1
|
Mantooth SM, Green JM, Green WD, Nguyen KG, Mantooth KA, Meritet DM, Milner JJ, Zaharoff DA. An injectable hydrogel enhances intratumoral retention and antitumor efficacy of cytokine immunotherapy in murine triple negative breast tumor models. J Control Release 2025; 383:113761. [PMID: 40288496 DOI: 10.1016/j.jconrel.2025.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Systemic delivery of immunotherapy is dose-limited and often causes serious immune-related adverse events. Intratumoral injections can reduce systemic immunotoxicities and increase immunotherapy concentrations within a tumor. However, high pressures associated with direct tumor injection limits injectate retention, as low viscosity, saline-based solutions rapidly leak out of tumors. Viscoelastic solids, such as hydrogels, can improve local retention of co-formulated immunotherapies and provide sustained delivery. Here, we investigated the potential of a novel injectable hydrogel, called XCSgel, to localize immunotherapies within murine models of orthotopic triple-negative breast cancer (TNBC). Ex vivo and in vivo fluorescence imaging revealed enhanced intratumoral retention of immunotherapies co-formulated in XCSgel. Initial antitumor studies evaluated a range of antitumor cytokines co-formulated with XCSgel. Subsequent antitumor and rechallenge studies focused on the promising co-formulation of interleukin-12 (IL-12) and XCSgel (XCSgel-IL12). A single injection of XCSgel-IL12 eliminated 86 % of E0771 and 20 % of mWnt orthotopic primary TNBC tumors. Mice rendered tumor-free resisted a live tumor challenge. XCSgel-IL12 also eliminated untreated abscopal E0771 tumors in 67 % of mice. XCSgel-IL12 induced profound changes to the tumor-immune microenvironment, including a 3-fold reduction in the frequency of exhausted CD8+ T cells and a 3.2-fold increase in activated, proliferating CD8+ T cells. XCSgel and XCSgel-IL12 were well tolerated with no severe local or systemic side effects. Overall, XCSgel-IL12 is a promising localized immunotherapy capable of safely eliminating both primary treated and secondary abscopal tumors, indicating that systemic immunotherapy may not be required for systemic control of cancer.
Collapse
Affiliation(s)
- Siena M Mantooth
- Lampe Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, United States
| | - Jarred M Green
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - William D Green
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Khue G Nguyen
- Lampe Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, United States
| | - Kateri A Mantooth
- Lampe Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, United States
| | - Danielle M Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - David A Zaharoff
- Lampe Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27606, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
2
|
Gopalakrishnan AS, Sirajudeen S, Banu N, Nunes J, Rajendran DT, Yadav S, Prajna NV, Williams R, Kuppamuthu D, Giridhara Gopalan RO. Inhibition of matrix metalloproteases by a chemical cross-linker to halt the corneal degradation in keratoconus. Exp Eye Res 2025; 251:110208. [PMID: 39681236 DOI: 10.1016/j.exer.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The need for better and simpler alternative crosslinking strategies to treat keratoconus (KC) is becoming essential as there is only a single approved way to treat it. Recently, conventional UV-A Riboflavin crosslinking is proven to have some disadvantages such as causing damage to the corneal endothelium and inducing keratocyte apoptosis. A chemical cross-linker (CXL) using carbodiimide chemistry and an octanedioic acid spacer is found effective in stiffening the cornea and has the potential to be developed as an alternative therapy to halt KC progression. In order to investigate the molecular changes induced by the cross-linker, we have analyzed the effect of the cross-linker on the activity of matrix metalloproteases (MMPs) in epithelial and stromal layers of KC corneas and in vitro cellular systems to determine its role in stiffening the KC cornea. At well-optimized concentration, KC corneal buttons were treated with the CXL and the stiffening of the cornea was measured. The collagen fibril assembly in the stroma was analyzed using transmission electron microscopy and the activity of MMPs 2 and 9 were visualized using gelatin zymography. KC corneal fibroblasts in culture and tumor necrosis factor-α (TNF-α) induced human corneal epithelial (HCE) cell line were treated with CXL and secretion of MMPs 1, 2, 3 and 9 were analyzed by enzyme-linked immunosorbent assay (ELISA). We found that the CXL stiffened the KC corneas comparable to the normal corneas, with very less cytotoxicity. The collagen fiber assembly was reorganized in an orderly fashion and fibril density and diameter increased after CXL treatment. The activity of MMPs and cathepsin G in the epithelial and stromal layers of KC tissues decreased post-treatment. Secretion and activity of MMPs from the corneal epithelial and stromal cells after CXL treatment were significantly reduced while the epithelial lysyl oxidase activity increased. The CXL, intended to stop the KC progression, modified the extracellular matrix collagen assembly in the stroma and decreased the secretion of a group of metalloproteases and their activity. We have demonstrated a set of molecular changes effected by the CXL, which might aid in the stiffening of the KC cornea.
Collapse
Affiliation(s)
| | | | - Nasrin Banu
- Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Jessica Nunes
- Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Seema Yadav
- Aravind Eye Hospital and Post-graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | | | - Rachel Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
3
|
Wang Q, Guo Z. Durability improvement strategies for wettable fog harvesting devices inspired by spider silk fibers: a review. NANOSCALE 2024; 16:20405-20433. [PMID: 39434597 DOI: 10.1039/d4nr02697g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Water scarcity is a persistent challenge, and in this case, the freshwater content in the air and water collection phenomena observed in nature provide ideas for fog harvesting. The fog-harvesting capabilities of natural spider silk have long attracted attention. Thus, researchers have undertaken significant efforts for the preparation of wettable biomimetic knotted fibers. However, the fragility of their chemical coating and the susceptibility of spun fibers to damage often present substantial challenges in the durability of fog harvesting equipment. Herein, from a bioengineering perspective, we review the improvement strategies for enhancing the mechanical properties of wettable biomimetic spider silk fibers based on the dense nanoconfined hydrogen-bond array crystalline regions and uniformly embedded amorphous regions of natural wettable spider silk fibers. These strategies aim to achieve high tensile strength, good fracture toughness, and corrosion resistance. Additionally, by incorporating UV inhibitors during spinning, the effects of sunlight can be mitigated or shielded, thereby greatly enhancing the mechanical durability of fog-harvesting devices under harsh realistic conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
4
|
Hutomo DI, Deandra FA, Ketherin K, García-Gareta E, Bachtiar EW, Amir L, Tadjoedin FM, Widaryono A, Haerani N, Lessang R, Soeroso Y. The Effect of Carbodiimide Crosslinkers on Gelatin Hydrogel as a Potential Biomaterial for Gingival Tissue Regeneration. Gels 2024; 10:674. [PMID: 39590030 PMCID: PMC11593530 DOI: 10.3390/gels10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Connective tissue grafts for gingival recession treatment present significant challenges as they require an additional surgical site, leading to increased morbidity, extended operative times, and a more painful postoperative recovery for patients. Gelatin contains the arginine-glycine-aspartic acid (RGD) sequence, which supports cell adhesion and interactions. The development of gelatin hydrogels holds significant promise due to their biocompatibility, ease of customization, and structural resemblance to the extracellular matrix, making them a potential candidate for gingival regeneration. This study aimed to assess the physical and biological properties of crosslinked gelatin hydrogels using EDC/NHS with two crosslinker concentrations (GelCL12 and GelCL24) and compare these to non-crosslinked gelatin. Both groups underwent morphological, rheological, and chemical analysis. Biological assessments were conducted to evaluate human gingival fibroblast (HGF) proliferation, migration, and COL1 expression in response to the scaffolds. The crosslinked gelatin group exhibited greater interconnectivity and better physical characteristics without displaying cytotoxic effects on the cells. FTIR analysis revealed no significant chemical differences between the groups. Notably, the GelCL12 group significantly enhanced HGF migration and upregulated COL1 expression. Overall, GelCL12 met the required physical characteristics and biocompatibility, making it a promising scaffold for future gingival tissue regeneration applications.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain;
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6DE, UK
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Adityo Widaryono
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Robert Lessang
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| |
Collapse
|
5
|
