolded under the conditions studied. As expected, no significant improvements were observed in the global conformational stability as measured by Tm. However, 6 of the 12 stable variants led to an increase in the cooperativity of unfolding, consistent with lower conformational flexibility and entropy in the native ensemble. Three of these had 5-11% lower aggregation rates, and their structural clustering indicated that the local dynamics of the C-terminus of the heavy chain had a role in influencing the aggregation rate.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemical Engineering , University College London , Gordon Street , London WC1E 7JE , U.K
| | - Maariyah Samad
- Department of Biochemical Engineering , University College London , Gordon Street , London WC1E 7JE , U.K
| | - Haoran Yu
- Department of Biochemical Engineering , University College London , Gordon Street , London WC1E 7JE , U.K
| | - Nesrine Chakroun
- Department of Biochemical Engineering , University College London , Gordon Street , London WC1E 7JE , U.K
| | - David Hilton
- Department of Biochemical Engineering , University College London , Gordon Street , London WC1E 7JE , U.K
| | - Paul A Dalby
- Department of Biochemical Engineering , University College London , Gordon Street , London WC1E 7JE , U.K
| |
Collapse
|
16
|
Yang G, Yu K, Kaitatzi CS, Singh A, Labahn J. Influence of solubilization and AD-mutations on stability and structure of human presenilins. Sci Rep 2017; 7:17970. [PMID: 29269939 PMCID: PMC5740079 DOI: 10.1038/s41598-017-18313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Presenilin (PS1 or PS2) functions as the catalytic subunit of γ-secretase, which produces the toxic amyloid beta peptides in Alzheimer’s disease (AD). The dependence of folding and structural stability of PSs on the lipophilic environment and mutation were investigated by far UV CD spectroscopy. The secondary structure content and stability of PS2 depended on the lipophilic environment. PS2 undergoes a temperature-dependent structural transition from α-helical to β-structure at 331 K. The restructured protein formed structures which tested positive in spectroscopic amyloid fibrils assays. The AD mutant PS1L266F, PS1L424V and PS1ΔE9 displayed reduced stability which supports a proposed ‘loss of function’ mechanism of AD based on protein instability. The exon 9 coded sequence in the inhibitory loop of the zymogen was found to be required for the modulation of the thermal stability of PS1 by the lipophilic environment.
Collapse
Affiliation(s)
- Ge Yang
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Kun Yu
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Christina-Symina Kaitatzi
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Physics Department, University of Patras, University Campus, 26504, Rio Achaia, Greece
| | - Abhilasha Singh
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Jörg Labahn
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany. .,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
17
|
Ernst FGM, Erber L, Sammler J, Jühling F, Betat H, Mörl M. Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity. RNA Biol 2017; 15:144-155. [PMID: 29099323 DOI: 10.1080/15476286.2017.1391445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cold adaptation is an evolutionary process that has dramatic impact on enzymatic activity. Increased flexibility of the protein structure represents the main evolutionary strategy for efficient catalysis and reaction rates in the cold, but is achieved at the expense of structural stability. This results in a significant activity-stability tradeoff, as it was observed for several metabolic enzymes. In polymerases, however, not only reaction rates, but also fidelity plays an important role, as these enzymes have to synthesize copies of DNA and RNA as exact as possible. Here, we investigate the effects of cold adaptation on the highly accurate CCA-adding enzyme, an RNA polymerase that uses an internal amino acid motif within the flexible catalytic core as a template to synthesize the CCA triplet at tRNA 3'-ends. As the relative orientation of these residues determines nucleotide selection, we characterized how cold adaptation impacts template reading and fidelity. In a comparative analysis of closely related psychro-, meso-, and thermophilic enzymes, the cold-adapted polymerase shows a remarkable error rate during CCA synthesis in vitro as well as in vivo. Accordingly, CCA-adding activity at low temperatures is not only achieved at the expense of structural stability, but also results in a reduced polymerization fidelity.
