1
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Raschi E, Casula M, Cicero AFG, Corsini A, Borghi C, Catapano A. Beyond statins: New pharmacological targets to decrease LDL-cholesterol and cardiovascular events. Pharmacol Ther 2023; 250:108507. [PMID: 37567512 DOI: 10.1016/j.pharmthera.2023.108507] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The pharmacological treatment of dyslipidemia, a major modifiable risk factor for developing atherosclerotic cardiovascular disease (ASCVD), remains a debated and controversial issue, not only in terms of the most appropriate therapeutic range for lipid levels, but also with regard to the optimal strategy and sequence approach (stepwise vs upstream therapy). Current treatment guidelines for the management of dyslipidemia focus on the intensity of low-density lipoprotein cholesterol (LDL-C) reduction, stratified according to risk for developing ASCVD. Beyond statins and ezetimibe, different medications targeting LDL-C have been recently approved by regulatory agencies with potential innovative mechanisms of action, including proprotein convertase subtilisin/kexin type 9 modulators (monoclonal antibodies such as evolocumab and alirocumab; small interfering RNA molecules such as inclisiran), ATP-citrate lyase inhibitors (bempedoic acid), angiopoietin-like 3 inhibitors (evinacumab), and microsomal triglyceride transfer protein inhibitors (lomitapide). An understanding of their pharmacological aspects, benefit-risk profile, including impact on hard cardiovascular endpoints beyond LDL-C reduction, and potential advantages from the patient perspective (e.g., adherence) - the focus of this evidence-based review - is crucial for practitioners across medical specialties to minimize therapeutic inertia and support clinical practice.
Collapse
Affiliation(s)
- Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | | |
Collapse
|
3
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Chauhan S, Tiwari PN, Payasi DK. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life (Basel) 2023; 13:1456. [PMID: 37511831 PMCID: PMC10381907 DOI: 10.3390/life13071456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Genome editing aims to revolutionise plant breeding and could assist in safeguarding the global food supply. The inclusion of a 12-40 bp recognition site makes mega nucleases the first tools utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are the second gene-editing technique, and because they create double-stranded breaks, they are more dependable and effective. ZFNs were the original designed nuclease-based approach of genome editing. The Cys2-His2 zinc finger domain's discovery made this technique possible. Clustered regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes can be effectively modified using genome-editing technologies to enhance characteristics without introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by these exact breeding methods. There is abroad promise that genome-edited crops will be essential in the years to come for improving the sustainability and climate-change resilience of food systems. This method also has great potential for enhancing crops' resistance to various abiotic stressors. In this review paper, we summarize the most recent findings about the mechanism of abiotic stress response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve tolerance to stresses including drought, salinity, cold, heat, and heavy metals.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Prakash Narayan Tiwari
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
4
|
Martinez MG, Smekalova E, Combe E, Gregoire F, Zoulim F, Testoni B. Gene Editing Technologies to Target HBV cccDNA. Viruses 2022; 14:v14122654. [PMID: 36560658 PMCID: PMC9787400 DOI: 10.3390/v14122654] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis B virus (HBV) remains a significant cause of mortality and morbidity worldwide, since chronic HBV infection is associated with elevated risk of cirrhosis and hepatocellular carcinoma. Current licensed therapies against HBV efficiently suppress viral replication; however, they do not have significant effects on the intrahepatic covalently closed circular DNA (cccDNA) of the viral minichromosome responsible for viral persistence. Thus, life-long treatment is required to avoid viral rebound. There is a significant need for novel therapies that can reduce, silence or eradicate cccDNA, thus preventing HBV reemergence after treatment withdrawal. In this review, we discuss the latest developments and applications of gene editing and related approaches for directly targeting HBV DNA and, more specifically, cccDNA in infected hepatocytes.
