1
|
Anderson KJ, Thorolfsdottir ET, Nodelman IM, Halldorsdottir ST, Benonisdottir S, Alghamdi M, Almontashiri N, Barry BJ, Begemann M, Britton JF, Burke S, Cogne B, Cohen AS, de Diego Boguñá C, Eichler EE, Engle EC, Fahrner JA, Faivre L, Fradin M, Fuhrmann N, Gao CW, Garg G, Grečmalová D, Grippa M, Harris JR, Hoekzema K, Hershkovitz T, Hubbard S, Janssens K, Jurgens JA, Kmoch S, Knopp C, Koptagel MA, Ladha FA, Lapunzina P, Lindau T, Meuwissen M, Minicucci A, Neuhaus E, Nizon M, Nosková L, Park K, Patel C, Pfundt R, Prasun P, Rahner N, Robin NH, Ronspies C, Roohi J, Rosenfeld J, Saenz M, Saunders C, Stark Z, Thiffault I, Thull S, Velasco D, Velmans C, Verseput J, Vitobello A, Wang T, Weiss K, Wentzensen IM, Pilarowski G, Eysteinsson T, Gillentine M, Stefánsson K, Helgason A, Bowman GD, Bjornsson HT. Androgens mediate sexual dimorphism in Pilarowski-Bjornsson Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.06.25326635. [PMID: 40385454 PMCID: PMC12083630 DOI: 10.1101/2025.05.06.25326635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Sex-specific penetrance in autosomal dominant Mendelian conditions is largely understudied. The neurodevelopmental disorder Pilarowski-Bjornsson syndrome (PILBOS) was initially described in females. Here, we describe the clinical and genetic characteristics of the largest PILBOS cohort to date, showing that both sexes can exhibit PILBOS features, although males are overrepresented. A mouse model carrying a human-derived Chd1 missense variant (Chd1 R616Q/+) displays female-restricted phenotypes, including growth deficiency, anxiety and hypotonia. Orchiectomy unmasks a growth deficiency phenotype in male Chd1 R616Q/+ mice, while testosterone rescues the phenotype in females, implicating androgens in phenotype modulation. In the gnomAD and UK Biobank databases, rare missense variants in CHD1 are overrepresented in males, supporting a male protective effect. We identify 33 additional highly constrained autosomal genes with missense variant overrepresentation in males. Our results support androgen-regulated sexual dimorphism in PILBOS and open novel avenues to understand the mechanistic basis of sexual dimorphism in other autosomal Mendelian disorders.
Collapse
Affiliation(s)
- Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Ilana M. Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sara Tholl Halldorsdottir
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stefania Benonisdottir
- Institute of Physical Sciences, University of Iceland, Reykjavik, Iceland
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Malak Alghamdi
- Medical Genetics Division, Pediatric Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Naif Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jacquelyn F. Britton
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Burke
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000 Nantes, France
| | - Ana S.A. Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurence Faivre
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, de l’Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Mélanie Fradin
- Service de Genetique Medicale, Centre Labellisé Anomalies du Développement de l’Ouest, CHU Rennes, Rennes, France
| | - Nico Fuhrmann
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine W. Gao
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunjan Garg
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
- Hunter Genetics, Waratah, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dagmar Grečmalová
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Czech Republic
| | - Mina Grippa
- SSD Medical Genetics, Maternal and Child Department, AOU Policlinico Modena, Modena, Italy
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Department of Neurology, Baltimore, Maryland, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Sydney Hubbard
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katrien Janssens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Meral Aktas Koptagel
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Farah A. Ladha
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Pablo Lapunzina
- INGEMM-Institute of Medical and Molecular Genetics, IdiPAZ- CIBERER- Hospital Universitario La Paz, Madrid, Spain and ERNITHACA, Madrid, Spain
| | - Tobias Lindau
- Department of Pediatrics, Gemeinschaftsklinikum Mittelrhein Kemperhof, Koblenzer Straße 115-155, 56073 Koblenz, Germany
| | - Marije Meuwissen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Andreina Minicucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, U.O. Genetica Medica, 40138 Bologna, Italy
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Mathilde Nizon
- Service de Génétique Médicale, Unité de Génétique Clinique, Nantes, France
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women’s Hospital Campus, Herston, Brisbane, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pankaj Prasun
- Division of Genetics, Department of Pediatrics West Virginia School of Medicine, Morgantown, USA
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Nathaniel H. Robin
- Department of Genetics, UAB Heersink School of Medicine, Birmingham AL, USA
| | - Carey Ronspies
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jasmin Roohi
- Department of Genetics, Mid-Atlantic Permanente Medical Group, Washington, DC, USA
| | - Jill Rosenfeld
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Margarita Saenz
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Isabelle Thiffault
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Sarah Thull
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Danita Velasco
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Clara Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jolijn Verseput
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonio Vitobello