Collapse
Affiliation(s)
- Felix G M Ernst
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Lieselotte Erber
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Joana Sammler
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Frank Jühling
- b INSERM Unit 1110 , Institute of Viral and Liver Diseases, University of Strasbourg , Strasbourg , France
| | - Heike Betat
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Mario Mörl
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| |
Collapse
|
18
|
Ramsey KM, Dembinski HE, Chen W, Ricci CG, Komives EA. DNA and IκBα Both Induce Long-Range Conformational Changes in NFκB. J Mol Biol 2017; 429:999-1008. [PMID: 28249778 DOI: 10.1016/j.jmb.2017.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
We recently discovered that IκBα enhances the rate of release of nuclear factor kappa B (NFκB) from DNA target sites in a process we have termed molecular stripping. Coarse-grained molecular dynamics simulations of the stripping pathway revealed two mechanisms for the enhanced release rate: the negatively charged PEST region of IκBα electrostatically repels the DNA, and the binding of IκBα appears to twist the NFκB heterodimer so that the DNA can no longer bind. Here, we report amide hydrogen/deuterium exchange data that reveal long-range allosteric changes in the NFκB (RelA-p50) heterodimer induced by DNA or IκBα binding. The data suggest that the two Ig-like subdomains of each Rel-homology region, which are connected by a flexible linker in the heterodimer, communicate in such a way that when DNA binds to the N-terminal DNA-binding domains, the nuclear localization signal becomes more highly exchanging. Conversely, when IκBα binds to the dimerization domains, amide exchange throughout the DNA-binding domains is decreased as if the entire domain is becoming globally stabilized. The results help understand how the subtle mechanism of molecular stripping actually occurs.
Collapse
Affiliation(s)
- Kristen M Ramsey
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Holly E Dembinski
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Clarisse G Ricci
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA.
| |
Collapse
|
19
|
Likhatskaya GN, Chistyulin DK, Kim NY, Khomenko VA, Portnyagina OY, Solovyeva TF, Novikova OD. A comparative analysis of the spatial structure of nonspecific porins from Yersinia ruckeri using optical spectroscopy and molecular modeling. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350916060129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Jamroskovic J, Livendahl M, Eriksson J, Chorell E, Sabouri N. Identification of Compounds that Selectively Stabilize Specific G-Quadruplex Structures by Using a Thioflavin T-Displacement Assay as a Tool. Chemistry 2016; 22:18932-18943. [DOI: 10.1002/chem.201603463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| | | | - Jonas Eriksson
- Laboratories for Chemical Biology Umeå; Chemical Biology Consortium Sweden; Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Erik Chorell
- Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| |
Collapse
|
21
|
Tükenmez H, Magnussen HM, Kovermann M, Byström A, Wolf-Watz M. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis. PLoS One 2016; 11:e0163115. [PMID: 27642758 PMCID: PMC5028032 DOI: 10.1371/journal.pone.0163115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/03/2016] [Indexed: 01/08/2023] Open
Abstract
Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | | | | | - Anders Byström
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- * E-mail: (MWW); (AB)
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
- * E-mail: (MWW); (AB)
| |
Collapse
|
22
|
Mikaelsson T, Ådén J, Wittung-Stafshede P, Johansson LBÅ. Macromolecular crowding effects on two homologs of ribosomal protein s16: protein-dependent structural changes and local interactions. Biophys J 2015; 107:401-410. [PMID: 25028882 DOI: 10.1016/j.bpj.2014.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
Abstract
Proteins function in cellular environments that are crowded with biomolecules, and in this reduced available space, their biophysical properties may differ from those observed in dilute solutions in vitro. Here, we investigated the effects of a synthetic macromolecular crowding agent, dextran 20, on the folded states of hyperthermophilic (S16Thermo) and mesophilic (S16Meso) homologs of the ribosomal protein S16. As expected for an excluded-volume effect, the resistance of the mesophilic protein to heat-induced unfolding increased in the presence of dextran 20, and chemical denaturation experiments at different fixed temperatures showed the macromolecular crowding effect to be temperature-independent. Förster resonance energy transfer experiments show that intramolecular distances between an intrinsic Trp residue and BODIPY-labeled S16Meso depend on the level of the crowding agent. The BODIPY group was attached at three specific positions in S16Meso, allowing measurements of three intraprotein distances. All S16Meso variants exhibited a decrease in the average Trp-BODIPY distance at up to 100 mg/mL dextran 20, whereas the changes in distance became anisotropic (one distance increased, two distances decreased) at higher dextran concentrations. In contrast, the two S16Thermo mutants did not show any changes in Trp-BODIPY distances upon increase of dextran 20 concentrations. It should be noted that the fluorescence quantum yields and lifetimes of BODIPY attached to the two S16 homologs decreased gradually in the presence of dextran 20. To investigate the origin of this decrease, we studied the BODIPY quantum yield in three protein variants in the presence of a tyrosine-labeled dextran. The experiments revealed distinct tyrosine quenching behaviors of BODIPY in the three variants, suggesting a dynamic local interaction between dextran and one particular S16 variant.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
23
|
Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH. Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. SCIENCE ADVANCES 2015; 1:e1500315. [PMID: 26601230 PMCID: PMC4643811 DOI: 10.1126/sciadv.1500315] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/03/2015] [Indexed: 05/09/2023]
Abstract
Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 μM] and neutral (K D of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.