Collapse
Affiliation(s)
| | | | - Emmanuel Combe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
| | | | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Hospices Civils de Lyon (HCL), 69002 Lyon, France
- Université Claude-Bernard Lyon 1 (UCBL1), 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Université Claude-Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Correspondence:
| |
Collapse
|
5
|
Falabella M, Minczuk M, Hanna MG, Viscomi C, Pitceathly RDS. Gene therapy for primary mitochondrial diseases: experimental advances and clinical challenges. Nat Rev Neurol 2022; 18:689-698. [PMID: 36257993 DOI: 10.1038/s41582-022-00715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CESNE - Center for the Study of Neurodegeneration, University of Padova, Padova, Italy
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
6
|
Lu Y, Happi Mbakam C, Song B, Bendavid E, Tremblay JP. Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Front Genome Ed 2022; 4:892769. [PMID: 35958050 PMCID: PMC9360573 DOI: 10.3389/fgeed.2022.892769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/08/2022] [Indexed: 12/20/2022] Open
Abstract
Advancements in genome editing make possible to exploit the functions of enzymes for efficient DNA modifications with tremendous potential to treat human genetic diseases. Several nuclease genome editing strategies including Meganucleases (MNs), Zinc Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas) have been developed for the correction of genetic mutations. CRISPR-Cas has further been engineered to create nickase genome editing tools including Base editors and Prime editors with much precision and efficacy. In this review, we summarized recent improvements in nuclease and nickase genome editing approaches for the treatment of genetic diseases. We also highlighted some limitations for the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lu
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Cedric Happi Mbakam
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Bo Song
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Eli Bendavid
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques-P. Tremblay
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
- *Correspondence: Jacques-P. Tremblay,
| |
Collapse
|
7
|
Viviani A, Spada M, Giordani T, Fambrini M, Pugliesi C. Origin of the genome editing systems: application for crop improvement. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants. Int J Genomics 2022; 2022:5547231. [PMID: 35465040 PMCID: PMC9033345 DOI: 10.1155/2022/5547231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
The susceptibility of crop plants towards abiotic stresses is highly threatening to assure global food security as it results in almost 50% annual yield loss. To address this issue, several strategies like plant breeding and genetic engineering have been used by researchers from time to time. However, these approaches are not sufficient to ensure stress resilience due to the complexity associated with the inheritance of abiotic stress adaptive traits. Thus, researchers were prompted to develop novel techniques with high precision that can address the challenges connected to the previous strategies. Genome editing is the latest approach that is in the limelight for improving the stress tolerance of plants. It has revolutionized crop research due to its versatility and precision. The present review is an update on the different genome editing tools used for crop improvement so far and the various challenges associated with them. It also highlights the emerging potential of genome editing for developing abiotic stress-resilient crops.
Collapse
|
9
|
Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23:199-214. [PMID: 34857922 DOI: 10.1038/s41576-021-00432-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Genome editing in large animal models. Mol Ther 2021; 29:3140-3152. [PMID: 34601132 DOI: 10.1016/j.ymthe.2021.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.
Collapse
|
11
|
Chuang CK, Lin WM. Points of View on the Tools for Genome/Gene Editing. Int J Mol Sci 2021; 22:9872. [PMID: 34576035 PMCID: PMC8470269 DOI: 10.3390/ijms22189872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Theoretically, a DNA sequence-specific recognition protein that can distinguish a DNA sequence equal to or more than 16 bp could be unique to mammalian genomes. Long-sequence-specific nucleases, such as naturally occurring Homing Endonucleases and artificially engineered ZFN, TALEN, and Cas9-sgRNA, have been developed and widely applied in genome editing. In contrast to other counterparts, which recognize DNA target sites by the protein moieties themselves, Cas9 uses a single-guide RNA (sgRNA) as a template for DNA target recognition. Due to the simplicity in designing and synthesizing a sgRNA for a target site, Cas9-sgRNA has become the most current tool for genome editing. Moreover, the RNA-guided DNA recognition activity of Cas9-sgRNA is independent of both of the nuclease activities of it on the complementary strand by the HNH domain and the non-complementary strand by the RuvC domain, and HNH nuclease activity null mutant (H840A) and RuvC nuclease activity null mutant (D10A) were identified. In accompaniment with the sgRNA, Cas9, Cas9(D10A), Cas9(H840A), and Cas9(D10A, H840A) can be used to achieve double strand breakage, complementary strand breakage, non-complementary strand breakage, and no breakage on-target site, respectively. Based on such unique characteristics, many engineered enzyme activities, such as DNA methylation, histone methylation, histone acetylation, cytidine deamination, adenine deamination, and primer-directed mutation, could be introduced within or around the target site. In order to prevent off-targeting by the lasting expression of Cas9 derivatives, a lot of transient expression methods, including the direct delivery of Cas9-sgRNA riboprotein, were developed. The issue of biosafety is indispensable in in vivo applications; Cas9-sgRNA packaged into virus-like particles or extracellular vesicles have been designed and some in vivo therapeutic trials have been reported.
