1
|
Bercusson A, Williams TJ, Simmonds NJ, Alton EWFW, Griesenbach U, Shah A, Warris A, Armstrong-James D. Increased NFAT and NFκB signalling contribute to the hyperinflammatory phenotype in response to Aspergillus fumigatus in a mouse model of cystic fibrosis. PLoS Pathog 2025; 21:e1012784. [PMID: 39903773 PMCID: PMC11957335 DOI: 10.1371/journal.ppat.1012784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/31/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Aspergillus fumigatus (Af) is a major mould pathogen found ubiquitously in the air. It commonly infects the airways of people with cystic fibrosis (CF) leading to Aspergillus bronchitis or allergic bronchopulmonary aspergillosis. Resident alveolar macrophages and recruited neutrophils are important first lines of defence for clearance of Af in the lung. However, their contribution to the inflammatory phenotype in CF during Af infection is not well understood. Here, utilising CFTR deficient mice we describe a hyperinflammatory phenotype in both acute and allergic murine models of pulmonary aspergillosis. We show that during aspergillosis, CFTR deficiency leads to increased alveolar macrophage death and persistent inflammation of the airways in CF, accompanied by impaired fungal control. Utilising CFTR deficient murine cells and primary human CF cells we show that at a cellular level there is increased activation of NFκB and NFAT in response to Af which, as in in vivo models, is associated with increased cell death and reduced fungal control. Taken together, these studies indicate that CFTR deficiency promotes increased activation of inflammatory pathways, the induction of macrophage cell death and reduced fungal control contributing to the hyper-inflammatory of pulmonary aspergillosis phenotypes in CF.
Collapse
Affiliation(s)
- Amelia Bercusson
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Thomas J. Williams
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
- Department of Cardiothoracic Transplantation and Mechanical Support, Harefield Hospital, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Nicholas J. Simmonds
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Eric WFW Alton
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Uta Griesenbach
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Anand Shah
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Darius Armstrong-James
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Shen G, Zhang Y, Cheng X, Li D, Ding Z, Tian J, Chen H, Ding H. Effects of CFTR-ENaC on spinal cord edema after spinal cord injury. Open Med (Wars) 2024; 19:20241082. [PMID: 39588386 PMCID: PMC11587918 DOI: 10.1515/med-2024-1082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Objective To explore the role of cystic fibrosis transmembrane conduction regulator (CFTR)-Epithelial sodium channel (ENaC) in spinal cord edema after spinal cord injury (SCI) and the related mechanism. Methods Lipopolysaccharide (LPS)-treated M1830 astrocytes were applied as the SCI in vitro model. Immunohistochemistry, real-time PCR, and Western blotting were utilized to detect CFTR and ENaC expression. Enzyme-linked immunosorbent assay was used to measure inflammatory cytokines including TNF-α, IL-1β, IL-6, and IL-18. Transmission electron microscope examined ultrastructure changes, while CFTR-172 or Capsazepine treatment assessed their effects on edema and inflammation. Western blot analysis was employed to evaluate the PI3K, p-PI3K, AKT, and p-AKT signaling pathways in treated cells. Results LPS-treated M1830 cells exhibited increased levels of CFTR and pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and IL-18, alongside decreased ENaC expression and suppressed p-PI3K/PI3K and p-AKT/AKT levels. Degeneration of the myelin sheath and axons was observed in LPS-treated M1830, while changes in ultrastructural were recovered after adding CFTR-172 or Capsazepine. The level of CFTR, TNF-α, IL-1β, IL-6, and IL-18 was decreased, while the level of ENaC, p-PI3K/PI3K, and p-AKT/AKT was increased obviously in LPS-treated M1830 with CFTR-172, Capsazepine, or IGF-1. Conclusion Down-regulation of CFTR and up-regulation of ENaC can attenuate inflammation in SCI by activating the PI3K/AKT signaling pathway, highlighting a new therapeutic approach for SCI treatment. These findings address a critical gap in current SCI treatments and suggest a novel intervention strategy targeting ion channel regulation.