Collapse
Affiliation(s)
- Naim Hage
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tina Howard
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| | - Chris Phillips
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Claire Brassington
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Ross Overman
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Paul Gellert
- Pharmaceutical Development, AstraZeneca R&D, Charter Way, Macclesfield, Cheshire SK10 2NA, UK
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - G. Sebastiaan Winkler
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Franco H. Falcone
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| |
Collapse
|
24
|
Rocker A, Meinhart A. A
cis
‐acting antitoxin domain within the chromosomal toxin–antitoxin module
EzeT
of
E
scherichia coli
quenches toxin activity. Mol Microbiol 2015; 97:589-604. [DOI: 10.1111/mmi.13051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Andrea Rocker
- Department of Biomolecular Mechanisms Max Planck Institute for Medical Research Jahnstrasse 29 Heidelberg 69120 Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms Max Planck Institute for Medical Research Jahnstrasse 29 Heidelberg 69120 Germany
| |
Collapse
|
25
|
Ådén J, Wittung-Stafshede P. Folding of an Unfolded Protein by Macromolecular Crowding in Vitro. Biochemistry 2014; 53:2271-7. [DOI: 10.1021/bi500222g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jörgen Ådén
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | | |
Collapse
|
26
|
Overman RC, Debreczeni JE, Truman CM, McAlister MS, Attwood TK. Completing the structural family portrait of the human EphB tyrosine kinase domains. Protein Sci 2014; 23:627-38. [PMID: 24677421 DOI: 10.1002/pro.2445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 11/09/2022]
Abstract
The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X-ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild-type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand-binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis-phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme-selective kinase inhibitors for mechanistic studies and therapeutic applications.
Collapse
Affiliation(s)
- Ross C Overman
- AstraZeneca PLC, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Dumez ME, Herman J, Campisi V, Bouaziz A, Rosu F, Luxen A, Vandenberghe I, de Pauw E, Frère JM, Matagne A, Chevigné A, Galleni M. The proline-rich motif of the proDer p 3 allergen propeptide is crucial for protease-protease interaction. PLoS One 2013; 8:e68014. [PMID: 24073192 PMCID: PMC3779199 DOI: 10.1371/journal.pone.0068014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
The majority of proteases are synthesized in an inactive form, termed zymogen, which consists of a propeptide and a protease domain. The propeptide is commonly involved in the correct folding and specific inhibition of the enzyme. The propeptide of the house dust mite allergen Der p 3, NPILPASPNAT, contains a proline-rich motif (PRM), which is unusual for a trypsin-like protease. By truncating the propeptide or replacing one or all of the prolines in the non-glycosylated zymogen with alanine(s), we demonstrated that the full-length propeptide is not required for correct folding and thermal stability and that the PRM is important for the resistance of proDer p 3 to undesired proteolysis when the protein is expressed in Pichia pastoris. Additionally, we followed the maturation time course of proDer p 3 by coupling a quenched-flow assay to mass spectrometry analysis. This approach allowed to monitor the evolution of the different species and to determine the steady-state kinetic parameters for activation of the zymogen by the major allergen Der p 1. This experiment demonstrated that prolines 5 and 8 are crucial for proDer p 3-Der p 1 interaction and for activation of the zymogen.