Collapse
Affiliation(s)
- Chin-Kai Chuang
- Animal Technology Research Center, Division of Animal Technology, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 35053, Taiwan;
| | | |
Collapse
|
12
|
Wang L, Breton C, Warzecha CC, Bell P, Yan H, He Z, White J, Zhu Y, Li M, Buza EL, Jantz D, Wilson JM. Long-term stable reduction of low-density lipoprotein in nonhuman primates following in vivo genome editing of PCSK9. Mol Ther 2021; 29:2019-2029. [PMID: 33609733 DOI: 10.1016/j.ymthe.2021.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Gene disruption via programmable, sequence-specific nucleases represents a promising gene therapy strategy in which the reduction of specific protein levels provides a therapeutic benefit. Proprotein convertase subtilisin/kexin type 9 (PCSK9), an antagonist of the low-density lipoprotein (LDL) receptor, is a suitable target for nuclease-mediated gene disruption as an approach to treat hypercholesterolemia. We sought to determine the long-term durability and safety of PCSK9 knockdown in non-human primate (NHP) liver by adeno-associated virus (AAV)-delivered meganuclease following our initial report on the feasibility of this strategy. Six previously treated NHPs and additional NHPs administered AAV-meganuclease in combination with corticosteroid treatment or an alternative AAV serotype were monitored for a period of up to 3 years. The treated NHPs exhibited a sustained reduction in circulating PCSK9 and LDL cholesterol (LDL-c) through the course of the study concomitant with stable gene editing of the PCSK9 locus. Low-frequency off-target editing remained stable, and no obvious adverse changes in histopathology of the liver were detected. We demonstrate similar on-target nuclease activity in primary human hepatocytes using a chimeric liver-humanized mouse model. These studies demonstrate that targeted in vivo gene disruption exerts a lasting therapeutic effect and provide pivotal data for safety considerations, which support clinical translation.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Camilo Breton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claude C Warzecha
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanying Yan
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John White
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 2021; 12:3210. [PMID: 34050192 PMCID: PMC8163834 DOI: 10.1038/s41467-021-23561-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Diseases caused by heteroplasmic mitochondrial DNA mutations have no effective treatment or cure. In recent years, DNA editing enzymes were tested as tools to eliminate mutant mtDNA in heteroplasmic cells and tissues. Mitochondrial-targeted restriction endonucleases, ZFNs, and TALENs have been successful in shifting mtDNA heteroplasmy, but they all have drawbacks as gene therapy reagents, including: large size, heterodimeric nature, inability to distinguish single base changes, or low flexibility and effectiveness. Here we report the adaptation of a gene editing platform based on the I-CreI meganuclease known as ARCUS®. These mitochondrial-targeted meganucleases (mitoARCUS) have a relatively small size, are monomeric, and can recognize sequences differing by as little as one base pair. We show the development of a mitoARCUS specific for the mouse m.5024C>T mutation in the mt-tRNAAla gene and its delivery to mice intravenously using AAV9 as a vector. Liver and skeletal muscle show robust elimination of mutant mtDNA with concomitant restoration of mt-tRNAAla levels. We conclude that mitoARCUS is a potential powerful tool for the elimination of mutant mtDNA. Heteroplasmic mitochondrial DNA mutations lack effective treatments. Here the authors adapt I-CreI meganuclease to target the mitochondria and specifically-eliminate mtDNA with a m.5024C>T mutation in the mttRNA Ala gene.
Collapse
|
14
|
Breton C, Furmanak T, Avitto AN, Smith MK, Latshaw C, Yan H, Greig JA, Wilson JM. Increasing the Specificity of AAV-Based Gene Editing through Self-Targeting and Short-Promoter Strategies. Mol Ther 2021; 29:1047-1056. [PMID: 33359790 DOI: 10.1016/j.ymthe.2020.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Our group previously used adeno-associated viral vectors (AAVs) to express an engineered meganuclease specific for a sequence in the PCSK9 gene (M2PCSK9), a clinical target for treating coronary heart disease. Upon testing this nuclease in non-human primates, we observed specific editing characterized by several insertions and deletions (indels) in the target sequence as well as indels in similar genomic sequences. We hypothesized that high nuclease expression increases off-target editing. Here, we reduced nuclease expression using two strategies. The first was a self-targeting strategy that involved inserting the M2PCSK9 target sequence into the AAV genome that expresses the nuclease and/or fusing the nuclease to a specific peptide to promote its degradation. The second strategy used a shortened version of the parental promoter to reduce nuclease expression. Mice administered with these second-generation AAV vectors showed reduced PCSK9 expression due to the nuclease on-target activity and reduced off-target activity. All vectors induced a stable reduction of PCSK9 in primates treated with self-targeting and short-promoter AAVs. Compared to the meganuclease-expressing parental AAV vector, we observed a significant reduction in off-target activity. In conclusion, we increased the in vivo nuclease specificity using a clinically relevant strategy that can be applied to other genome-editing nucleases.