Hu Q, Zhang Y, Song Y, Shi H, Yang D, Zhang H, Gu Y. 3D printing/electrospinning of a bilayered composite patch with antibacterial and antiadhesive properties for repairing abdominal wall defects. J Mater Chem B 2024; 12:10054-10067. [PMID: 39258439 DOI: 10.1039/d4tb01543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The application of patch methods for repairing abdominal wall wounds presents a variety of challenges, such as adhesion and limited mobility due to inadequate mechanical strength and nonabsorbable materials. Among these complications, postoperative visceral adhesion and wound infection are particularly serious. In this study, a bilayered composite patch with a gelatin methacryloyl (GelMA)/sodium alginate (SA)-vancomycin (Van)@polycaprolactone (PCL) (GelMA/SA-Van@PCL) antibacterial layer was prepared via coaxial 3D printing and a polycaprolactone (PCL)-silicon dioxide (SiO2) antiadhesive layer (PCL-SiO2) was prepared via electrospinning and electrostatic spray for hernia repair. The evaluation of the physicochemical properties revealed that the composite patch had outstanding tensile properties (16 N cm-1), excellent swelling (swelling rate of 243.81 ± 12.52%) and degradation (degradation rate of 53.14 ± 3.02%) properties. Furthermore, the composite patch containing the antibiotic Van exhibited good antibacterial and long-term drug release properties. Both in vivo and in vitro experiments indicated that the composite patch displayed outstanding biocompatibility and antiadhesive properties and could prevent postoperative infections. In summary, the bilayered composite patch can effectively prevent postoperative complications while promoting tissue growth and repair and holds significant application potential in hernia repair.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Yu Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
| | - Yongteng Song
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
| | - Hekai Shi
- Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Dongchao Yang
- Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Yan Gu
- Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Vinitpairot C, Yik JHN, Haudenschild DR, Szabo RM, Bayne CO. Current trends in the prevention of adhesions after zone 2 flexor tendon repair. J Orthop Res 2024; 42:2149-2158. [PMID: 38761143 DOI: 10.1002/jor.25874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
Treating flexor tendon injuries within the digital flexor sheath (commonly referred to as palmar hand zone 2) presents both technical and logistical challenges. Success hinges on striking a delicate balance between safeguarding the surgical repair for tendon healing and initiating early rehabilitation to mitigate the formation of tendon adhesions. Adhesions between tendon slips and between tendons and the flexor sheath impede tendon movement, leading to postoperative stiffness and functional impairment. While current approaches to flexor tendon repair prioritize maximizing tendon strength for early mobilization and adhesion prevention, factors such as pain, swelling, and patient compliance may impede postoperative rehabilitation efforts. Moreover, premature mobilization could risk repair failure, necessitating additional surgical interventions. Pharmacological agents offer a potential avenue for minimizing inflammation and reducing adhesion formation while still promoting normal tendon healing. Although some systemic and local agents have shown promising results in animal studies, their clinical efficacy remains uncertain. Limitations in these studies include the relevance of chosen animal models to human populations and the adequacy of tools and measurement techniques in accurately assessing the impact of adhesions. This article provides an overview of the clinical challenges associated with flexor tendon injuries, discusses current on- and off-label agents aimed at minimizing adhesion formation, and examines investigational models designed to study adhesion reduction after intra-synovial flexor tendon repair. Understanding the clinical problem and experimental models may serve as a catalyst for future research aimed at addressing intra-synovial tendon adhesions following zone 2 flexor tendon repair.
Collapse
Affiliation(s)
- Chaiyos Vinitpairot
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jasper H N Yik
- Department of Translational Orthopedic Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dominik R Haudenschild
- Department of Translational Orthopedic Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Robert M Szabo
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Christopher O Bayne
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
7
|
Davis ZG, Koch DW, Watson SL, Scull GM, Brown AC, Schnabel LV, Fisher MB. Controlled Stiffness of Direct-Write, Near-Field Electrospun Gelatin Fibers Generates Differences in Tenocyte Morphology and Gene Expression. J Biomech Eng 2024; 146:091008. [PMID: 38529730 PMCID: PMC11080953 DOI: 10.1115/1.4065163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Tendinopathy is a leading cause of mobility issues. Currently, the cell-matrix interactions involved in the development of tendinopathy are not fully understood. In vitro tendon models provide a unique tool for addressing this knowledge gap as they permit fine control over biochemical, micromechanical, and structural aspects of the local environment to explore cell-matrix interactions. In this study, direct-write, near-field electrospinning of gelatin solution was implemented to fabricate micron-scale fibrous scaffolds that mimic native collagen fiber size and orientation. The stiffness of these fibrous scaffolds was found to be controllable between 1 MPa and 8 MPa using different crosslinking methods (EDC, DHT, DHT+EDC) or through altering the duration of crosslinking with EDC (1 h to 24 h). EDC crosslinking provided the greatest fiber stability, surviving up to 3 weeks in vitro. Differences in stiffness resulted in phenotypic changes for equine tenocytes with low stiffness fibers (∼1 MPa) promoting an elongated nuclear aspect ratio while those on high stiffness fibers (∼8 MPa) were rounded. High stiffness fibers resulted in the upregulation of matrix metalloproteinase (MMPs) and proteoglycans (possible indicators for tendinopathy) relative to low stiffness fibers. These results demonstrate the feasibility of direct-written gelatin scaffolds as tendon in vitro models and provide evidence that matrix mechanical properties may be crucial factors in cell-matrix interactions during tendinopathy formation.
Collapse
Affiliation(s)
- Zachary G. Davis
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Drew W. Koch
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
- North Carolina State University
| | - Samantha L. Watson
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695
| | - Grant M. Scull
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Lauren V. Schnabel
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
- North Carolina State University
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695; Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
9
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
10
|
Ma RX, Li RF, Deng XQ, Qiao RQ, Li JK, Song KX, Ji SL, Hu YC. Repair of tendons treated with peracetic acid-ethanol and gamma irradiation by EDC combined with NHS: a morphological, biochemical and biomechanical study in vitro. Cell Tissue Bank 2024; 25:427-442. [PMID: 36797536 DOI: 10.1007/s10561-023-10080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
The purpose of this study was to investigate whether 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) combined with n-hydroxysuccinimide (NHS) can repair tendon damage caused by peracetic acid-ethanol and gamma irradiation sterilization. The semitendinosus tendons of 15 New Zealand white rabbits were selected as experimental materials, and the tendons were sterilized in a solution containing 1% (v/w) peracetic acid and 24% (v/w) ethanol. After 15 kGy gamma irradiation sterilization, the tendons were randomly divided into three groups (n = 10). The tendons were repaired with EDCs of 0, 2.5 and 5 mM combined with 5 mM NHS for 6 h, the tendons were temporarily stored at - 80 ± °C. The arrangement and spatial structure of collagen fibers were observed by light microscopy and scanning electron microscopy, the collagen type and collagen crimp period were observed under a polarizing microscope, and the collagen fibril diameter and its distribution were measured by transmission electron microscopy, from which the collagen fibril index and mass average diameter were calculated. The resistance of collagen to enzymolysis was detected by the free hydroxyproline test, and tensile fracture and cyclic loading tests of each group of tendons were carried out, from which the elastic modulus, maximum stress, maximum strain, strain energy density and cyclic creep strain were calculated. The obtained results showed that the gap between loose collagen fibers in the 0 mM control group was wider, the parallel arrangement of tendons in the 2.5 and 5 mM groups was more uniform and regular and the fiber space decreased, the crimp period in the 5 mM group was lower than that in the 0 mM group (P < 0.05), and the concentration of hydroxyproline in the 5 mM group (711.64 ± 77.95 μg/g) was better than that in the control group (1150.57 ± 158.75 μg/g). The elastic modulus of the 5 mM group (424.73 ± 150.96 MPa) was better than that of the 0 mM group (179.09 ± 37.14 MPa). Our results show that EDC combined with NHS can repair damaged tendons after peracetic acid-ethanol and gamma radiation treatment, and 5 mM EDC has better morphological performance, anti-enzymolysis ability and biomechanical properties than 2.5 mM EDC.
