1
|
Liu Y, Xu C, Asiamah CA, Ye R, Pan Y, Lu LL, Zhao Z, Jiang P, Su Y. Decorin regulates myostatin and enhances proliferation and differentiation of embryonic myoblasts in Leizhou black duck. Gene 2021; 804:145884. [PMID: 34364913 DOI: 10.1016/j.gene.2021.145884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023]
Abstract
Skeletal muscle is one of the most important economic traits in the poultry industry whose development goes through several processes influenced by several candidate genes. This study explored the regulatory role of DCN on MSTN and the influence of these genes on the proliferation and differentiation of embryonic myoblasts in Leizhou black ducks. Embryonic myoblasts were transfected with over-expressing DCN, Si-DCN, and empty vector and cultured for 24 h, 48 h, and 72 h of proliferation and the comparative expression of DCN and MSTN were measured. The results showed that cells transfected with the over-expression DCN had a significantly (P < 0.05) higher expression of DCN mRNA than the normal group and the expression of MSTN mRNA showed a downward trend during the proliferation of myoblasts. DCN mRNA expression was lower in cells transfected with Si-DCN than the normal group in all stages of proliferation. While the expression of MSTN in the Si-DCN transfected group was higher than the normal group with a significant (P < 0.05) difference at the 72 h stage. DCN mRNA increased at the early stage of differentiation but decreased (P > 0.05) from the 6th day to the 8th day of differentiation. The level of MSTN increased gradually during the differentiation process of myoblasts until it decreased significantly on the 8th day. These results show that DCN enhances the proliferation and differentiation of Leizhou black duck myoblasts and suppresses MSTN activity.
Collapse
Affiliation(s)
- Yuanbo Liu
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chong Xu
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | | | - Rungen Ye
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yiting Pan
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Li-Li Lu
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhihui Zhao
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ping Jiang
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ying Su
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
2
|
Study of the Chronology of Expression of Ten Extracellular Matrix Molecules during the Myogenesis in Cattle to Better Understand Sensory Properties of Meat. Foods 2019; 8:foods8030097. [PMID: 30871212 PMCID: PMC6462999 DOI: 10.3390/foods8030097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/18/2023] Open
Abstract
The sensory properties of beef are known to depend on muscle fiber and intramuscular connective tissue composition (IMCT). IMCT is composed of collagens, proteoglycans and glycoproteins. The differentiation of muscle fibers has been extensively studied but there is scarcity in the data concerning IMCT differentiation. In order to be able to control muscle differentiation to improve beef quality, it is essential to understand the ontogenesis of IMCT molecules. Therefore, in this study, we investigated the chronology of appearance of 10 IMCT molecules in bovine Semitendinosus muscle using immunohistology technique at five key stages of myogenesis. Since 60 days post-conception (dpc), the whole molecules were present, but did not have their final location. It seems that they reach it at around 210 dpc. Then, the findings emphasized that since 210 dpc, the stage at which the differentiation of muscle fibers is almost complete, the differentiation of IMCT is almost completed. These data suggested that for the best controlling of the muscular differentiation to improve beef sensory quality, it would be necessary to intervene very early (before the IMCT constituents have acquired their definitive localization and the muscle fibers have finished differentiating), i.e., at the beginning of the first third of gestation.
Collapse
|
3
|
Glucocorticoids Improve Myogenic Differentiation In Vitro by Suppressing the Synthesis of Versican, a Transitional Matrix Protein Overexpressed in Dystrophic Skeletal Muscles. Int J Mol Sci 2017; 18:ijms18122629. [PMID: 29211034 PMCID: PMC5751232 DOI: 10.3390/ijms18122629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), a dysregulated extracellular matrix (ECM) directly exacerbates pathology. Glucocorticoids are beneficial therapeutics in DMD, and have pleiotropic effects on the composition and processing of ECM proteins in other biological contexts. The synthesis and remodelling of a transitional versican-rich matrix is necessary for myogenesis; whether glucocorticoids modulate this transitional matrix is not known. Here, versican expression and processing were examined in hindlimb and diaphragm muscles from mdx dystrophin-deficient mice and C57BL/10 wild type mice. V0/V1 versican (Vcan) mRNA transcripts and protein levels were upregulated in dystrophic compared to wild type muscles, especially in the more severely affected mdx diaphragm. Processed versican (versikine) was detected in wild type and dystrophic muscles, and immunoreactivity was highly associated with newly regenerated myofibres. Glucocorticoids enhanced C2C12 myoblast fusion by modulating the expression of genes regulating transitional matrix synthesis and processing. Specifically, Tgfβ1, Vcan and hyaluronan synthase-2 (Has2) mRNA transcripts were decreased by 50% and Adamts1 mRNA transcripts were increased three-fold by glucocorticoid treatment. The addition of exogenous versican impaired myoblast fusion, whilst glucocorticoids alleviated this inhibition in fusion. In dystrophic mdx muscles, versican upregulation correlated with pathology. We propose that versican is a novel and relevant target gene in DMD, given its suppression by glucocorticoids and that in excess it impairs myoblast fusion, a process key for muscle regeneration.