Collapse
Affiliation(s)
- Guowei Shen
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Yunpeng Zhang
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Xinkun Cheng
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Dongdong Li
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Zhiyong Ding
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Jiwei Tian
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Hui Chen
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Huiming Ding
- Department of Orthopaedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No. 71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu, China
| |
Collapse
|
3
|
Lee RJ, Adappa ND, Palmer JN. Effects of Akt Activator SC79 on Human M0 Macrophage Phagocytosis and Cytokine Production. Cells 2024; 13:902. [PMID: 38891035 PMCID: PMC11171788 DOI: 10.3390/cells13110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Akt is an important kinase in metabolism. Akt also phosphorylates and activates endothelial and neuronal nitric oxide (NO) synthases (eNOS and nNOS, respectively) expressed in M0 (unpolarized) macrophages. We showed that e/nNOS NO production downstream of bitter taste receptors enhances macrophage phagocytosis. In airway epithelial cells, we also showed that the activation of Akt by a small molecule (SC79) enhances NO production and increases levels of nuclear Nrf2, which reduces IL-8 transcription during concomitant stimulation with Toll-like receptor (TLR) 5 agonist flagellin. We hypothesized that SC79's production of NO in macrophages might likewise enhance phagocytosis and reduce the transcription of some pro-inflammatory cytokines. Using live cell imaging of fluorescent biosensors and indicator dyes, we found that SC79 induces Akt activation, NO production, and downstream cGMP production in primary human M0 macrophages. This was accompanied by a reduction in IL-6, IL-8, and IL-12 production during concomitant stimulation with bacterial lipopolysaccharide, an agonist of pattern recognition receptors including TLR4. Pharmacological inhibitors suggested that this effect was dependent on Akt and Nrf2. Together, these data suggest that several macrophage immune pathways are regulated by SC79 via Akt. A small-molecule Akt activator may be useful in some infection settings, warranting future in vivo studies.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
| |
Collapse
|
4
|
Vanherle L, Matthes F, Uhl FE, Meissner A. Ivacaftor therapy post myocardial infarction augments systemic inflammation and evokes contrasting effects with respect to tissue inflammation in brain and lung. Biomed Pharmacother 2023; 162:114628. [PMID: 37018991 DOI: 10.1016/j.biopha.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acquired cystic fibrosis transmembrane regulator (CFTR) dysfunctions have been associated with several conditions, including myocardial infarction (MI). Here, CFTR is downregulated in brain, heart, and lung tissue and associates with inflammation and degenerative processes. Therapeutically increasing CFTR expression attenuates these effects. Whether potentiating CFTR function yields similar beneficial effects post-MI is unknown. The CFTR potentiator ivacaftor is currently in clinical trials for treatment of acquired CFTR dysfunction associated with chronic obstructive pulmonary disease and chronic bronchitis. Thus, we tested ivacaftor as therapeutic strategy for MI-associated target tissue inflammation that is characterized by CFTR alterations. MI was induced in male C57Bl/6 mice by ligation of the left anterior descending coronary artery. Mice were treated with ivacaftor starting ten weeks post-MI for two consecutive weeks. Systemic ivacaftor treatment ameliorates hippocampal neuron dendritic atrophy and spine loss and attenuates hippocampus-dependent memory deficits occurring post-MI. Similarly, ivacaftor therapy mitigates MI-associated neuroinflammation (i.e., reduces higher proportions of activated microglia). Systemically, ivacaftor leads to higher frequencies of circulating Ly6C+ and Ly6Chi cells compared to vehicle-treated MI mice. Likewise, an ivacaftor-mediated augmentation of MI-associated pro-inflammatory macrophage phenotype characterized by higher CD80-positivity is observed in the MI lung. In vitro, ivacaftor does not alter LPS-induced CD80 and tumor necrosis factor alpha mRNA increases in BV2 microglial cells, while augmenting mRNA levels of these markers in mouse macrophages and differentiated human THP-1-derived macrophages. Our results suggest that ivacaftor promotes contrasting effects depending on target tissue post-MI, which may be largely dependent on its effects on different myeloid cell types.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Frank Matthes
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
5
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Trouvé P, Férec C, Génin E. The Interplay between the Unfolded Protein Response, Inflammation and Infection in Cystic Fibrosis. Cells 2021; 10:2980. [PMID: 34831204 PMCID: PMC8616505 DOI: 10.3390/cells10112980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
In cystic fibrosis (CF), p.Phe508del is the most frequent mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The p.Phe508del-CFTR protein is retained in the ER and rapidly degraded. This retention likely triggers an atypical Unfolded Protein Response (UPR) involving ATF6, which reduces the expression of p.Phe508del-CFTR. There are still some debates on the role of the UPR in CF: could it be triggered by the accumulation of misfolded CFTR proteins in the endoplasmic reticulum as was proposed for the most common CFTR mutation p.Phe508del? Or, is it the consequence of inflammation and infection that occur in the disease? In this review, we summarize recent findings on UPR in CF and show how infection, inflammation and UPR act together in CF. We propose to rethink their respective role in CF and to consider them as a whole.