Collapse
Affiliation(s)
- Marie-Eve Dumez
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Julie Herman
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Vincenzo Campisi
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- Laboratoire de Rétrovirologie, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Ahlem Bouaziz
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Frédéric Rosu
- Laboratoire de spectrométrie de masse (L.S.M.), GIGA-R, Université de Liège, Liège, Belgium
| | - André Luxen
- Centre de Recherches du cyclotron, Université de Liège, Liège, Belgium
| | - Isabel Vandenberghe
- Laboratory for Protein Biochemistry and Protein Engineering, K.L. Ledeganckstraat 35B, Gent, Belgium
| | - Edwin de Pauw
- Laboratoire de spectrométrie de masse (L.S.M.), GIGA-R, Université de Liège, Liège, Belgium
| | - Jean-Marie Frère
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- Laboratoire d'enzymologie et repliement des protéines, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - André Matagne
- Laboratoire d'enzymologie et repliement des protéines, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Andy Chevigné
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- Laboratoire de Rétrovirologie, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Moreno Galleni
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
28
|
Steffler F, Sieber V. Refolding of a thermostable glyceraldehyde dehydrogenase for application in synthetic cascade biomanufacturing. PLoS One 2013; 8:e70592. [PMID: 23894676 PMCID: PMC3722153 DOI: 10.1371/journal.pone.0070592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022] Open
Abstract
The production of chemicals from renewable resources is gaining importance in the light of limited fossil resources. One promising alternative to widespread fermentation based methods used here is Synthetic Cascade Biomanufacturing, the application of minimized biocatalytic reaction cascades in cell free processes. One recent example is the development of the phosphorylation independent conversion of glucose to ethanol and isobutanol using only 6 and 8 enzymes, respectively. A key enzyme for this pathway is aldehyde dehydrogenase from Thermoplasma acidophilum, which catalyzes the highly substrate specific oxidation of d-glyceraldehyde to d-glycerate. In this work the enzyme was recombinantly expressed in Escherichia coli. Using matrix-assisted refolding of inclusion bodies the yield of enzyme production was enhanced 43-fold and thus for the first time the enzyme was provided in substantial amounts. Characterization of structural stability verified correct refolding of the protein. The stability of the enzyme was determined by guanidinium chloride as well as isobutanol induced denaturation to be ca. -8 kJ/mol both at 25°C and 40°C. The aldehyde dehydrogenase is active at high temperatures and in the presence of small amounts of organic solvents. In contrast to previous publications, the enzyme was found to accept NAD(+) as cofactor making it suitable for application in the artificial glycolysis.
Collapse
Affiliation(s)
- Fabian Steffler
- Straubing Center of Science, Technische Universität München, Straubing, Germany
| | - Volker Sieber
- Straubing Center of Science, Technische Universität München, Straubing, Germany
| |
Collapse
|
29
|
Overman RC, Green I, Truman CM, Read JA, Embrey KJ, McAlister MSB, Attwood TK. Stability and solubility engineering of the EphB4 tyrosine kinase catalytic domain using a rationally designed synthetic library. Protein Eng Des Sel 2013; 26:695-704. [DOI: 10.1093/protein/gzt032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Biochemical and biophysical characterization of four EphB kinase domains reveals contrasting thermodynamic, kinetic and inhibition profiles. Biosci Rep 2013; 33:BSR20130028. [PMID: 23627399 PMCID: PMC3673036 DOI: 10.1042/bsr20130028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Eph (erythropoietin-producing hepatocellular carcinoma) B receptors are important in a variety of cellular processes through their roles in cell-to-cell contact and signalling; their up-regulation and down-regulation has been shown to have implications in a variety of cancers. A greater understanding of the similarities and differences within this small, highly conserved family of tyrosine kinases will be essential to the identification of effective therapeutic opportunities for disease intervention. In this study, we have developed a route to production of multi-milligram quantities of highly purified, homogeneous, recombinant protein for the kinase domain of these human receptors in Escherichia coli. Analyses of these isolated catalytic fragments have revealed stark contrasts in their amenability to recombinant expression and their physical properties: e.g., a >16°C variance in thermal stability, a 3-fold difference in catalytic activity and disparities in their inhibitor binding profiles. We find EphB3 to be an outlier in terms of both its intrinsic stability, and more importantly its ligand-binding properties. Our findings have led us to speculate about both their biological significance and potential routes for generating EphB isozyme-selective small-molecule inhibitors. Our comprehensive methodologies provide a template for similar in-depth studies of other kinase superfamily members.
Collapse
|
31
|
Frost S, Ho O, Login FH, Weise CF, Wolf-Watz H, Wolf-Watz M. Autoproteolysis and intramolecular dissociation of Yersinia YscU precedes secretion of its C-terminal polypeptide YscU(CC). PLoS One 2012; 7:e49349. [PMID: 23185318 PMCID: PMC3504009 DOI: 10.1371/journal.pone.0049349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/08/2012] [Indexed: 01/14/2023] Open
Abstract
Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscU(CC). Here we show that depletion of calcium induces intramolecular dissociation of YscU(CC) from YscU followed by secretion of the YscU(CC) polypeptide. Thus, YscU(CC) behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscU(CC)in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscU(CC) dissociation for Yop secretion. We propose that YscU(CC) orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms.