Collapse
Affiliation(s)
- Rong-Xing Ma
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300211, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui-Feng Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Rui-Qi Qiao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ji-Kai Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kun-Xiu Song
- Department of Hand and Microsurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Shao-Lin Ji
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yong-Cheng Hu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300211, China.
| |
Collapse
|
11
|
Lima PHCD, Ribeiro-Viana RM, Plath AMS, Grillo R. Lignocellulosic-biomolecules conjugated systems: green-engineered complexes modified by covalent linkers. J Mater Chem B 2024; 12:2471-2480. [PMID: 38345783 DOI: 10.1039/d3tb02581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignocellulosic biomass represents an abundant and eco-friendly material widely explored in recent years. The main lignocellulosic fractions include cellulose, hemicellulose, and lignin. Nonetheless, the heterogeneity and complexity of these components pose challenges in achieving the desired properties. Conversely, their attractive functional groups can covalently link with other biomolecules, facilitating the creation and enhancement of material properties. Lignocellulosic molecules can form different linkages with other biomolecules through classic and modern methods. Bioconjugation has emerged as a suitable alternative to create new nuances, empowering the linkage between lignocellulosic materials and biomolecules through linkers. These conjugates (lignocellulosic-linkers-biomolecules) attract attention from stakeholders in medicine, chemistry, biology, and agriculture. The plural formations of these biocomplexes highlight the significance of these arrangements. Therefore, this review provides an overview of the progress of lignocellulosic-biomolecule complexes and discusses different types of covalent bioconjugated systems, considering the formation of linkers, applicability, toxicity, and future challenges.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| | - Renato Márcio Ribeiro-Viana
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | | | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| |
Collapse
|
12
|
Szarpak A, Auzély-Velty R. Hyaluronic acid single-network hydrogel with high stretchable and elastic properties. Carbohydr Polym 2023; 320:121212. [PMID: 37659792 DOI: 10.1016/j.carbpol.2023.121212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 09/04/2023]
Abstract
Stretchable materials have demonstrated great interest in wearable or implantable applications. Most of the existing hydrogels with high stretchability characteristics are based on double networks, exhibit large hysteresis loops, and cannot recover after deformation due to permanent rupture of network. Elastic, biodegradable, and biocompatible hydrogels are desirable for wound dressing of joints with frequent motions or post-surgical healing of mobile tissues. Here, we show a simple strategy for the preparation of a hyaluronic acid (HA) single-network hydrogel that can be stretchable and highly elastic without the addition of other components/partners or complicated processes of preparation. Our strategy relies on the use of high Mw HA to create a chemical hydrogel in which densely entangled HA chains are tied together by a small number of covalent bonds. While the presence of covalent cross-links can prevent disintegration of the HA network, entanglements endow the hydrogel with high stretchability through transmission of tension along the length of the long HA chains. The stretching-relaxation cycles show negligible hysteresis and perfect recovery of material after the release of force. The diminution of Mw together with increasing the concentration or cross-linker amount leads to brittle hydrogels.
Collapse
Affiliation(s)
- Anna Szarpak
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | | |
Collapse
|
13
|
Bounegru AV, Apetrei C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:760. [PMID: 36839128 PMCID: PMC9962745 DOI: 10.3390/nano13040760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The development of enzyme biosensors has successfully overcome various challenges such as enzyme instability, loss of enzyme activity or long response time. In the electroanalytical field, tyrosinase is used to develop biosensors that exploit its ability to catalyze the oxidation of numerous types of phenolic compounds with antioxidant and neurotransmitter roles. This review critically examines the main tyrosinase immobilization techniques for the development of sensitive electrochemical biosensors. Immobilization strategies are mainly classified according to the degree of reversibility/irreversibility of enzyme binding to the support material. Each tyrosinase immobilization method has advantages and limitations, and its selection depends mainly on the type of support electrode, electrode-modifying nanomaterials, cross-linking agent or surfactants used. Tyrosinase immobilization by cross-linking is characterized by very frequent use with outstanding performance of the developed biosensors. Additionally, research in recent years has focused on new immobilization strategies involving cross-linking, such as cross-linked enzyme aggregates (CLEAs) and magnetic cross-linked enzyme aggregates (mCLEAs). Therefore, it can be considered that cross-linking immobilization is the most feasible and economical approach, also providing the possibility of selecting the reagents used and the order of the immobilization steps, which favor the enhancement of biosensor performance characteristics.
Collapse
|
14
|
Laubach JM, Sani RK. Thermophilic Exopolysaccharide Films: A Potential Device for Local Antibiotic Delivery. Pharmaceutics 2023; 15:pharmaceutics15020557. [PMID: 36839880 PMCID: PMC9960241 DOI: 10.3390/pharmaceutics15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Natural polysaccharides being investigated for use in the field of drug delivery commonly require the addition of sugars or pretreated biomass for fabrication. Geobacillus sp. strain WSUCF1 is a thermophile capable of secreting natural polymers, termed exopolysaccharides (EPSs), cultivated from cost-effective, non-treated lignocellulosic biomass carbon substrates. This preliminary investigation explores the capabilities of a 5% wt/wt amikacin-loaded film constructed from the crude EPS extracted from the strain WSUCF1. Film samples were seen to be non-cytotoxic to human keratinocytes and human skin-tissue fibroblasts, maintaining cell viability, on average, above 85% for keratinocytes over 72-h during a cell viability assay. The drug release profile of a whole film sample revealed a steady release of the antibiotic up to 12 h. The amikacin eluted by the EPS film was seen to be active against Staphylococcus aureus, maintaining above a 91% growth inhibition over a period of 48 h. Overall, this study demonstrates that a 5% amikacin-EPS film, grown from lignocellulosic biomass, can be a viable option for preventing or combating infections in clinical treatment.
Collapse
Affiliation(s)
- Joseph M. Laubach
- Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Correspondence:
| |
Collapse
|
15
|
Hautmann A, Kedilaya D, Stojanović S, Radenković M, Marx CK, Najman S, Pietzsch M, Mano JF, Groth T. Free-standing multilayer films as growth factor reservoirs for future wound dressing applications. BIOMATERIALS ADVANCES 2022; 142:213166. [PMID: 36306555 DOI: 10.1016/j.bioadv.2022.213166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Chronic skin wounds place a high burden on patients and health care systems. The use of angiogenic and mitogenic growth factors can facilitate the healing but growth factors are quickly inactivated by the wound environment if added exogenously. Here, free-standing multilayer films (FSF) are fabricated from chitosan and alginate as opposing polyelectrolytes in an alternating manner using layer-by-layer technique. One hundred bilayers form an about 450 μm thick, detachable free-standing film that is subsequently crosslinked by either ethyl (dimethylaminopropyl) carbodiimide combined with N-hydroxysuccinimide (E-FSF) or genipin (G-FSF). The characterization of swelling, oxygen permeability and crosslinking density shows reduced swelling and oxygen permeability for both crosslinked films compared to non-crosslinked films (N-FSF). Loading of fibroblast growth factor 2 (FGF2) into the films results in a sustained release from crosslinked FSF in comparison to non-crosslinked FSF. Biocompatibility studies in vitro with human dermal fibroblasts cultured underneath the films demonstrate increased cell growth and cell migration for all films with and without FGF2. Especially G-FSF loaded with FGF2 greatly increases cell proliferation and migration. In vivo biocompatibility studies by subcutaneous implantation in mice show that E-FSF causes an inflammatory tissue response that is absent in the case of G-FSF. N-FSF also represents a biocompatible film but shows early degradation. All FSF possess antibacterial properties against gram+ and gram- bacteria demonstrated by an agar diffusion disc assay. In summary, FSF made of alginate and chitosan crosslinked with genipin can act as a reservoir for the sustained release of FGF2, possessing high biocompatibility in vitro and in vivo. Moreover, G-FSF promotes growth and migration of human dermal fibroblasts and has antibacterial properties, which makes it an interesting candidate for bioactive wound.