Collapse
Affiliation(s)
- Camilo Breton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Furmanak
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexa N Avitto
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie K Smith
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin Latshaw
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanying Yan
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Breton C, Clark PM, Wang L, Greig JA, Wilson JM. ITR-Seq, a next-generation sequencing assay, identifies genome-wide DNA editing sites in vivo following adeno-associated viral vector-mediated genome editing. BMC Genomics 2020; 21:239. [PMID: 32183699 PMCID: PMC7076944 DOI: 10.1186/s12864-020-6655-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Identifying nuclease-induced double-stranded breaks in DNA on a genome-wide scale is critical for assessing the safety and efficacy of genome editing therapies. We previously demonstrated that after administering adeno-associated viral (AAV) vector-mediated genome-editing strategies in vivo, vector sequences integrated into the host organism's genomic DNA at double-stranded breaks. Thus, identifying the genomic location of inserted AAV sequences would enable us to identify DSB events, mainly derived from the nuclease on- and off-target activity. RESULTS Here, we developed a next-generation sequencing assay that detects insertions of specific AAV vector sequences called inverted terminal repeats (ITRs). This assay, ITR-Seq, enables us to identify off-target nuclease activity in vivo. Using ITR-Seq, we analyzed liver DNA samples of rhesus macaques treated with AAV vectors expressing a meganuclease. We found dose-dependent off-target activity and reductions in off-target events induced by further meganuclease development. In mice, we identified the genomic locations of ITR integration after treatment with Cas9 nucleases and their corresponding single-guide RNAs. CONCLUSIONS In sum, ITR-Seq is a powerful method for identifying off-target sequences induced by AAV vector-delivered genome-editing nucleases. ITR-Seq will help us understand the specificity and efficacy of different genome-editing nucleases in animal models and clinical studies. This information can help enhance the safety profile of gene-editing therapies.
Collapse
Affiliation(s)
- Camilo Breton
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, 125 South 31st Street, Suite 1200, Philadelphia, PA, 19104, USA
| | - Peter M Clark
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, 125 South 31st Street, Suite 1200, Philadelphia, PA, 19104, USA
| | - Lili Wang
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, 125 South 31st Street, Suite 1200, Philadelphia, PA, 19104, USA
| | - Jenny A Greig
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, 125 South 31st Street, Suite 1200, Philadelphia, PA, 19104, USA
| | - James M Wilson
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, 125 South 31st Street, Suite 1200, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Lanigan TM, Kopera HC, Saunders TL. Principles of Genetic Engineering. Genes (Basel) 2020; 11:E291. [PMID: 32164255 PMCID: PMC7140808 DOI: 10.3390/genes11030291] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success. Other routinely applied methods include random integration of DNA after direct transfection (microinjection), transposon-mediated DNA insertion, or DNA insertion mediated by viral vectors for the production of transgenic mice and rats. Random integration of DNA occurs more frequently than homologous recombination, but has numerous drawbacks, despite its efficiency. The most elegant and effective method is technology based on guided endonucleases, because these can target specific DNA sequences. Since the advent of clustered regularly interspaced short palindromic repeats or CRISPR/Cas9 technology, endonuclease-mediated gene targeting has become the most widely applied method to engineer genomes, supplanting the use of zinc finger nucleases, transcription activator-like effector nucleases, and meganucleases. Future improvements in CRISPR/Cas9 gene editing may be achieved by increasing the efficiency of homology-directed repair. Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications. In summary, while some principles of genetic engineering remain steadfast, others change as technologies are ever-evolving and continue to revolutionize research in many fields.