Collapse
Affiliation(s)
- Pascal Trouvé
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.F.); (E.G.)
| | | | | |
Collapse
|
7
|
The role of endothelial cells in cystic fibrosis. J Cyst Fibros 2019; 18:752-761. [DOI: 10.1016/j.jcf.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
8
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Murphy SV, Ribeiro CMP. Cystic Fibrosis Inflammation: Hyperinflammatory, Hypoinflammatory, or Both? Am J Respir Cell Mol Biol 2019; 61:273-274. [PMID: 30951377 PMCID: PMC6839932 DOI: 10.1165/rcmb.2019-0107ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sean V Murphy
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineWinston-Salem, North Carolinaand
| | - Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis CenterUniversity of North Carolina at Chapel HillChapel Hill, North Carolina
| |
Collapse
|
10
|
CFTR protects against vascular inflammation and atherogenesis in apolipoprotein E-deficient mice. Biosci Rep 2017; 37:BSR20170680. [PMID: 28615349 PMCID: PMC6434080 DOI: 10.1042/bsr20170680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular wall. Dysfunction of cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to result in inflammatory responses in cystic fibrosis (CF) patients. However, little is known about the role of CFTR in vascular inflammation and atherogenesis. Our results showed that CFTR was dominantly expressed in macrophages of atherosclerotic plaque and reduced in aorta and aortic sinus from atherosclerotic apolipoprotein E-deficient (apoE−/−) mice. In vivo administration of adenovirus encoding CFTR (Ad-CFTR) with apoE−/− mice fed on high-fat diet (HFD) improved plaque stability by decreasing lipid accumulation and necrotic area and increasing smooth muscle cell content and collagen. The Ad-CFTR-treated mice also displayed reduced proinflammatory cytokines levels in aorta and peritoneal macrophages, whereas the anti-inflammatory M2 macrophage markers were increased. Confocal microscopy revealed that the infiltration of T lymphocytes, neutrophils, and macrophages in aortic sinus was markedly attenuated in Ad-CFTR-treated apoE−/− mice. Moreover, in vitro experiments showed that overexpression of CFTR inhibited ox-LDL-induced the migration of peritoneal macrophages. Finally, it was observed that CFTR up-regulation suppressed NFκB and MAPKs activity induced by ox-LDL. Inhibition of JNK or ERK abrogated CFTR down-regulation induced NFκB activation, whereas NFκB inhibitor had no effect on JNK or ERK activation. Taken together, these results demonstrate that CFTR prevents inflammation and atherogenesis via inhibition of NFκB and MAPKs activation. Our data suggest that CFTR may present a potential therapeutic target for the treatment of vascular inflammation and development of atherosclerotic disease.
Collapse
|
11
|
Guerra L, D'Oria S, Favia M, Castellani S, Santostasi T, Polizzi AM, Mariggiò MA, Gallo C, Casavola V, Montemurro P, Leonetti G, Manca A, Conese M. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy. Pediatr Pulmonol 2017; 52:900-908. [PMID: 28445004 DOI: 10.1002/ppul.23712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 03/31/2017] [Indexed: 02/05/2023]
Abstract
AIM The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. METHODS Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. RESULTS Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. DISCUSSION In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR.