Collapse
Affiliation(s)
- Stefan Frost
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Oanh Ho
- Department of Chemistry, Chemical Biological Center, Umeå University, Umeå, Sweden
| | - Frédéric H. Login
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Christoph F. Weise
- Department of Chemistry, Chemical Biological Center, Umeå University, Umeå, Sweden
| | - Hans Wolf-Watz
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Center, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Ådén J, Verma A, Schug A, Wolf-Watz M. Modulation of a pre-existing conformational equilibrium tunes adenylate kinase activity. J Am Chem Soc 2012; 134:16562-70. [PMID: 22963267 DOI: 10.1021/ja3032482] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural plasticity is often required for distinct microscopic steps during enzymatic reaction cycles. Adenylate kinase from Escherichia coli (AK(eco)) populates two major conformations in solution; the open (inactive) and closed (active) state, and the overall turnover rate is inversely proportional to the lifetime of the active conformation. Therefore, structural plasticity is intimately coupled to enzymatic turnover in AK(eco). Here, we probe the open to closed conformational equilibrium in the absence of bound substrate with NMR spectroscopy and molecular dynamics simulations. The conformational equilibrium in absence of substrate and, in turn, the turnover number can be modulated with mutational- and osmolyte-driven perturbations. Removal of one hydrogen bond between the ATP and AMP binding subdomains results in a population shift toward the open conformation and a resulting increase of k(cat). Addition of the osmolyte TMAO to AK(eco) results in population shift toward the closed conformation and a significant reduction of k(cat). The Michaelis constants (K(M)) scale with the change in k(cat), which follows from the influence of the population of the closed conformation for substrate binding affinity. Hence, k(cat) and K(M) are mutually dependent, and in the case of AK(eco), any perturbation that modulates k(cat) is mirrored with a proportional response in K(M). Thus, our results demonstrate that the equilibrium constant of a pre-existing conformational equilibrium directly affects enzymatic catalysis. From an evolutionary perspective, our findings suggest that, for AK(eco), there exists ample flexibility to obtain a specificity constant (k(cat)/K(M)) that commensurate with the exerted cellular selective pressure.
Collapse
Affiliation(s)
- Jörgen Ådén
- Department of Chemistry, Chemical Biological Center, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
33
|
Adén J, Wallgren M, Storm P, Weise CF, Christiansen A, Schröder WP, Funk C, Wolf-Watz M. Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1880-90. [PMID: 21798375 DOI: 10.1016/j.bbapap.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
Collapse
Affiliation(s)
- Jörgen Adén
- Department of Chemistry, Umea University, Umea, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Feng JA, Kao J, Marshall GR. A second look at mini-protein stability: analysis of FSD-1 using circular dichroism, differential scanning calorimetry, and simulations. Biophys J 2010; 97:2803-10. [PMID: 19917235 DOI: 10.1016/j.bpj.2009.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022] Open
Abstract
Mini-proteins that contain <50 amino acids often serve as model systems for studying protein folding because their small size makes long timescale simulations possible. However, not all mini-proteins are created equal. The stability and structure of FSD-1, a 28-residue mini-protein that adopted the betabetaalpha zinc-finger motif independent of zinc binding, was investigated using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The broad melting transition of FSD-1, similar to that of a helix-to-coil transition, was observed by using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The N-terminal beta-hairpin was found to be flexible. The FSD-1 apparent melting temperature of 41 degrees C may be a reflection of the melting of its alpha-helical segment instead of the entire protein. Thus, despite its attractiveness due to small size and purposefully designed helix, sheet, and turn structures, the status of FSD-1 as a model system for studying protein folding should be reconsidered.
Collapse
Affiliation(s)
- Jianwen A Feng
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA.
| | | | | |
Collapse
|
35
|
El Hajjaji H, Dumoulin M, Matagne A, Colau D, Roos G, Messens J, Collet JF. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2. J Mol Biol 2008; 386:60-71. [PMID: 19073194 DOI: 10.1016/j.jmb.2008.11.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/19/2008] [Indexed: 11/27/2022]
Abstract
Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pK(a) of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (-221 mV versus -284 mV, respectively), which is in good agreement with the decreased value of the pK(a) of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (DeltaDeltaG degrees(H2O)=9 kJ/mol and DeltaT(m)=7. 4 degrees C) than for Trx1 (DeltaDeltaG degrees(H2O)=15 kJ/mol and DeltaT(m)=13 degrees C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn(2+)-binding cysteines to serine. This mutant has a more reducing redox potential (-254 mV) and the pK(a) of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn(2+) also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn(2+)-center of Trx2 fine-tunes the properties of this unique thioredoxin.