Collapse
Affiliation(s)
- Adrian Hautmann
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Devaki Kedilaya
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Sanja Stojanović
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Đinđića 81, 18000, Niš, Serbia; Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Christian K Marx
- Department of Downstream Processing, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Đinđića 81, 18000, Niš, Serbia; Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Markus Pietzsch
- Department of Downstream Processing, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany; Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
16
|
Chen F, Deng J, Luo L, Zhu Y, Dong Y, Yang Y, Zhang R, Chen J, Zhou Q. Crosslinked Decellularized Porcine Pericardium as a Substrate for Conjunctival Reconstruction. Stem Cells Int 2022; 2022:7571146. [PMID: 35342430 PMCID: PMC8941537 DOI: 10.1155/2022/7571146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
Seeking for suitable conjunctival reconstruction substitutes to overcome the limitations of current substitutes, such as amniotic membrane, is urgent. Decellularized tissues have become a promising strategy for tissue engineering. In this study, we prepared decellularized porcine pericardium (DPP) scaffolds by the phospholipase A2 method and crosslinked them with aspartic acid (Asp) and human endothelial growth factor (hEGF) to enhance biological performance on the DPP, obtaining DPP-Asp-hEGF scaffolds. In vitro DPP showed lower apoptosis, highly desirable, well preservation of extracellular matrix components, and favorable macro-microstructure, which was confirmed by histology, immunofluorescence, electron microscopy, collagen and DNA quantification, and cytotoxicity assay, compared to the native porcine pericardium (NPP). The crosslinked efficacy of the DPP-Asp-hEGF was furtherer verified by in vitro experiments with Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Through animal models of conjunctiva defect model, the DPP-Asp-hEGF revealed a closed, multilayer epithelium with an equal amount of goblet cells and no indication for conjunctival scarring after 28 days, compared to amniotic membrane (AM) groups and sham groups. These results suggested that DPP-Asp-hEGF can offer a good conjunctival reconstructive substitute both in structure and in function.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jingyue Deng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Lishi Luo
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Shenzhen Eye Hospital, Affiliated Hospital of Jinan University, Shenzhen 518040, China
| | - Ying Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuying Dong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuanting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Rijia Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
17
|
Madruga LYC, Kipper MJ. Expanding the Repertoire of Electrospinning: New and Emerging Biopolymers, Techniques, and Applications. Adv Healthc Mater 2022; 11:e2101979. [PMID: 34788898 DOI: 10.1002/adhm.202101979] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer-based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well-established ones) to enhance or achieve new properties for electrospun fiber materials.
Collapse
Affiliation(s)
- Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
- School of Advanced Materials Discovery Colorado State University Fort Collins CO 80526 USA
- School of Biomedical Engineering Colorado State University Fort Collins CO 80526 USA
| |
Collapse
|
18
|
Dasgupta A, Sori N, Petrova S, Maghdouri-White Y, Thayer N, Kemper N, Polk S, Leathers D, Coughenour K, Dascoli J, Palikonda R, Donahue C, Bulysheva AA, Francis MP. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development. Acta Biomater 2021; 128:186-200. [PMID: 33878472 DOI: 10.1016/j.actbio.2021.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022]
Abstract
Collagen microfiber-based constructs have garnered considerable attention for ligament, tendon, and other soft tissue repairs, yet with limited clinical translation due to strength, biocompatibility, scalable manufacturing, and other challenges. Crosslinking collagen fibers improves mechanical properties; however, questions remain regarding optimal crosslinking chemistries, biocompatibility, biodegradation, long-term stability, and potential for biotextile assemble at scale, limiting their clinical usefulness. Here, we assessed over 50 different crosslinking chemistries on microfluidic wet-extruded collagen microfibers made with clinically relevant collagen to optimize collagen fibers as a biotextile yarn for suture or other medical device manufacture. The endogenous collagen crosslinker, glyoxal, provides extraordinary fiber ultimate tensile strength near 300MPa, and Young's modulus of over 3GPa while retaining 50% of the initial load-bearing capacity through 6 months as hydrated. Glyoxal crosslinked collagen fibers further proved cytocompatible and biocompatible per ISO 10993-based testing, and further elicits a predominantly M2 macrophage response. Remarkably these strong collagen fibers are amenable to industrial braiding to form strong collagen fiber sutures. Collagen microfluidic wet extrusion with glyoxal crosslinking thus progress bioengineered, strong, and stable collagen microfibers significantly towards clinical use for potentially promoting efficient healing compared to existing suture materials. STATEMENT OF SIGNIFICANCE: Towards improving clinical outcomes for over 1 million ligament and tendon surgeries performed annually, we report an advanced microfluidic extrusion process for type I collagen microfiber manufacturing for biological suture and other biotextile manufacturing. This manuscript reports the most extensive wet-extruded collagen fiber crosslinking compendium published to date, providing a tremendous recourse to the field. Collagen fibers made with clinical-grade collagen and crosslinked with glyoxal, exhibit tensile strength and stability that surpasses all prior reports. This is the first report demonstrating that glyoxal, a native tissue crosslinker, has the extraordinary ability to produce strong, cytocompatible, and biocompatible collagen microfibers. These collagen microfibers are ideal for advanced research and clinical use as surgical suture or other tissue-engineered medical products for sports medicine, orthopedics, and other surgical indications.
Collapse
|
19
|
Lima AC, Reis RL, Ferreira H, Neves NM. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater Sci Eng 2021; 7:3229-3241. [PMID: 34161062 DOI: 10.1021/acsbiomaterials.1c00412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation plays an essential role in arthritis development and progression. Despite the advances in the pharmaceutical field, current treatments still present low efficacy and severe side effects. Considering the high activity of the glutathione reductase (GR) enzyme in inflamed joints, a distinctive drug delivery system sensitive to the GR enzyme was designed for efficient drug delivery on arthritic diseases. A linear amphiphilic polymer composed of methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) was synthesized and the intermolecular oxidation of the thiol groups from GSHs retain the drug inside the resulting micelles. Stable polymeric micelles of 100 nm of size presented a loading capacity of dexamethasone (Dex) up to 65%. Although in physiological conditions the Dex release presented slow and sustained kinetics, in the presence of the GR enzyme, there was a burst release (stimuli-responsive properties). Biological assays demonstrated their cytocompatibility in contact with human articular chondrocytes, macrophages, and endothelial cells as well as their hemocompatibility. Importantly, in an in vitro model of inflammation, the polymeric micelles promoted a controlled drug release in the presence of GR, exhibiting a higher efficacy than the free Dex while reducing the negative effects of the drug into normal cells. In conclusion, this formulation is a promising approach to treat arthritic diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
20
|
Gelatin-Poly (γ-Glutamic Acid) Hydrogel as a Potential Adhesive for Repair of Intervertebral Disc Annulus Fibrosus: Evaluation of Cytocompatibility and Degradability. Spine (Phila Pa 1976) 2021; 46:E243-E249. [PMID: 33475276 DOI: 10.1097/brs.0000000000003767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro experimental study testing a Gelatin-poly (γ-glutamic acid) hydrogel for disc repair. OBJECTIVE To evaluate the cytocompatibility and degradability of the above mentioned hydrogel for intervertebral disc annular fibrosis (AF) repair. SUMMARY OF BACKGROUND DATA No repair strategies for correcting annular defects in lumbar discectomy have been clinically well recognized. Exogenous supplementation of regenerative materials to fill defects is a minimally invasive way to restore compromised mechanical properties. The injected materials, most commonly gelatin-based materials with cross-linking agents, serve as sealants and as a scaffold for incorporating biomaterials for augmentation. However, cytotoxicity of hydrogel crosslinking agents is of concern in developing viable materials. METHODS This in vitro experimental study evaluated a newly developed gelatin-based hydrogel for intervertebral disc AF repair. Mechanical strength was augmented by γ-PGA, and 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDC) was used for material crosslinking. Isolated bovine tail intervertebral discs (IVDs) were used to test the hydrogel, and hydrogel surface monolayer AF cell culture was used to investigate efficacy in hydrogel constructs of different EDC concentrations. Cell metabolic activity was evaluated with Alamar blue assay, cell viability assay with live/dead stain, and sulfated glycosaminoglycan (GAG) and double strain DNA were quantified to evaluate proliferation of implanted cells and synthesis of extracellular matrix (ECM) proteins. RESULTS EDC concentrations from 10 to 40 mM resulted in significant decreases in AF cell proliferation without obvious influence on cell viability. Higher EDC concentrations resulted in decreased percentage of Alamar blue reduction and GAG and DNA concentration, but did not affect GAG/DNA and live-dead ratios. Degradation tests revealed that higher EDC concentrations decreased the hydrogel degradation rate. CONCLUSION The developed gelatin-poly (γ-PGA) hydrogel with 20 mM EDC concentration provides an effective gap-filling biomaterial with good cytocompatibility, suggesting substantial promise for use as a sealant for small AF defects.Level of Evidence: N/A.