Collapse
Affiliation(s)
- Thomas M. Lanigan
- Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.M.L.); (H.C.K.)
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C. Kopera
- Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.M.L.); (H.C.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Biomedical Research Core Facilities, Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI. Drought Resistance by Engineering Plant Tissue-Specific Responses. FRONTIERS IN PLANT SCIENCE 2020; 10:1676. [PMID: 32038670 PMCID: PMC6987726 DOI: 10.3389/fpls.2019.01676] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Drought is the primary cause of agricultural loss globally, and represents a major threat to food security. Currently, plant biotechnology stands as one of the most promising fields when it comes to developing crops that are able to produce high yields in water-limited conditions. From studies of Arabidopsis thaliana whole plants, the main response mechanisms to drought stress have been uncovered, and multiple drought resistance genes have already been engineered into crops. So far, most plants with enhanced drought resistance have displayed reduced crop yield, meaning that there is still a need to search for novel approaches that can uncouple drought resistance from plant growth. Our laboratory has recently shown that the receptors of brassinosteroid (BR) hormones use tissue-specific pathways to mediate different developmental responses during root growth. In Arabidopsis, we found that increasing BR receptors in the vascular plant tissues confers resistance to drought without penalizing growth, opening up an exceptional opportunity to investigate the mechanisms that confer drought resistance with cellular specificity in plants. In this review, we provide an overview of the most promising phenotypical drought traits that could be improved biotechnologically to obtain drought-tolerant cereals. In addition, we discuss how current genome editing technologies could help to identify and manipulate novel genes that might grant resistance to drought stress. In the upcoming years, we expect that sustainable solutions for enhancing crop production in water-limited environments will be identified through joint efforts.
Collapse
Affiliation(s)
| | | | | | | | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
18
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
19
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
|
21
|
Wang L, Smith J, Breton C, Clark P, Zhang J, Ying L, Che Y, Lape J, Bell P, Calcedo R, Buza EL, Saveliev A, Bartsevich VV, He Z, White J, Li M, Jantz D, Wilson JM. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat Biotechnol 2018; 36:717-725. [DOI: 10.1038/nbt.4182] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
|
22
|
Hansda AK, Tiwari A, Dixit M. Current status and future prospect of FSHD region gene 1. J Biosci 2017; 42:345-353. [PMID: 28569257 DOI: 10.1007/s12038-017-9681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
FSHD region gene 1 (FRG1), as the name suggests, is the primary candidate gene for fascioscapulohumeral muscular dystrophy disease. It seemingly affects muscle physiology in normal individuals but in FSHD, where it is found to be highly upregulated, might be involved in disruption of face, scapula and humeral skeletal muscle. Literature on FRG1, reviewed from 1996 to 2016, reveals that it is primarily associated with muscle development and maintenance. Approximately 75% of FSHD patients also show vascular abnormalities indicating that FRG1 might have some part to play in these abnormalities. Research involving vasculature in X. laevis larvae shows that FRG1 positively affects normal vasculature. Few of the well-established angiogenic regulators seem to get affected by abnormal expression level of FRG1. Its primary localization in sub nuclear structures like Cajal bodies and nuclear speckles indicates regulation of the above-mentioned factors by transcriptional and post-transcriptional machineries, but in-depth studies need to be done to conclude a clear statement. In this review, we have attempted to present all the work done on FRG1, all the lacunas which need to be unraveled, and hypothesized a model for our readers to get an insight into its molecular mechanism.
Collapse
Affiliation(s)
- Arman Kunwar Hansda
- School of Biological Sciences, National Institute of Science Education and Research, Khurda 752 050 Odisha, India
| | | | | |
Collapse
|
23
|
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:819-833. [PMID: 28027431 DOI: 10.1111/tpj.13469] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants.
Collapse
Affiliation(s)
- Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
24
|
Robinson-Hamm JN, Gersbach CA. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 2016; 135:1029-40. [PMID: 27542949 PMCID: PMC5006996 DOI: 10.1007/s00439-016-1725-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.
Collapse
Affiliation(s)
- Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
26
|
Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci U S A 2016; 113:5676-81. [PMID: 27143720 DOI: 10.1073/pnas.1512028113] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.