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Karin Weiss
- The Genetics Institute Rambam Health Care Campus Haifa Israel
| | | | | | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland
- Department of Ophthalmology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Gregory D. Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Ren Z, Tang H, Zhang W, Guo M, Cui J, Wang H, Xie B, Yu J, Chen Y, Zhang M, Han C, Chu T, Liang Q, Zhao S, Huang Y, He X, Liu K, Liu C, Chen C. The Role of KDM2A and H3K36me2 Demethylation in Modulating MAPK Signaling During Neurodevelopment. Neurosci Bull 2024; 40:1076-1092. [PMID: 38060137 PMCID: PMC11306490 DOI: 10.1007/s12264-023-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/13/2023] [Indexed: 12/08/2023] Open
Abstract
Intellectual disability (ID) is a condition characterized by cognitive impairment and difficulties in adaptive functioning. In our research, we identified two de novo mutations (c.955C>T and c.732C>A) at the KDM2A locus in individuals with varying degrees of ID. In addition, by using the Gene4Denovo database, we discovered five additional cases of de novo mutations in KDM2A. The mutations we identified significantly decreased the expression of the KDM2A protein. To investigate the role of KDM2A in neural development, we used both 2D neural stem cell models and 3D cerebral organoids. Our findings demonstrated that the reduced expression of KDM2A impairs the proliferation of neural progenitor cells (NPCs), increases apoptosis, induces premature neuronal differentiation, and affects synapse maturation. Through ChIP-Seq analysis, we found that KDM2A exhibited binding to the transcription start site regions of genes involved in neurogenesis. In addition, the knockdown of KDM2A hindered H3K36me2 binding to the downstream regulatory elements of genes. By integrating ChIP-Seq and RNA-Seq data, we made a significant discovery of the core genes' remarkable enrichment in the MAPK signaling pathway. Importantly, this enrichment was specifically linked to the p38 MAPK pathway. Furthermore, disease enrichment analysis linked the differentially-expressed genes identified from RNA-Seq of NPCs and cerebral organoids to neurodevelopmental disorders such as ID, autism spectrum disorder, and schizophrenia. Overall, our findings suggest that KDM2A plays a crucial role in regulating the H3K36me2 modification of downstream genes, thereby modulating the MAPK signaling pathway and potentially impacting early brain development.
Collapse
Affiliation(s)
- Zongyao Ren
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Haiyan Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Minghui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Jingjie Cui
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Changsha, 410007, China
| | - Bin Xie
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Jing Yu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Yonghao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Ming Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Cong Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Tianyao Chu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Qiuman Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Shunan Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Yingjie Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China.
| | - Kefu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Changsha, 410000, China.
| |
Collapse
|
4
|
Liu J, Wang Z, Yan H, Teng Y, Shi Q, Chen J, Tang W, Yu W, Peng Y, Xi H, Ma N, Liang D, Li Z, Wu L. Functional identification of two novel variants and a hypomorphic variant in ASS1 from patients with Citrullinemia type I. Front Genet 2023; 14:1172947. [PMID: 37485339 PMCID: PMC10360398 DOI: 10.3389/fgene.2023.1172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Citrullinemia type I (CTLN1) is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the gene encoding the arginosuccinate synthetase (ASS1) enzyme. Classic CTLN1 often manifests with acute hyperammonemia and neurological symptoms. Molecular genetic testing is critical for patient diagnosis. Methods: Three unrelated families with clinically suspected CTLN1 were included in this study. Potential pathogenic variants were identified using whole exome sequencing (WES) and validated using Sanger sequencing. Western blotting, quantitative PCR, immunofluorescent staining, and ELISA were used to assess functional changes in candidate ASS1 variants. Results: Five variants were identified, two of which were novel, and one has been reported, but its pathogenicity was not validated. The novel variant c.649-651del (p.P217del) and the 5'UTR variant (c.-4C>T) resulted in a decrease in ASS1 expression at both the protein and transcription levels. The other novel variant, c.1048C>T (p.Q350*), showed a marked decrease in expression at the protein level, with the formation of truncated proteins but an increased transcription. Both c.649_651del (p.P217del) and c.1048C>T (p.Q350*) showed a highly significant reduction in enzyme activity, while c.-4C>T had no effect. Conclusion: We identified two novel variants and a hypomorphic non-coding variant in ASS1 and validated the pathogenicity using functional studies. Our findings contribute to expanding the spectrum of ASS1 variants and understanding the genotype-phenotype relationships of CTLN1.
Collapse
Affiliation(s)
- Jing Liu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Huiming Yan
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Qingxin Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Jing Chen
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Wanglan Tang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Wenxian Yu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Na Ma
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| |
Collapse
|