Collapse
|
21
|
Zhou H, Lu H. Advances in the Development of Anti-Adhesive Biomaterials for Tendon Repair Treatment. Tissue Eng Regen Med 2021; 18:1-14. [PMID: 33150560 PMCID: PMC7862451 DOI: 10.1007/s13770-020-00300-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Peritendinous adhesion that simultaneous with tendon healing link the healing tendon to the surrounding tissue. It results in functional disability, and has a significant adverse impact on health as well as social and economic development. METHODS Based on a search in the PubMed and Web of Science database, the research articles were screened by their time, main idea, impact factor index, while the ones with no credibility were excluded. Afterwards, we go through the analysis of the reliability and characteristics of the results were further screened from selected articles. RESULTS A total of 17 biomaterials used to evaluate the adhesion mechanism and the properties of the material were found. All of these biomaterials contained randomized controlled studies and detailed descriptions of surgical treatment that support the reliability of their results which indicates that biomaterials act as barriers to prevent the formation of adhesion, and most of them exhibit satisfactory biocompatibility, biodegradability or selective permeability. Moreover, a few had certain mechanical strength, anti-inflammatory, or carrier capacities. However, there still existed some defects, such as time, technology, clinical trials, material targeting and different measurement standards which also lowered the reliability of their results. CONCLUSION In future, anti-adhesion biomaterials should focus on affordable raw materials with wide sources, and the production process should be simplified, in this way, the versatility and targeting of materials will be improved.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China.
| |
Collapse
|
22
|
Indurkar A, Pandit A, Jain R, Dandekar P. Plant based cross-linkers for tissue engineering applications. J Biomater Appl 2020; 36:76-94. [PMID: 33342347 DOI: 10.1177/0885328220979273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Utility of plant-based materials in tissue engineering has exponentially increased over the years. Recent efforts in this area have been focused on substituting synthetic cross-linkers with natural ones derived from biological sources. These cross-linkers are essentially derived from the vegetative components of plants therefore suitably categorised as 'green' and renewable materials. Utilization of plant based cross-linkers in scaffolds and hydrogels offers several advantages compared to the synthetic ones. Natural compounds, like ferulic acid and genipin, when incorporated into scaffolds can promote cellular proliferation and growth, by regulation of growth factors. They participate in crucial activities, thus providing impetus for cell growth, function, differentiation and angiogenesis. Several natural compounds inherently possess anti-microbial, antioxidant and anti-inflammatory effects, which enhance the inherent characteristics of the scaffolds. Versatility of natural cross-linkers can be exploited for diverse applications. Integrating such potent molecules can enable the scaffold to display relevant characteristics for each function. This review article focuses on the recent developments with plant based cross-linkers that are employed for scaffold synthesis and their applications, which may be explored to synthesize scaffolds suitable for diverse biomedical applications.
Collapse
Affiliation(s)
- Abhishek Indurkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ashish Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
23
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
24
|
Crosslinking Collagen Constructs: Achieving Cellular Selectivity Through Modifications of Physical and Chemical Properties. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196911] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Collagen-based constructs have emerged in recent years as ideal candidates for tissue engineering implants. For many biomedical applications, collagen is crosslinked in order to improve the strength, stiffness and stability of the construct. However, the crosslinking process may also result in unintended changes to cell viability, adhesion or proliferation on the treated structures. This review provides a brief overview of some of both the most commonly used and novel crosslinkers used with collagen, and suggests a framework by which crosslinking methods can be compared and selected for a given tissue engineering application.
Collapse
|
25
|
Ahn S, Chantre CO, Ardoña HAM, Gonzalez GM, Campbell PH, Parker KK. Biomimetic and estrogenic fibers promote tissue repair in mice and human skin via estrogen receptor β. Biomaterials 2020; 255:120149. [PMID: 32521331 PMCID: PMC9812367 DOI: 10.1016/j.biomaterials.2020.120149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
The dynamic changes in estrogen levels throughout aging and during the menstrual cycle influence wound healing. Elevated estrogen levels during the pre-ovulation phase accelerate tissue repair, whereas reduced estrogen levels in post-menopausal women lead to slow healing. Although previous reports have shown that estrogen may potentiate healing by triggering the estrogen receptor (ER)-β signaling pathway, its binding to ER-α has been associated with severe collateral effects and has therefore limited its use as a therapeutic agent. To this end, soy phytoestrogens, which preferentially bind to the ER-β, are currently being explored as a safer therapeutic alternative to estrogen. However, the development and evaluation of phytoestrogen-based materials as local ER-β modulators remains largely unexplored. Here, we engineered biomimetic and estrogenic nanofiber wound dressings built from soy protein isolate (SPI) and hyaluronic acid (HA) using immersion rotary jet spinning. These engineered scaffolds were shown to successfully recapitulate the native dermal architecture, while delivering an ER-β-triggering phytoestrogen (genistein). When tested in ovariectomized mouse and ex vivo human skin tissues, HA/SPI scaffolds outperformed controls (no treatment or HA only scaffolds) towards promoting cutaneous tissue repair. These improved healing outcomes were prevented when the ER-β pathway was genetically or chemically inhibited. Our findings suggest that estrogenic fibrous scaffolds facilitate skin repair by ER-β activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Kevin Kit Parker
- Corresponding author: Kevin Kit Parker, 29 Oxford St. (Rm. 321) Cambridge, MA, 02138, Tel: (617) 495-2850, Fax: (617) 495-9837,
| |
Collapse
|
26
|
Beghetto V, Gatto V, Conca S, Bardella N, Buranello C, Gasparetto G, Sole R. Development of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydr Polym 2020; 249:116810. [PMID: 32933659 DOI: 10.1016/j.carbpol.2020.116810] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
First example of the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) as cross-linking agent for the development of carboxymethyl cellulose (CMC) films for food packaging is reported. Influence of different wt % of DMTMM and glycerol on the physical-mechanical properties of CMC films was investigated. The presence of DMTMM effectively improved moisture uptake, moisture content, water vapour permeability, water solubility of the films, oil resistance together with good biodegradability. Best compromise between high water resistance, vapour permeability and mechanical properties was accomplished with 5 wt % DMTMM and 50 wt % glycerol giving tensile strength and elongation at break of 52.25 ± 4.33 and 37.32 ± 2.04 respectively. DSC, TGA and SEM analysis further confirmed CMC cross-linking by DMTMM. All films prepared showed low opacity and high transparencies. Therefore, data reported show that DMTMM can efficiently cross-link CMC to produce films for food packaging.