Collapse
|
27
|
Voytas DF. Editorial Prerogative and the Plant Genome. J Genet Genomics 2016; 43:229-32. [PMID: 27173836 DOI: 10.1016/j.jgg.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Daniel F Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines. Biotechnol Bioeng 2016; 113:1094-101. [DOI: 10.1002/bit.25877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/11/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022]
|
29
|
Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 2016; 127:839-48. [PMID: 26758916 DOI: 10.1182/blood-2015-09-618587] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development.
Collapse
|
30
|
Gupta A, Bahal R, Gupta M, Glazer PM, Saltzman WM. Nanotechnology for delivery of peptide nucleic acids (PNAs). J Control Release 2016; 240:302-311. [PMID: 26776051 DOI: 10.1016/j.jconrel.2016.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Over the past three decades, peptide nucleic acids have been employed in numerous chemical and biological applications. Peptide nucleic acids possess enormous potential because of their superior biophysical properties, compared to other oligonucleotide chemistries. However, for therapeutic applications, intracellular delivery of peptide nucleic acids remains a challenge. In this review, we summarize the progress that has been made in delivering peptide nucleic acids to intracellular targets. In addition, we emphasize recent nanoparticle-based strategies for efficient delivery of conventional and chemically-modified peptides nucleic acids.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Raman Bahal
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Meera Gupta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Chemical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
|
32
|
Bahal R, Quijano E, McNeer NA, Liu Y, Bhunia DC, Lopez-Giraldez F, Fields RJ, Saltzman WM, Ly DH, Glazer PM. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition. Curr Gene Ther 2015; 14:331-42. [PMID: 25174576 DOI: 10.2174/1566523214666140825154158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023]
Abstract
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter M Glazer
- Yale School of Medicine, Dept. of Therapeutic Radiology, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA.
| |
Collapse
|
33
|
Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 2015; 21:310-21. [PMID: 25716921 DOI: 10.1007/s13365-014-0308-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Current therapy for controlling human immunodeficiency virus (HIV-1) infection and preventing acquired immunodeficiency syndrome (AIDS) progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells, which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or "sterile" cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS.
Collapse
Affiliation(s)
- Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA,
| | | | | | | | | |
Collapse
|
34
|
Abstract
Molecular scissors (MS), incl. Zinc Finger Nucleases (ZFN), Transcription-activator like endoncleases (TALENS) and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, MS can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different MS has been shown in different organisms, including insects, amphibians, plants, nematodes, and mammals, including humans. Recently, another novel class of molecular scissors was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN, especially by its easy design. MS can be successfully employed for improving the understanding of complex physiological systems, producing transgenic animals, incl. creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on molecular scissors, their underlying mechanism and focuses on new opportunities for generating genetically modified farm animals.
Collapse
|
35
|
Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res 2015; 24:381-96. [DOI: 10.1007/s11248-015-9862-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
36
|
Zaslavskiy M, Bertonati C, Duchateau P, Duclert A, Silva GH. Efficient design of meganucleases using a machine learning approach. BMC Bioinformatics 2014; 15:191. [PMID: 24934562 PMCID: PMC4065607 DOI: 10.1186/1471-2105-15-191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023] Open
Abstract
Background Meganucleases are important tools for genome engineering, providing an efficient way to generate DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection to in silico modeling, have been made to re-engineer meganucleases to target relevant DNA sequences. Results Here we present a novel in silico method for designing custom meganucleases that is based on the use of a machine learning approach. We compared it with existing in silico physical models and high-throughput experimental screening. The machine learning model was used to successfully predict active meganucleases for 53 new DNA targets. Conclusions This new method shows competitive performance compared with state-of-the-art in silico physical models, with up to a fourfold increase in terms of the design success rate. Compared to experimental high-throughput screening methods, it reduces the number of screening experiments needed by a factor of more than 100 without affecting final performance.
Collapse
Affiliation(s)
| | | | - Philippe Duchateau
- Research and Development department, Cellectis, 8 rue de la Croix Jarry, Paris 75013, France.
| | | | | |
Collapse
|
37
|
Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 2014; 5:3831. [PMID: 24871200 DOI: 10.1038/ncomms4831] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.