Collapse
Affiliation(s)
- Hayat El Hajjaji
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
Wallgren M, Adén J, Pylypenko O, Mikaelsson T, Johansson LBA, Rak A, Wolf-Watz M. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. J Mol Biol 2008; 379:845-58. [PMID: 18471828 DOI: 10.1016/j.jmb.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Understanding the mechanisms that dictate protein stability is of large relevance, for instance, to enable design of temperature-tolerant enzymes with high enzymatic activity over a broad temperature interval. In an effort to identify such mechanisms, we have performed a detailed comparative study of the folding thermodynamics and kinetics of the ribosomal protein S16 isolated from a mesophilic (S16(meso)) and hyperthermophilic (S16(thermo)) bacterium by using a variety of biophysical methods. As basis for the study, the 2.0 A X-ray structure of S16(thermo) was solved using single wavelength anomalous dispersion phasing. Thermal unfolding experiments yielded midpoints of 59 and 111 degrees C with associated changes in heat capacity upon unfolding (DeltaC(p)(0)) of 6.4 and 3.3 kJ mol(-1) K(-1), respectively. A strong linear correlation between DeltaC(p)(0) and melting temperature (T(m)) was observed for the wild-type proteins and mutated variants, suggesting that these variables are intimately connected. Stopped-flow fluorescence spectroscopy shows that S16(meso) folds through an apparent two-state model, whereas S16(thermo) folds through a more complex mechanism with a marked curvature in the refolding limb indicating the presence of a folding intermediate. Time-resolved energy transfer between Trp and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide of proteins mutated at selected positions shows that the denatured state ensemble of S16(thermo) is more compact relative to S16(meso). Taken together, our results suggest the presence of residual structure in the denatured state ensemble of S16(thermo) that appears to account for the large difference in quantified DeltaC(p)(0) values and, in turn, parts of the observed extreme thermal stability of S16(thermo). These observations may be of general importance in the design of robust enzymes that are highly active over a wide temperature span.
Collapse
Affiliation(s)
- Marcus Wallgren
- Department of Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Studies that compare proteins from thermophilic and mesophilic organisms can provide insights into ability of thermophiles to function at their high habitat temperatures and may provide clues that enable us to better define the forces that stabilize all proteins. Most of the comparative studies have focused on thermal stability and show, as expected, that thermophilic proteins have higher Tm values than their mesophilic counterparts. Although these comparisons are useful, more detailed thermodynamic analyses are required to reach a more complete understanding of the mechanisms thermophilic protein employ to remain folded over a wider range of temperatures. This complete thermodynamic description allows one to generate a stability curve for a protein that defines how the conformational stability (DeltaG) varies with temperature. Here we compare stability curves for many pairs of homologous proteins from thermophilic and mesophilc organisms. Of the basic methods that can be employed to achieve enhanced thermostability, we find that most thermophilic proteins use the simple method that raises the DeltaG at all temperatures as the principal way to increase their Tm. We discuss and compare this thermodynamic method with the possible alternatives. In addition we propose ways that structural alterations and changes to the amino acid sequences might give rise to varied methods used to obtain thermostability.
Collapse
Affiliation(s)
- Abbas Razvi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-1114, USA
| | | |
Collapse
|
38
|
Naik MT, Huang TH. Conformational stability and thermodynamic characterization of the lipoic acid bearing domain of human mitochondrial branched chain alpha-ketoacid dehydrogenase. Protein Sci 2005; 13:2483-92. [PMID: 15322287 PMCID: PMC2280005 DOI: 10.1110/ps.04783104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The lipoic acid bearing domain (hbLBD) of human mitochondrial branched chain alpha-ketoacid dehydrogenase (BCKD) plays important role of substrate channeling in oxidative decarboxylation of the branched chain alpha-ketoacids. Recently hbLBD has been found to follow two-step folding mechanism without detectable presence of stable or kinetic intermediates. The present study describes the conformational stability underlying the folding of this small beta-barrel domain. Thermal denaturation in presence of urea and isothermal urea denaturation titrations are used to evaluate various thermodynamic parameters defining the equilibrium unfolding. The linear extrapolation model successfully describes the two-step; native state <-->denatured state unfolding transition of hbLBD. The average temperature of maximum stability of hbLBD is estimated as 295.6 +/- 0.9 K. Cold denaturation of hbLBD is also predicted and discussed.