Collapse
Affiliation(s)
- Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Vanessa Gatto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Silvia Conca
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Noemi Bardella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Chiara Buranello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Giulia Gasparetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| |
Collapse
|
27
|
Lu T, Hu H, Li Y, Jiang Q, Su J, Lin H, Xiao Y, Zhu X, Zhang X. Bioactive scaffolds based on collagen filaments with tunable physico-chemical and biological features. SOFT MATTER 2020; 16:4540-4548. [PMID: 32356540 DOI: 10.1039/d0sm00233j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Native tissues such as nerve bundles, blood vessels and tendons have extracellular matrices with a characteristic linear orientation, which cannot be fully achieved with the current technology for the development of regenerative biomaterials. In this study, bioactive and oriented collagen filaments have been fabricated using a combination of wet-spinning and carbodiimide-based crosslinking. The wet-spinning techniques, including extrusion and collection rates, and their influences on collagen filaments were studied and optimized. The diameter of the attained collagen filaments can be adjusted ranging from 30 μm to 650 μm. Further characterizations, such as circular dichroism, scanning electron microscopy, small-angle X-ray scattering and Fourier transform infrared spectra analysis, showed that the native structure of the collagen was greatly preserved after the filament preparation process. The measurements of weight swelling ratio and degradation rate indicate that the crosslinking method can efficiently regulate the physico-chemical properties of collagen filaments, including water absorption and degradation behaviors. In particular, the mechanical strength of collagen filaments can be greatly improved via crosslinking. In addition, cells can adhere and spread on collagen filaments in well-aligned patterns, showing appropriate biological features. It can be concluded that the bioactive collagen filaments with tunable properties are preferable for developing tissue engineering scaffolds with characteristic orientation features. With further study of the interactions between collagen filaments and cells, this work may shed light on the development of collagen based biomaterials that would be beneficial in the field of tissue engineering.
Collapse
Affiliation(s)
- Ting Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Hong Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Yuanqi Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Qingsong Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Jinlei Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| |
Collapse
|
28
|
Cassimjee H, Kumar P, Choonara YE, Pillay V. Proteosaccharide combinations for tissue engineering applications. Carbohydr Polym 2020; 235:115932. [DOI: 10.1016/j.carbpol.2020.115932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
29
|
Sundar G, Joseph J, C P, John A, Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gayathri Sundar
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Josna Joseph
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Prabhakumari C
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Annie John
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
30
|
Coupled OPG-Fc on Decellularized Aortic Valves by EDC/NHS Attenuates Rat MSCs Calcification In Vitro. ASAIO J 2020; 65:197-204. [PMID: 29677036 DOI: 10.1097/mat.0000000000000796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Valve calcification commonly damages natural human heart valves and tissue-engineered heart valves (TEHVs), and no ideal intervention is available in clinical practice. It is increasingly considered that osteoprotegerin (OPG) inhibits vascular calcification. Herein we aimed to explore whether free OPG-Fc fusion protein or coupled OPG-Fc on decellularized aortic valves attenuates calcification. Calcification of rat bone marrow-derived mesenchymal stromal cells (MSCs) was induced by osteogenic differentiation media, and the effects of free OPG-Fc or OPG-Fc coupled on the decellularized porcine aortic heart valve leaflet scaffolds by coupling agents 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) on calcification were observed. Mineralization of the extracellular matrix, alkaline phosphatase (ALP) activity, and expression of osteoblastic markers were assessed to determine the calcification kinetics. Our results indicated that the matrix calcium content and the ALP activity, as well as the mRNA expression levels of a bone morphogenetic protein-2 (BMP-2), osteopontin (OPN), and osteocalcin (OC), of the MSCs seeded on plates with free OPG-Fc or on the OPG-Fc-coupled scaffolds decreased compared with their control MSCs without coupled OPG-Fc. The results suggest that both free and immobilized OPG-Fc on the decellularized aortic valve scaffolds by EDC/NHS can attenuate the calcification of MSCs induced by osteogenic differentiation media, implying that OPG-Fc might be a new treatment or prevention strategy for the calcification of natural human heart valves and TEHVs in the future.
Collapse
|
31
|
Lin W, Lan W, Wu Y, Zhao D, Wang Y, He X, Li J, Li Z, Luo F, Tan H, Fu Q. Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration. Regen Biomater 2020; 7:19-27. [PMID: 32440358 PMCID: PMC7233617 DOI: 10.1093/rb/rbz031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
A green fabrication process (organic solvent-free) of artificial scaffolds is required in tissue engineering field. In this work, a series of aligned three-dimensional (3D) scaffolds are made from biodegradable waterborne polyurethane (PU) emulsion via directional freeze-drying method to ensure no organic byproducts. After optimizing the concentration of polymer in the emulsion and investigating different freezing temperatures, an aligned PUs scaffold (PU14) generated from 14 wt% polymer content and processed at -196°C was selected based on the desired oriented porous structure (pore size of 32.5 ± 9.3 μm, porosity of 92%) and balanced mechanical properties both in the horizontal direction (strength of 41.3 kPa, modulus of 72.3 kPa) and in the vertical direction (strength of 45.5 kPa, modulus of 139.3 kPa). The response of L929 cells and the regeneration of muscle tissue demonstrated that such pure material-based aligned 3D scaffold can facilitate the development of orientated cells and anisotropic tissue regeneration both in vitro and in vivo. Thus, these pure material-based scaffolds with ordered architecture have great potentials in tissue engineering for biological anisotropic tissue regeneration, such as muscle, nerve, spinal cord and so on.
Collapse
Affiliation(s)
- Weiwei Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wanling Lan
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Yingke Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Daiguo Zhao
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Yanchao Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Aluminosilicate Nanocomposite on Genosensor: A Prospective Voltammetry Platform for Epidermal Growth Factor Receptor Mutant Analysis in Non-small Cell Lung Cancer. Sci Rep 2019; 9:17013. [PMID: 31745155 PMCID: PMC6863915 DOI: 10.1038/s41598-019-53573-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm−1 to 1650 cm−1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M−1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
Collapse
|
33
|
Jafari A, Hassanajili S, Azarpira N, Bagher Karimi M, Geramizadeh B. Development of thermal-crosslinkable chitosan/maleic terminated polyethylene glycol hydrogels for full thickness wound healing: In vitro and in vivo evaluation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Meloni MM, Barton S, Kaski JC, Song W, He T. An improved synthesis of a cyclopropene-based molecule for the fabrication of bioengineered tissues via copper-free click chemistry. J Appl Biomater Funct Mater 2019; 17:2280800019844746. [PMID: 31223071 DOI: 10.1177/2280800019844746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Since its introduction in the field of biological imaging, the use of copper-free click chemistry has been extended to produce improved materials for vascular surgery, ophthalmology, environmental, and automotive applications. This wide applicability suggests that larger quantities of the chemical reagents for copper-free click chemistry will be required in the future. However, the large-scale synthesis of such chemicals has been barely investigated. A possible reason is the shortage of reliable synthetic protocols to obtain large quantities of these building blocks. We therefore present in this paper an improved synthetic protocol to obtain a cyclopropene-based carbonate, a key building block for the well-known copper-free click chemistry. METHOD Our protocol builds upon an already available method to obtain a cyclopropene-based carbonate. When scaled up, several parameters of this method were changed in order to obtain an improved yield. First, the use of lower temperatures and slower addition rates of the chemicals avoided the formation of detrimental hotspots in the reaction system. Second, the use of less hygroscopic solvents minimized the decomposition of the cyclopropene carbonate. Finally, chromatographic purifications were minimized and improved by using deactivated silica. RESULTS We obtained the compound (2-methylcycloprop-2-en-1-yl)methyl (4-nitrophenyl) carbonate, a key building block for copper-free click chemistry, in an unprecedented 60% overall yield on a six-gram scale. CONCLUSIONS Our improved synthetic protocol demonstrates the potential of large-scale production of improved materials using click chemistry, with potential future applications in the fields of molecular imaging, vascular surgery, ophthalmology, and theranostics.