Collapse
|
38
|
Hafez M, Guha TK, Hausner G. I-OmiI and I-OmiII: two intron-encoded homing endonucleases within the Ophiostoma minus rns gene. Fungal Biol 2014; 118:721-31. [PMID: 25110134 DOI: 10.1016/j.funbio.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The mitochondrial small subunit ribosomal RNA (rns) gene of the ascomycetous fungus Ophiostoma minus [strain WIN(M)371] was found to contain a group IC2 and a group IIB1 intron at positions mS569 and mS952 respectively. Both introns have open reading frames (ORFs) embedded that encode double motif LAGLIDADG homing endonucleases (I-OmiI and I-OmiII respectively). Codon-optimized versions of I-OmiI and I-OmiII were synthesized for overexpression in Escherichia coli. The in vitro characterization of I-OmiII showed that it is a functional homing endonuclease that cleaves the rns target site two nucleotides upstream (sense strand) of the intron insertion site generating 4 nucleotide 3' overhangs. The endonuclease activity of I-OmiII was tested using linear and circular substrates and cleavage activity was evaluated at various temperatures. The I-OmiI protein was expressed in E. coli, but purification was difficult, thus the endonuclease activity of this protein was tested via in vivo assays. Overall this study showed that there are many native forms of functional homing endonucleases yet to be discovered among fungal mtDNA genomes.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
39
|
|
40
|
Epinat JC. A yeast-based recombination assay for homing endonuclease activity. Methods Mol Biol 2014; 1123:105-26. [PMID: 24510264 DOI: 10.1007/978-1-62703-968-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Homing endonucleases (HEs) are natural enzymes that cleave long DNA target with a high specificity and trigger homologous recombination at the exact site of the break. Such mechanisms can thus be used for all the applications covered today by the generic name of "genome engineering": targeted sequence insertion, removal, or editing. However, before being able to address those applications, the engineering of HEs must be mastered so that any potential target would be efficiently and specifically recognized and cleaved. Working on the I-CreI model, we have developed a very powerful platform to generate HEs with new tailored specificity. We have put in place the first in vivo, functional, high throughput assay to generate I-CreI variants and measure their activity. We use semi-rational design combined with proprietary in silico predictions to design and synthesize I-CreI mutants that are tested for their capacity to induce homologous recombination in a yeast cell. The process has been standardized and robotized so that we can generate thousands of I-CreI derivatives, characterize their cleavage profile, and deliver them for further applications in the research, therapeutic, or agrobusiness fields.
Collapse
|
41
|
Rocca CJ, Abdul-Razak HH, Holmes MC, Gregory PD, Yáñez-Muñoz RJ. A southern blot protocol to detect chimeric nuclease-mediated gene repair. Methods Mol Biol 2014; 1114:325-38. [PMID: 24557913 DOI: 10.1007/978-1-62703-761-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene targeting by homologous recombination at chromosomal endogenous loci has traditionally been considered a low-efficiency process. However, the effectiveness of such so-called genome surgery or genome editing has recently been drastically improved through technical developments, chiefly the use of designer nucleases like zinc-finger nucleases (ZFNs), meganucleases, transcription activator-like effector nucleases (TALENs) and CRISPR/Cas nucleases. These enzymes are custom designed to recognize long target sites and introduce double-strand breaks (DSBs) at specific target loci in the genome, which in turn mediate significant improvements in the frequency of homologous recombination. Here, we describe a Southern blot-based assay that allows detection of gene repair and estimation of repair frequencies in a cell population, useful in cases where the targeted modification itself cannot be detected by restriction digest. This is achieved through detection of a silent restriction site introduced alongside the desired mutation, in our particular example using integration-deficient lentiviral vectors (IDLVs) coding for ZFNs and a suitable DNA repair template.
Collapse
Affiliation(s)
- Céline J Rocca
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | | | | | | | | |
Collapse
|
42
|
Li HL, Nakano T, Hotta A. Genetic correction using engineered nucleases for gene therapy applications. Dev Growth Differ 2013; 56:63-77. [PMID: 24329887 DOI: 10.1111/dgd.12107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 12/24/2022]
Abstract
Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy.
Collapse
Affiliation(s)
- Hongmei Lisa Li
- Department of Reprogramming Science, Center for iPS cell Research and Applications (CiRA), Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | | | | |
Collapse
|
43
|
Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 2013; 31:375-83. [PMID: 23601269 DOI: 10.1016/j.tibtech.2013.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 12/17/2022]
Abstract
Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding.