Collapse
Affiliation(s)
- Mandar T Naik
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | | |
Collapse
|
39
|
Xu S, Qin S, Pan XM. Thermal and conformational stability of Ssh10b protein from archaeon Sulfolobus shibattae. Biochem J 2005; 382:433-40. [PMID: 15107015 PMCID: PMC1182282 DOI: 10.1042/bj20040191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/22/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
The secondary structure of the DNA binding protein Ssh10b is largely unaffected by change in temperature between 25 degrees C and 85 degrees C, indicating that the protein is highly thermostable. Here, we report the temperature-dependent equilibrium denaturation of Ssh10b in the presence of guanidine hydrochloride (GdnHCl). It was found that the transition midpoint values of the temperature (T(m)), and changes of enthalpy (DeltaH(m)) and entropy (DeltaS(m)) of Ssh10b unfolding were linearly decreasing with increasing GdnHCl concentration. The true values of the thermodynamic parameters, T(m)=402 K, DeltaH(m)=590+/-40 kJ x mol(-1) and DeltaS(m)=1.4+/-0.15 kJ x T(-1) x mol(-1), were obtained by linear extrapolation to 0 M GdnHCl. The value of the heat capacity change of Ssh10b unfolding, DeltaC(p)=3.8+/-0.2 kJ x T(-1) x mol(-1) (approx. 19 J T(-1) x mol residue(-1)), was obtained from the measured thermodynamic parameters. This is significantly smaller than that of the average value for mesophilic proteins (50 J.K(-1) x mol residue(-1)) or the value calculated from the Ssh10b structural data (64 J T(-1) x mol residue(-1)). A consequence of the small DeltaC(p) is that the DeltaG of Ssh10b is larger than that of mesophilic proteins, while the values of DeltaH and T*DeltaS are smaller. The small DeltaC(p) of Ssh10b appears to result mainly from the presence of compactness in the denatured state.
Collapse
Affiliation(s)
- Su Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | - Sanbo Qin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | - Xian-Ming Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Kumar S, Nussinov R. Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability. Biophys Chem 2004; 111:235-46. [PMID: 15501567 DOI: 10.1016/j.bpc.2004.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/27/2004] [Accepted: 06/01/2004] [Indexed: 11/27/2022]
Abstract
Here, we perform protein thermodynamic simulations within a set of boundary conditions, effectively blanketing the experimental data. The thermodynamic parameters, melting temperature (TG), enthalpy change at the melting temperature (DeltaHG) and heat capacity change (DeltaCp) were systematically varied over the experimentally observed ranges for small single domain reversible two-state proteins. Parameter sets that satisfy the Gibbs-Helmholtz equation and yield a temperature of maximal stability (TS) around room temperature were selected. The results were divided into three categories by arbitrarily chosen TG ranges. The TG ranges in these categories correspond to typical values of the melting temperatures observed for the majority of the proteins from mesophilic, thermophilic and hyperthermophilic organisms. As expected, DeltaCp values tend to be high in mesophiles and low in hyperthermophiles. An increase in TG is accompanied by an up-shift and broadening of the protein stability curves, however, with a large scatter. Furthermore, the simulations reveal that the average DeltaHG increases with TG up to approximately 360 K and becomes constant thereafter. DeltaCp decreases with TG with different rates before and after approximately 360 K. This provides further justification for the separate grouping of proteins into thermophiles and hyperthermophiles to assess their thermodynamic differences. This analysis of the Gibbs-Helmholtz equation has allowed us to study the interdependence of the thermodynamic parameters TG, DeltaHG and DeltaCp and their derivatives in a more rigorous way than possible by the limited experimental protein thermodynamics data available in the literature. The results provide new insights into protein thermostability and suggest potential strategies for its manipulation.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. 208016, India
| | | |
Collapse
|
41
|
Livesay DR, Dallakyan S, Wood GG, Jacobs DJ. A flexible approach for understanding protein stability. FEBS Lett 2004; 576:468-76. [PMID: 15498582 DOI: 10.1016/j.febslet.2004.09.057] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 09/20/2004] [Indexed: 11/25/2022]
Abstract
A distance constraint model (DCM) is presented that identifies flexible regions within protein structure consistent with specified thermodynamic condition. The DCM is based on a rigorous free energy decomposition scheme representing structure as fluctuating constraint topologies. Entropy non-additivity is problematic for naive decompositions, limiting the success of heat capacity predictions. The DCM resolves non-additivity by summing over independent entropic components determined by an efficient network-rigidity algorithm. A minimal 3-parameter DCM is demonstrated to accurately reproduce experimental heat capacity curves. Free energy landscapes and quantitative stability-flexibility relationships are obtained in terms of global flexibility. Several connections to experiment are made.