Collapse
Affiliation(s)
- Marco M Meloni
- 1 The Cardiology Academy Group, St George's University of London, London, UK.,2 School of Pharmacy and Chemistry, Kingston University, London, UK.,3 UCL Centre for Biomaterials, University College London, London, UK
| | - Stephen Barton
- 2 School of Pharmacy and Chemistry, Kingston University, London, UK
| | - Juan C Kaski
- 1 The Cardiology Academy Group, St George's University of London, London, UK
| | - Wenhui Song
- 3 UCL Centre for Biomaterials, University College London, London, UK
| | - Taigang He
- 1 The Cardiology Academy Group, St George's University of London, London, UK.,4 Royal Brompton Hospital, Imperial College London, London, UK
| |
Collapse
|
35
|
Bazrafshan Z, Stylios GK. Spinnability of collagen as a biomimetic material: A review. Int J Biol Macromol 2019; 129:693-705. [DOI: 10.1016/j.ijbiomac.2019.02.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
|
36
|
Acevedo CA, Sánchez E, Orellana N, Morales P, Olguín Y, Brown DI, Enrione J. Re-Epithelialization Appraisal of Skin Wound in a Porcine Model Using a Salmon-Gelatin Based Biomaterial as Wound Dressing. Pharmaceutics 2019; 11:pharmaceutics11050196. [PMID: 31027353 PMCID: PMC6571591 DOI: 10.3390/pharmaceutics11050196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
The design of new functional materials for skin tissue engineering is an area of constant research. In this work, a novel wound-dressing biomaterial with a porous structure, previously formulated using salmon-gelatin as main component (called salmon-gelatin biomaterial (SGB)), was tested in vivo using pigs as skin wound models. Four weeks after cutaneous excision and implantation in the animals, the healing process did not show apparent symptoms of inflammation or infection. Interestingly, the temporal evolution of wound size from 100% to around 10% would indicate a faster recovery when SGB was compared against a commercial control. Histological analysis established that wounds treated with SGB presented similar healing and epithelialization profiles with respect to the commercial control. Moreover, vascularized granulation tissue and epithelialization stages were clearly identified, indicating a proliferation phase. These results showed that SGB formulation allows cell viability to be maintained. The latter foresees the development of therapeutic alternatives for skin repair based on SGB fabricated using low cost production protocols.
Collapse
Affiliation(s)
- Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Patricio Morales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Yusser Olguín
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Donald I Brown
- Instituto de Biología, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile.
| | - Javier Enrione
- Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
| |
Collapse
|
37
|
Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:941-954. [PMID: 30606606 DOI: 10.1016/j.msec.2018.11.081] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.
Collapse
|
38
|
Séon-Lutz M, Couffin AC, Vignoud S, Schlatter G, Hébraud A. Electrospinning in water and in situ crosslinking of hyaluronic acid / cyclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr Polym 2018; 207:276-287. [PMID: 30600010 DOI: 10.1016/j.carbpol.2018.11.085] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Hyaluronic acid (HA) is widely investigated due to its high potential for wound dressing applications. The fabrication of biomimetic HA-based scaffolds by electrospinning is thus extensively studied. However, HA is often dissolved in toxic organic solvents to allow the efficient production of electrospun nanofibers. Indeed, although HA is soluble in water, its ionic nature leading to long-range electrostatic interactions and the presence of counter ions induce a dramatic increase of the viscosity of aqueous HA solutions without insuring enough chain entanglements necessary for a stable and efficient electrospinning. In this study, biocompatible insoluble HA-based nanofibers were fabricated by electrospinning in pure water. To this end, poly(vinyl alcohol) (PVA) was added as a carrier polymer and it was found that the addition of hydroxypropyl-βcyclodextrin (HPβCD) stabilized the process of electrospinning and led to the efficient formation of uniform nanofibrous scaffolds. An in situ crosslinking process of the scaffolds is also proposed, insuring a whole fabrication process without any toxicity. Furthermore, the beneficial presence of HPβCD in the HA-based scaffolds paves the way for wound dressing applications with controlled drug encapsulation-release properties. As a proof of concept, naproxen (NAP), a non-steroidal anti-inflammatory drug was chosen as a model drug. NAP was impregnated into the scaffolds either in aqueous solution or under supercritical CO2. The resulting functional scaffolds showed a regular drug release profile along several days without losing the fibrous structure. This study proposes a simple approach to form stable HA-based nanofibrous scaffolds embedding HPβCD using water as the only solvent, enabling the development of safe functional wound dressings.
Collapse
Affiliation(s)
- Morgane Séon-Lutz
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Anne-Claude Couffin
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Séverine Vignoud
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Anne Hébraud
- ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
39
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
40
|
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. MATERIALS 2018; 11:ma11071116. [PMID: 29966303 PMCID: PMC6073924 DOI: 10.3390/ma11071116] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising approach to repair tendon and muscle when natural healing fails. Biohybrid constructs obtained after cells’ seeding and culture in dedicated scaffolds have indeed been considered as relevant tools for mimicking native tissue, leading to a better integration in vivo. They can also be employed to perform advanced in vitro studies to model the cell differentiation or regeneration processes. In this review, we report and analyze the different solutions proposed in literature, for the reconstruction of tendon, muscle, and the myotendinous junction. They classically rely on the three pillars of tissue engineering, i.e., cells, biomaterials and environment (both chemical and physical stimuli). We have chosen to present biomimetic or bioinspired strategies based on understanding of the native tissue structure/functions/properties of the tissue of interest. For each tissue, we sorted the relevant publications according to an increasing degree of complexity in the materials’ shape or manufacture. We present their biological and mechanical performances, observed in vitro and in vivo when available. Although there is no consensus for a gold standard technique to reconstruct these musculo-skeletal tissues, the reader can find different ways to progress in the field and to understand the recent history in the choice of materials, from collagen to polymer-based matrices.
Collapse
|
41
|
Patel JM, Jackson RC, Schneider GL, Ghodbane SA, Dunn MG. Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:75. [PMID: 29808272 DOI: 10.1007/s10856-018-6056-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Collagen-based scaffolds are extensively used in biomaterials and tissue engineering applications. These scaffolds have shown great biocompatibility and versatility, but their relatively low mechanical properties may limit use in orthopaedic load-bearing applications. Moreover, terminal sterilization with gamma irradiation, as is commonly performed with commercial devices, presents concerns over structural integrity and enzymatic stability. Therefore, the goal of this study was to test the hypothesis that EDC/NHS cross-linking (10 mM/5 mM) can protect collagen-hyaluronan sponges from the damaging effects of gamma irradiation. Specifically, we evaluated compressive and tensile mechanical properties, enzymatic stability, porosity and pore size, and swelling ratio. Ultimate tensile strength and elastic modulus exhibited increases (168.5 and 245.8%, respectively) following irradiation, and exhibited over tenfold increases (1049.2 and 1270.6%, respectively) following cross-linking. Irradiation affected pore size (38.4% decrease), but cross-linking prior to irradiation resulted in only a 17.8% decrease. Cross-linking also showed an offsetting effect on the equilibrium modulus, enzymatic stability, and swelling ratio of sponges. These results suggest that carbodiimide cross-linking of collagen-hyaluronan sponges can mitigate the structural damage typically experienced during gamma irradiation, warranting their use in tissue engineering applications.
Collapse
Affiliation(s)
- Jay M Patel
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB 424, New Brunswick, NJ, 08901, USA.