Collapse
Affiliation(s)
- Nancy Podevin
- The European Food Safety Authority-EFSA, Via Carlo Magno 1A, Parma, Italy
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Nuclease Mediated Targeted Genome Modification in Mammalian Cells. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF. Transcription activator-like effector nucleases enable efficient plant genome engineering. PLANT PHYSIOLOGY 2013; 161:20-7. [PMID: 23124327 PMCID: PMC3532252 DOI: 10.1104/pp.112.205179] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/21/2012] [Indexed: 05/17/2023]
Abstract
The ability to precisely engineer plant genomes offers much potential for advancing basic and applied plant biology. Here, we describe methods for the targeted modification of plant genomes using transcription activator-like effector nucleases (TALENs). Methods were optimized using tobacco (Nicotiana tabacum) protoplasts and TALENs targeting the acetolactate synthase (ALS) gene. Optimal TALEN scaffolds were identified using a protoplast-based single-strand annealing assay in which TALEN cleavage creates a functional yellow fluorescent protein gene, enabling quantification of TALEN activity by flow cytometry. Single-strand annealing activity data for TALENs with different scaffolds correlated highly with their activity at endogenous targets, as measured by high-throughput DNA sequencing of polymerase chain reaction products encompassing the TALEN recognition sites. TALENs introduced targeted mutations in ALS in 30% of transformed cells, and the frequencies of targeted gene insertion approximated 14%. These efficiencies made it possible to recover genome modifications without selection or enrichment regimes: 32% of tobacco calli generated from protoplasts transformed with TALEN-encoding constructs had TALEN-induced mutations in ALS, and of 16 calli characterized in detail, all had mutations in one allele each of the duplicate ALS genes (SurA and SurB). In calli derived from cells treated with a TALEN and a 322-bp donor molecule differing by 6 bp from the ALS coding sequence, 4% showed evidence of targeted gene replacement. The optimized reagents implemented in plant protoplasts should be useful for targeted modification of cells from diverse plant species and using a variety of means for reagent delivery.
Collapse
Affiliation(s)
| | | | - Xiaohong Li
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Paul, Minnesota 55114 (F.Z., D.F.V.); and Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (A.J.B.)
| | - Joshua A. Baller
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Paul, Minnesota 55114 (F.Z., D.F.V.); and Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (A.J.B.)
| | - Yiping Qi
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Paul, Minnesota 55114 (F.Z., D.F.V.); and Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (A.J.B.)
| | - Colby G. Starker
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Paul, Minnesota 55114 (F.Z., D.F.V.); and Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (A.J.B.)
| | - Adam J. Bogdanove
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Paul, Minnesota 55114 (F.Z., D.F.V.); and Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (A.J.B.)
| | - Daniel F. Voytas
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Paul, Minnesota 55114 (F.Z., D.F.V.); and Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (A.J.B.)
| |
Collapse
|
47
|
Targeting herpetic keratitis by gene therapy. J Ophthalmol 2012; 2012:594869. [PMID: 23326647 PMCID: PMC3541562 DOI: 10.1155/2012/594869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/30/2012] [Indexed: 01/15/2023] Open
Abstract
Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.
Collapse
|
48
|
Romano G. Development of safer gene delivery systems to minimize the risk of insertional mutagenesis-related malignancies: a critical issue for the field of gene therapy. ISRN ONCOLOGY 2012; 2012:616310. [PMID: 23209944 PMCID: PMC3512301 DOI: 10.5402/2012/616310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022]
Abstract
Integrating gene delivery systems allow for a more stable transgene expression in mammalian cells than the episomal ones. However, the integration of the shuttle vector within the cellular chromosomal DNA is associated with the risk of insertional mutagenesis, which, in turn, may cause malignant cell transformation. The use of a retroviral-derived vector system was responsible for the development of leukemia in five children, who participated in various clinical trials for the treatment of severe combined immunodeficiency (SCID-X1) in France and in the United Kingdom. Unfortunately, the hematological malignancy claimed the life of one patient in 2004, who was enrolled in the French clinical trial. In addition, adeno-associated-viral-(AAV-) mediated gene transfer induced tumors in animal models, whereas the Sleeping Beauty (SB) DNA transposon system was associated with insertional mutagenesis events in cell culture systems. On these grounds, it is necessary to develop safer gene delivery systems for the genetic manipulation of mammalian cells. This paper discusses the latest achievements that have been reported in the field of vector design.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio-Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
49
|
Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012; 23:644-50. [DOI: 10.1016/j.copbio.2012.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
|
50
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|