Collapse
|
4
|
Role of skeletal muscle proteoglycans during myogenesis. Matrix Biol 2013; 32:289-97. [PMID: 23583522 DOI: 10.1016/j.matbio.2013.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 02/06/2023]
Abstract
Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.
Collapse
|
5
|
Bernardini C, Censi F, Lattanzi W, Calcagnini G, Giuliani A. Gene regulation networks in early phase of Duchenne muscular dystrophy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:393-400. [PMID: 23929863 DOI: 10.1109/tcbb.2013.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to analyze previously published gene expression data of skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients and controls (gene expression omnibus database, accession #GSE6011) using systems biology approaches. We applied an unsupervised method to discriminate patient and control populations, based on principal component analysis, using the gene expressions as units and patients as variables. The genes having the highest absolute scores in the discrimination between the groups, were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.
Collapse
|
6
|
Stupka N, Kintakas C, White JD, Fraser FW, Hanciu M, Aramaki-Hattori N, Martin S, Coles C, Collier F, Ward AC, Apte SS, McCulloch DR. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem 2012; 288:1907-17. [PMID: 23233679 DOI: 10.1074/jbc.m112.429647] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.
Collapse
Affiliation(s)
- Nicole Stupka
- School of Medicine and Molecular and Medical Research SRC, Deakin University, Geelong, Victoria 3216, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mikami T, Koyama S, Yabuta Y, Kitagawa H. Chondroitin sulfate is a crucial determinant for skeletal muscle development/regeneration and improvement of muscular dystrophies. J Biol Chem 2012; 287:38531-42. [PMID: 23007393 DOI: 10.1074/jbc.m111.336925] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle formation and regeneration require myoblast fusion to form multinucleated myotubes or myofibers, yet their molecular regulation remains incompletely understood. We show here that the levels of extra- and/or pericellular chondroitin sulfate (CS) chains in differentiating C2C12 myoblast culture are dramatically diminished at the stage of extensive syncytial myotube formation. Forced down-regulation of CS, but not of hyaluronan, levels enhanced myogenic differentiation in vitro. This characteristic CS reduction seems to occur through a cell-autonomous mechanism that involves HYAL1, a known catabolic enzyme for hyaluronan and CS. In vivo injection of a bacterial CS-degrading enzyme boosted myofiber regeneration in a mouse cardiotoxin-induced injury model and ameliorated dystrophic pathology in mdx muscles. Our data suggest that the control of CS abundance is a promising new therapeutic approach for the treatment of skeletal muscle injury and progressive muscular dystrophies.
Collapse
Affiliation(s)
- Tadahisa Mikami
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | |
Collapse
|
8
|
Ermakova II, Sakuta GA, Potekhina MA, Fedorova MA, Hoffmann R, Morozov VI. Major chondroitin sulfate proteoglycans identified in L6J1 myoblast culture. BIOCHEMISTRY (MOSCOW) 2011; 76:359-65. [DOI: 10.1134/s0006297911030102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cassar-Malek I, Picard B, Jurie C, Listrat A, Guillomot M, Chavatte-Palmer P, Heyman Y. Myogenesis Is Delayed in Bovine Fetal Clones. Cell Reprogram 2010; 12:191-201. [DOI: 10.1089/cell.2009.0065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Isabelle Cassar-Malek
- INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Centre Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
| | - Brigitte Picard
- INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Centre Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
| | - Catherine Jurie
- INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Centre Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
| | - Anne Listrat
- INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Centre Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
| | - Michel Guillomot
- INRA, UMR1198, Biologie du Développement et Reproduction, F-78352, Jouy-en-Josas, France
| | | | - Yvan Heyman
- INRA, UMR1198, Biologie du Développement et Reproduction, F-78352, Jouy-en-Josas, France
| |
Collapse
|
10
|
Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix Biol 2008; 27:700-8. [DOI: 10.1016/j.matbio.2008.07.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 01/11/2023]
|
11
|