Collapse
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Susanna D'Oria
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Teresa Santostasi
- Department of Biomedical and Human Oncology, Pediatrics Section, Cystic Fibrosis Regional Center, U.O. "B. Trambusti," Policlinico, University of Bari, Bari, Italy
| | - Angela M Polizzi
- Department of Biomedical and Human Oncology, Pediatrics Section, Cystic Fibrosis Regional Center, U.O. "B. Trambusti," Policlinico, University of Bari, Bari, Italy
| | - Maria A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Crescenzio Gallo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Pasqualina Montemurro
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Giuseppina Leonetti
- Department of Biomedical and Human Oncology, Pediatrics Section, Cystic Fibrosis Regional Center, U.O. "B. Trambusti," Policlinico, University of Bari, Bari, Italy
| | | | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Lubamba BA. [XBP1 and inflammation in cystic fibrosis alveolar macrophages]. Med Sci (Paris) 2017; 33:380-382. [PMID: 28497731 DOI: 10.1051/medsci/20173304004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bob A Lubamba
- Marsico lung institute/cystic fibrosis research center, The University of North Carolina at Chapel Hill, 125 Mason Farm Road Chapel Hill, NC 27599, États-Unis
| |
Collapse
|
13
|
Weidenfeld S, Kuebler WM. Cytokine-Regulation of Na +-K +-Cl - Cotransporter 1 and Cystic Fibrosis Transmembrane Conductance Regulator-Potential Role in Pulmonary Inflammation and Edema Formation. Front Immunol 2017; 8:393. [PMID: 28439270 PMCID: PMC5383711 DOI: 10.3389/fimmu.2017.00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary edema, a major complication of lung injury and inflammation, is defined as accumulation of extravascular fluid in the lungs leading to impaired diffusion of respiratory gases. Lung fluid balance across the alveolar epithelial barrier protects the distal airspace from excess fluid accumulation and is mainly regulated by active sodium transport and Cl- absorption. Increased hydrostatic pressure as seen in cardiogenic edema or increased vascular permeability as present in inflammatory lung diseases such as the acute respiratory distress syndrome (ARDS) causes a reversal of transepithelial fluid transport resulting in the formation of pulmonary edema. The basolateral expressed Na+-K+-2Cl- cotransporter 1 (NKCC1) and the apical Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR) are considered to be critically involved in the pathogenesis of pulmonary edema and have also been implicated in the inflammatory response in ARDS. Expression and function of both NKCC1 and CFTR can be modulated by released cytokines; however, the relevance of this modulation in the context of ARDS and pulmonary edema is so far unclear. Here, we review the existing literature on the regulation of NKCC1 and CFTR by cytokines, and-based on the known involvement of NKCC1 and CFTR in lung edema and inflammation-speculate on the role of cytokine-dependent NKCC1/CFTR regulation for the pathogenesis and potential treatment of pulmonary inflammation and edema formation.
Collapse
Affiliation(s)
- Sarah Weidenfeld
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Duchesneau P, Besla R, Derouet MF, Guo L, Karoubi G, Silberberg A, Wong AP, Waddell TK. Partial Restoration of CFTR Function in cftr-Null Mice following Targeted Cell Replacement Therapy. Mol Ther 2017; 25:654-665. [PMID: 28187947 DOI: 10.1016/j.ymthe.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is a fatal recessive genetic disorder caused by a mutation in the gene encoding CF transmembrane conductance regulator (CFTR) protein. Alteration in CFTR leads to thick airway mucus and bacterial infection. Cell therapy has been proposed for CFTR restoration, but efficacy has been limited by low engraftment levels. In our previous studies, we have shown that using a pre-conditioning regimen in combination with optimization of cell number and time of delivery, we could obtain greater bone marrow cell (BMC) retention in the lung. Here, we found that optimized delivery of wild-type (WT) BMC contributed to apical CFTR expression in airway epithelium and restoration of select ceramide species and fatty acids in CFTR-/- mice. Importantly, WT BMC delivery delayed Pseudomonas aeruginosa lung infection and increased survival of CFTR-/- recipients. Only WT BMCs had a beneficial effect beyond 6 months, suggesting a dual mechanism of BMC benefit: a non-specific effect early after cell delivery, possibly due to the recruitment of macrophages and neutrophils, and a late beneficial effect dependent on long-term CFTR expression. Taken together, our results suggest that BMC can improve overall lung function and may have potential therapeutic benefit for the treatment of CF.