Collapse
Affiliation(s)
- D R Livesay
- Department of Chemistry, California State Polytechnic University, Pomona, 3801 W Temple Ave, Pomona, CA 91768, USA
| | | | | | | |
Collapse
|
42
|
Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 2003; 278:26458-65. [PMID: 12702728 DOI: 10.1074/jbc.m300815200] [Citation(s) in RCA: 438] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trehalose, a naturally occurring osmolyte, is known to be an exceptional stabilizer of proteins and helps retain the activity of enzymes in solution as well as in the freeze-dried state. To understand the mechanism of action of trehalose in detail, we have conducted a thorough investigation of its effect on the thermal stability in aqueous solutions of five well characterized proteins differing in their various physico-chemical properties. Among them, RNase A has been used as a model enzyme to investigate the effect of trehalose on the retention of enzymatic activity upon incubation at high temperatures. 2 m trehalose was observed to raise the transition temperature, Tm of RNase A by as much as 18 degrees C and Gibbs free energy by 4.8 kcal mol-1 at pH 2.5. There is a decrease in the heat capacity of protein denaturation (DeltaCp) in trehalose solutions for all the studied proteins. An increase in the DeltaG and a decrease in the DeltaCp values for all the proteins points toward a general mechanism of stabilization due to the elevation and broadening of the stability curve (DeltaG versus T). A direct correlation of the surface tension of trehalose solutions and the thermal stability of various proteins has been observed. Wyman linkage analysis indicates that at 1.5 m concentration 4-7 molecules of trehalose are excluded from the vicinity of protein molecules upon denaturation. We further show that an increase in the stability of proteins in the presence of trehalose depends upon the length of the polypeptide chain. The pH dependence data suggest that even though the charge status of a protein contributes significantly, trehalose can be expected to work as a universal stabilizer of protein conformation due to its exceptional effect on the structure and properties of solvent water compared with other sugars and polyols.
Collapse
Affiliation(s)
- Jai K Kaushik
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
43
|
Kaushik JK, Ogasahara K, Yutani K. The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus. J Mol Biol 2002; 316:991-1003. [PMID: 11884137 DOI: 10.1006/jmbi.2001.5355] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to understand the thermodynamic and kinetic basis of the intrinsic stability of proteins from hyperthermophiles, the folding-unfolding reactions of cysteine-free pyrrolidone carboxyl peptidase (Cys142/188Ser) (PCP-0SH) from Pyrococcus furiosus were examined using circular dichroism (CD) and differential scanning calorimetry (DSC) at pH 2.3, where PCP-0SH exists in monomeric form. DSC showed a strong dependence of the shape and position of the unfolding profiles on the scan rate, suggesting the stability of PCP-0SH under kinetic control. On DSC timescales, even at a scan rate of 1 deg. C/hour, heat denaturation of PCP-0SH was non-equilibrium. However, over a long period of incubation of the heat-denatured PCP-0SH at pre-transition temperatures, it refolded completely, indicating reversibility with very slow relaxation kinetics. The rates of refolding of the heat-denatured PCP-0SH determined from the time-resolved DSC and CD spectroscopic progress curves were found to be similar within experimental error, confirming the mechanism of refolding to be a two-state process. The equilibrium established with a relaxation time of 5080 seconds (at t(m)=46.5 degrees C), which is unusually higher than the relaxation times observed for mesophilic and hyperthermophilic proteins. The long relaxation time may lead to the apparent irreversibility of an unfolding process occurring on the DSC experiment timescale. The refolding rate (9.8 x 10(-5) s(-1)) peaked near the t(m) (=46.5 degrees C), whereas the stability profile reached maxima (11.8 kJ mol(-1)) at 17 degrees C. The results clearly indicate the unusual mode of protein destabilization via a drastic decrease in the rate of folding at low pH and still maintaining a high activation energy barrier (284 kJ mol(-1)) for unfolding, which provides an effective kinetic advantage to unusually stable proteins from hyperthermophiles.
Collapse
Affiliation(s)
- Jai K Kaushik
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|