Snow HE, Riccio LM, Mjaatvedt CH, Hoffman S, Capehart AA. Versican expression during skeletal/joint morphogenesis and patterning of muscle and nerve in the embryonic mouse limb. ACTA ACUST UNITED AC 2005; 282:95-105. [PMID: 15633171 DOI: 10.1002/ar.a.20151] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Versican, an extracellular matrix proteoglycan, has been implicated in limb development and is expressed in precartilage mesenchymal condensations. However, studies have lacked precise spatial and temporal investigation of versican localization during skeletogenesis and its relationship to patterning of muscle and nerve during mammalian limb development. The transgenic mouse line hdf (heart defect), which bears a lacZ reporter construct disrupting Cspg2 encoding versican, allowed ready detection of hdf transgene expression through histochemical analysis. Hdf transgene expression in whole mount heterozygous embryos and localization of versican relative to cartilage, muscle, and nerve tissues in paraffin-embedded limb sections of wild-type embryos from 10.5-14 days postcoitum were evaluated by lacZ histochemistry, immunohistochemistry, and in situ hybridization. Versican was localized within precartilage condensations and nascent cartilages with expression diminishing during maturation of the cartilage model at later time points. Interestingly, versican remained highly expressed in developing synovial joint interzones, suggesting potential function for versican in joint morphogenesis. Isolated myoblasts, incipient skeletal muscle masses, and neurites were not present in areas of strong versican expression within the developing limb. Versican-expressing tissues may reserve space for the future limb skeleton and developing joints and may aid in patterning of muscle and nerve by deterring muscle migration and innervation into these regions.
Collapse
Affiliation(s)
- Holly E Snow
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | | | |
Collapse
|
12
|
Sanoudou D, Frieden LA, Haslett JN, Kho AT, Greenberg SA, Kohane IS, Kunkel LM, Beggs AH. Molecular classification of nemaline myopathies: “nontyping” specimens exhibit unique patterns of gene expression. Neurobiol Dis 2004; 15:590-600. [PMID: 15056467 DOI: 10.1016/j.nbd.2003.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 11/17/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022] Open
Abstract
Nemaline myopathy (NM) is a slowly progressive or nonprogressive neuromuscular disorder caused by mutations in genes encoding skeletal muscle sarcomeric thin filament proteins. It is characterized by great heterogeneity at the clinical, histopathological, and genetic level. Although multiple molecular pathways are commonly affected in all NM patients, little is known about the molecular characteristics of muscles from patients in different NM subgroups. We have analyzed a group of global gene expression data sets for transcriptional patterns characteristic of particular nemaline myopathy classes. Differential expression between disease subgroups was primarily seen in mitochondrial-, structural-, and transcription-related genes. Multiple lines of evidence support the hypothesis that muscles from cases with "nontyping" NM, although clinically classified as typical NM, share a unique pathophysiological state and are characterized by distinct patterns of gene expression. Determination of the specific molecular differences in NM subgroups may eventually lead to improved prognostic determinations and treatment of these patients.
Collapse
Affiliation(s)
- Despina Sanoudou
- Genomics Program and Divisison of Genetics, Children's Hospital Boston, and Harvard Medical School, MA 20115, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
HANNESSON KIRSTENO, PEDERSEN MONAE, OFSTAD RAGNI, KOLSET SVEINO. BREAKDOWN OF LARGE PROTEOGLYCANS IN BOVINE INTRAMUSCULAR CONNECTNE TISSUE EARLY POSTMORTEM. ACTA ACUST UNITED AC 2003. [DOI: 10.1111/j.1745-4573.2003.tb00708.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A 2002; 99:15000-5. [PMID: 12415109 PMCID: PMC137534 DOI: 10.1073/pnas.192571199] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The primary cause of Duchenne muscular dystrophy (DMD) is a mutation in the dystrophin gene leading to the absence of the corresponding RNA transcript and protein. Absence of dystrophin leads to disruption of the dystrophin-associated protein complex and substantial changes in skeletal muscle pathology. Although the histological pathology of dystrophic tissue has been well documented, the underlying molecular pathways remain poorly understood. To examine the pathogenic pathways and identify new or modifying factors involved in muscular dystrophy, expression microarrays were used to compare individual gene expression profiles of skeletal muscle biopsies from 12 DMD patients and 12 unaffected control patients. Two separate statistical analysis methods were used to interpret the resulting data: t test analysis to determine the statistical significance of differential expression and geometric fold change analysis to determine the extent of differential expression. These analyses identified 105 genes that differ significantly in expression level between unaffected and DMD muscle. Many of the differentially expressed genes reflect changes in histological pathology. For instance, immune response signals and extracellular matrix genes are overexpressed in DMD muscle, an indication of the infiltration of inflammatory cells and connective tissue. Significantly more genes are overexpressed than are underexpressed in dystrophic muscle, with dystrophin underexpressed, whereas other genes encoding muscle structure and regeneration processes are overexpressed, reflecting the regenerative nature of the disease.