Collapse
Affiliation(s)
- Pascal Duchesneau
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Rickvinder Besla
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Mathieu F Derouet
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Li Guo
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Amanda Silberberg
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
15
|
Ribeiro CMP, Lubamba BA. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2017; 18:ijms18010118. [PMID: 28075361 PMCID: PMC5297752 DOI: 10.3390/ijms18010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob A Lubamba
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Hayes D, Glanville AR, McGiffin D, Tobias JD, Tumin D. Age-related survival disparity associated with lung transplantation in cystic fibrosis: An analysis of the registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2016; 35:1108-15. [DOI: 10.1016/j.healun.2016.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/26/2023] Open
|
17
|
Donnelly SC. World pulmonary fibrosis conference-ICLAF 2016. QJM 2016; 109:575. [PMID: 27647939 DOI: 10.1093/qjmed/hcw149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Lubamba BA, Jones LC, O'Neal WK, Boucher RC, Ribeiro CMP. X-Box-Binding Protein 1 and Innate Immune Responses of Human Cystic Fibrosis Alveolar Macrophages. Am J Respir Crit Care Med 2016; 192:1449-61. [PMID: 26331676 DOI: 10.1164/rccm.201504-0657oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Alveolar macrophages (AMs) play a key role in host defense to inhaled bacterial pathogens, in part by secreting inflammatory mediators. Cystic fibrosis (CF) airways exhibit a persistent, robust inflammatory response that may contribute to the pathophysiology of CF. Recent findings have linked endoplasmic reticulum stress responses mediated by inositol-requiring enzyme 1α-dependent messenger RNA splicing (activation) of X-box-binding protein-1 (XBP-1s) to inflammation in peripheral macrophages. However, the role of XBP-1s in CF AM function is not known. OBJECTIVES To evaluate inflammatory responses of AMs from chronically infected/inflamed human CF lungs and test whether XBP-1s is required for AM-mediated inflammation. METHODS Basal and LPS-induced inflammatory responses were evaluated in primary cultures of non-CF versus CF AMs. XBP-1s was measured and its function was evaluated in AMs using 8-formyl-7-hydroxy-4-methylcoumarin (4μ8C), an inhibitor of inositol-requiring enzyme 1α-dependent XBP-1s, and in THP-1 cells stably expressing XBP-1 shRNA, XBP-1s, or a dominant-negative XBP-1. MEASUREMENTS AND MAIN RESULTS CF AMs exhibited exaggerated basal and LPS-induced production of tumor necrosis factor-α and IL-6, and these responses were coupled to increased levels of XBP-1s. In non-CF and CF AMs, LPS-induced cytokine production was blunted by 4µ8C. A role for XBP-1s in AM inflammatory responses was further established by data from dTHP-1 cells indicating that expression of XBP-1 shRNA reduced XBP-1s levels and LPS-induced inflammatory responses; and LPS-induced inflammation was up-regulated by expression of XBP-1s and inhibited by dominant-negative XBP-1. CONCLUSIONS These findings suggest that AMs contribute to the robust inflammation of CF airways via an up-regulation of XBP-1s-mediated cytokine production.
Collapse
Affiliation(s)
- Bob A Lubamba
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Lisa C Jones
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Wanda K O'Neal
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and
| | - Richard C Boucher
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and
| | - Carla M P Ribeiro
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and.,3 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Hou Y, Guan X, Yang Z, Li C. Emerging role of cystic fibrosis transmembrane conductance regulator - an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol 2016; 8:282-288. [PMID: 26989463 PMCID: PMC4789613 DOI: 10.4251/wjgo.v8.i3.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/21/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.
Collapse
|