- Department of Biomedical Engineering, Rutgers-The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Ryan C Jackson
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB 424, New Brunswick, NJ, 08901, USA
| | - Greta L Schneider
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB 424, New Brunswick, NJ, 08901, USA
| | - Salim A Ghodbane
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB 424, New Brunswick, NJ, 08901, USA
- Department of Biomedical Engineering, Rutgers-The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Michael G Dunn
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB 424, New Brunswick, NJ, 08901, USA.
- Department of Biomedical Engineering, Rutgers-The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
42
|
Lima AC, Cunha C, Carvalho A, Ferreira H, Neves NM. Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13839-13850. [PMID: 29614225 DOI: 10.1021/acsami.8b01432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Arthritic diseases are disabling conditions affecting millions of patients worldwide. Pro-inflammatory cytokines, particularly interleukin-6 (IL-6), plays a crucial role in inflammation and cartilage destruction. Although the beneficial effects of antibody therapy, its efficacy is limited. Therefore, this work proposes the immobilization of antibodies at the surface of biodegradable polymeric nanoparticles (NPs) to capture and neutralize IL-6. Our system is intended to protect, extend and enhance the therapeutic efficacy after delivery. Chitosan-hyaluronic acid NPs are synthesized as a stable monodisperse population. After determining the maximum immobilization capacity (10 μg/mL), the capture ability was confirmed. Biological assays demonstrate the NPs cytocompatibility with human articular chondrocytes (hACs) and human macrophages. hACs stimulated with macrophage conditioned medium shows the beneficial role of IL-6 capture and neutralization. Biofunctionalized NPs exhibit a prolonged action and stronger efficacy than the free antibody. In conclusion, this system can be an effective and long lasting treatment for arthritic diseases.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
| | - Cristina Cunha
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Agostinho Carvalho
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Helena Ferreira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
| | - Nuno M Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark 4805-017 Barco, Guimarães , Portugal
| |
Collapse
|
43
|
Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen. Sci Rep 2018; 8:3337. [PMID: 29463865 PMCID: PMC5820288 DOI: 10.1038/s41598-018-21685-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/08/2018] [Indexed: 01/05/2023] Open
Abstract
This study presents the development of an efficient procedure for covalently immobilizing collagen molecules on AVS-functionalized Ti-6Al-4V samples, and the assessment of the survival and proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile functionalization technique that allows obtaining a high density of active amine groups on the surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning protocol is developed for the removal of the excess of carbodiimide from the samples. The results demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the optimized protocol, increases the number of viable cells present on the material. Consequently, AVS in combination with the carbodiimide chemistry appears as a robust method for the immobilization of proteins and, for the first time, it is shown that it can be used to enhance the biological response to the material.
Collapse
|
44
|
Bazaid A, Neumayer SM, Sorushanova A, Guyonnet J, Zeugolis D, Rodriguez BJ. Non-destructive determination of collagen fibril width in extruded collagen fibres by piezoresponse force microscopy. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa85ec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Tsekoura EK, Helling AL, Wall JG, Bayon Y, Zeugolis DI. Battling bacterial infection with hexamethylene diisocyanate cross-linked and Cefaclor-loaded collagen scaffolds. Biomed Mater 2017. [DOI: 10.1088/1748-605x/aa6de0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Shepherd J, Bax D, Best S, Cameron R. Collagen-Fibrinogen Lyophilised Scaffolds for Soft Tissue Regeneration. MATERIALS 2017; 10:ma10060568. [PMID: 28772927 PMCID: PMC5541296 DOI: 10.3390/ma10060568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023]
Abstract
A significant body of research has considered collagen as a scaffold material for soft tissue regeneration. The main structural component of extra-cellular matrix (ECM), collagen’s advantages over synthetic polymers are numerous. However, for applications where higher stiffness and stability are required, significant cross-linking may affect bioactivity. A carbodiimide (EDC) cross-linking route consumes carboxylate groups that are key to collagen’s essential cell recognition motifs (GxOGER). Fibrinogen was considered as a promising additive as it plays a key role in the process of wound repair and contains RGD integrin binding sites which bind to a variety of cells, growth factors and cytokines. Fibrinogen’s binding sites however, also contain the same carboxylate groups as collagen. We have successfully produced highly interconnected, porous collagen-fibrinogen scaffolds using a lyophilisation technique and micro-computed tomography demonstrated minimal influence of either fibrinogen content or cross-linking concentration on the scaffold structure. The specific biological effect of fibrinogen additions into cross-linked collagen are considered by using films as a model for the struts of bulk scaffolds. By considering various additions of fibrinogen to the collagen film with increasing degrees of cross-linking, this study demonstrates a significant biological advantage with fibrinogen addition across the cross-linking concentrations typically applied to collagen-based scaffolds.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
| | - Daniel Bax
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
| | - Serena Best
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
| |
Collapse
|
47
|
Bax DV, Davidenko N, Gullberg D, Hamaia SW, Farndale RW, Best SM, Cameron RE. Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomater 2017; 49:218-234. [PMID: 27915017 DOI: 10.1016/j.actbio.2016.11.059] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 01/31/2023]
Abstract
Research on the development of collagen constructs is extremely important in the field of tissue engineering. Collagen scaffolds for numerous tissue engineering applications are frequently crosslinked with 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride (EDC) in the presence of N-hydroxy-succinimide (NHS). Despite producing scaffolds with good biocompatibility and low cellular toxicity the influence of EDC/NHS crosslinking on the cell interactive properties of collagen has been overlooked. Here we have extensively studied the interaction of model cell lines with collagen I-based materials after crosslinking with different ratios of EDC in relation to the number of carboxylic acid residues on collagen. Divalent cation-dependent cell adhesion, via integrins α1β1, α2β1, α10β1 and α11β1, were sensitive to EDC crosslinking. With increasing EDC concentration, this was replaced with cation-independent adhesion. These results were replicated using purified recombinant I domains derived from integrin α1 and α2 subunits. Integrin α2β1-mediated cell spreading, apoptosis and proliferation were all heavily influenced by EDC crosslinking of collagen. Data from this rigorous study provides an exciting new insight that EDC/NHS crosslinking is utilising the same carboxylic side chain chemistry that is vital for native-like integrin-mediated cell interactions. Due to the ubiquitous usage of EDC/NHS crosslinked collagen for biomaterials fabrication this data is essential to have a full understanding in order to ensure optimized collagen-based material performance. STATEMENT OF SIGNIFICANCE Carbodiimide stabilised collagen is employed extensively for the fabrication of biologically active materials. Despite this common usage, the effect of carbodiimide crosslinking on cell-collagen interactions is unclear. Here we have found that carbodiimide crosslinking of collagen inhibits native-like, whilst increasing non-native like, cellular interactions. We propose a mechanistic model in which carbodiimide modifies the carboxylic acid groups on collagen that are essential for cell binding. As such we feel that this research provides a crucial, long awaited, insight into the bioactivity of carbodiimide crosslinked collagen. Through the ubiquitous use of collagen as a cellular substrate we feel that this is fundamental to a wide range of research activity with high impact across a broad range of disciplines.
Collapse
|
48
|
Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B 2016; 4:6484-6496. [PMID: 27928505 PMCID: PMC5123637 DOI: 10.1039/c6tb00807k] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/20/2016] [Indexed: 12/28/2022]
Abstract
The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan , 2350 Hayward Ave , Ann Arbor , MI 48109 , USA
| | - S M Best
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| | - R E Cameron
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| |
Collapse
|
49
|
Davidenko N, Schuster CF, Bax DV, Farndale RW, Hamaia S, Best SM, Cameron RE. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:148. [PMID: 27582068 PMCID: PMC5007264 DOI: 10.1007/s10856-016-5763-9] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/03/2016] [Indexed: 05/17/2023]
Abstract
Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering applications.
Collapse
Affiliation(s)
- Natalia Davidenko
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Carlos F Schuster
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Daniel V Bax
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
| | - Samir Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
| | - Serena M Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ruth E Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| |
Collapse
|