Collapse
Affiliation(s)
- Judith N Haslett
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lewis MP, Machell JR, Hunt NP, Sinanan AC, Tippett HL. The extracellular matrix of muscle--implications for manipulation of the craniofacial musculature. Eur J Oral Sci 2001; 109:209-21. [PMID: 11531066 DOI: 10.1034/j.1600-0722.2001.00021.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Successful adaptation of craniofacial skeletal muscle is dependent upon the connective tissue component of the muscle. This is exemplified by procedures such as distraction histo/osteogenesis. The mechanisms underlying remodelling of intramuscular connective tissue are complex and multifactorial and involve extracellular matrix (ECM) molecules, receptors for the ECM (integrins) and enzymes that remodel the ECM (MMPs). This review discusses the current state of knowledge and clinical implications of connective tissue biology as applied to craniofacial skeletal muscle.
Collapse
Affiliation(s)
- M P Lewis
- Department of Orthodontics, Eastman Dental Institute, University College London, UK.
| | | | | | | | | |
Collapse
|
16
|
Chen YW, Zhao P, Borup R, Hoffman EP. Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 2000; 151:1321-36. [PMID: 11121445 PMCID: PMC2190600 DOI: 10.1083/jcb.151.6.1321] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 10/27/2000] [Indexed: 11/22/2022] Open
Abstract
We used expression profiling to define the pathophysiological cascades involved in the progression of two muscular dystrophies with known primary biochemical defects, dystrophin deficiency (Duchenne muscular dystrophy) and alpha-sarcoglycan deficiency (a dystrophin-associated protein). We employed a novel protocol for expression profiling in human tissues using mixed samples of multiple patients and iterative comparisons of duplicate datasets. We found evidence for both incomplete differentiation of patient muscle, and for dedifferentiation of myofibers to alternative lineages with advancing age. One developmentally regulated gene characterized in detail, alpha-cardiac actin, showed abnormal persistent expression after birth in 60% of Duchenne dystrophy myofibers. The majority of myofibers ( approximately 80%) remained strongly positive for this protein throughout the course of the disease. Other developmentally regulated genes that showed widespread overexpression in these muscular dystrophies included embryonic myosin heavy chain, versican, acetylcholine receptor alpha-1, secreted protein, acidic and rich in cysteine/osteonectin, and thrombospondin 4. We hypothesize that the abnormal Ca(2)+ influx in dystrophin- and alpha-sarcoglycan-deficient myofibers leads to altered developmental programming of developing and regenerating myofibers. The finding of upregulation of HLA-DR and factor XIIIa led to the novel identification of activated dendritic cell infiltration in dystrophic muscle; these cells mediate immune responses and likely induce microenvironmental changes in muscle. We also document a general metabolic crisis in dystrophic muscle, with large scale downregulation of nuclear-encoded mitochondrial gene expression. Finally, our expression profiling results show that primary genetic defects can be identified by a reduction in the corresponding RNA.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Po Zhao
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Rehannah Borup
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| |
Collapse
|
17
|
Abstract
The extracellular matrix of cartilage and bone is composed mostly of collagen with lesser amounts of other constituents such as proteoglycans. The focus of this brief review will be on the dynamic expression of collagens and proteoglycans in the cartilage and bone extracellular matrices. Recent research has shown the presence of different collagen types and proteoglycans that are differentially expressed in cartilage, in the transition from cartilage to bone, and in the bone extracellular matrices. These findings suggest the complexity of the skeletal extracellular matrix as well as its dynamic expression. Although the composition of both the cartilage and bone extracellular matrices are largely known, the function of each of the macromolecules composing these matrices and their developmental regulation is not well understood. Defects that modify the extracellular matrix, like the chicken chondrodysplasia, nanomelia, and tibial dyschondroplasia, have profound affects on skeletal structure. The poultry industry is currently confronting a high percentage of skeletal deformities due to selection for increased growth rate and needs to consider the effect of extracellular matrix modifications and how to maintain extracellular matrix integrity.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA.
| |
Collapse
|