1
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Zvicer J, Milosevic M, Medic A, Novak S, Obradovic B. Development of novel osteochondral scaffolds and related in vitroenvironment with the aid of chemical engineering principles. Biomed Mater 2024; 19:055044. [PMID: 39094620 DOI: 10.1088/1748-605x/ad6ac1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
In tissue engineering, collaboration among experts from different fields is needed to design appropriate cell scaffolds and the required three-dimensional environment. Osteochondral tissue engineering is particularly challenging due to the need to provide scaffolds that imitate structural and compositional differences between two neighboring tissues, articular cartilage and bone, and the required complex biophysical environments for cultivating such scaffolds. This work focuses on two key objectives: first, to develop bilayered osteochondral scaffolds based on gellan gum and bioactive glass and, second, to create a biomimetic environment for scaffold characterization by designing and utilizing novel dual-medium cultivation bioreactor chambers. Basic chemical engineering principles were utilized to help achieve both aims. First, a simple heat transport model based on one-dimensional conduction was applied as a guideline for bilayer scaffold preparation, leading to the formation of a gelatinous upper part and a macroporous lower part with a thin, well-integrated interfacial zone. Second, a novel cultivation chamber was developed to be used in a dynamic compression bioreactor to provide possibilities for flow of two different media, such as chondrogenic and osteogenic. These chambers were utilized for characterization of the novel scaffolds with regard to bioactivity and stability under dynamic compression and fluid perfusion over 14 d, while flow distribution under different conditions was analyzed by a tracer method and residence time distribution analysis.
Collapse
Affiliation(s)
- Jovana Zvicer
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Mia Milosevic
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Ana Medic
- Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Sasa Novak
- Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Bojana Obradovic
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| |
Collapse
|
3
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
4
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Zhao Q, Zhang Y, Xiao L, Lu H, Ma Y, Liu Q, Wang X. Surface engineering of titania nanotubes incorporated with double-layered extracellular vesicles to modulate inflammation and osteogenesis. Regen Biomater 2021; 8:rbab010. [PMID: 34211726 PMCID: PMC8240597 DOI: 10.1093/rb/rbab010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Titania nanotubes (TNT) generated on titanium implant are emerged as important modification technique to facilitate bone regeneration. Mesenchymal stem cells (MSCs)-derived exosomes are membrane bound extracellular vesicles (EVs), which play an important role in tissue regeneration. The objective of this study was to generate an EVs hybrid TNT aiming at regulating inflammation, MSCs recruitment and osteogenesis. We isolated EVs from MSCs (MSCs EVs) and 3-day osteogenically differentiated MSCs (3d EVs). MSC EVs and 3d EVs exhibited round morphology under TEM, which also showed robust internalization by human bone marrow derived MSCs (hBMSCs). Next, we fabricated 3d EVs/MSC EVs hybrid TNT. When inflammatory macrophages were co-cultured with EVs hybrid TNT, the gene and protein expression of inflammatory cytokine were significantly reduced. Macrophage morphology was also examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Further migratory ability study using hBMSCs indicated significant enhancement of MSCs migration in EVs hybrid TNT. In addition, we further demonstrated significant increase of osteogenic differentiation of hBMSCs in EVs hybrid TNT. This study suggests that EVs hybrid TNT may serve as a viable therapeutic approach to enhance osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
- The Australia−China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Qi Liu
- Department of Periodontology, Stomatological Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
- The Australia−China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
6
|
Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 2021; 8:8149-8170. [PMID: 32776030 DOI: 10.1039/d0tb00688b] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue (e.g., the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient (e.g., a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold-bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
7
|
Liubaviciute A, Ivaskiene T, Biziuleviciene G. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals 2020; 67:1-8. [DOI: 10.1016/j.biologicals.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
|
8
|
Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G. Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Zain Pardawala
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
9
|
Vishwakarma SK, Jaiswal J, Park K, Lakkireddy C, Raju N, Bardia A, Habeeb MA, Paspala SAB, Khan AA, Dhayal M. TiO
2
Nanoflowers on Conducting Substrates Ameliorate Effective Transdifferentiation of Human Hepatic Progenitor Cells for Long‐Term Hyperglycemia Reversal in Diabetic Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Juhi Jaiswal
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Kyung‐Hee Park
- Department of Dental Materials and Hard‐tissue Biointerface Research Center, School of DentistryChonnam National University Gwangju 61186 Republic of Korea
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Md. Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Marshal Dhayal
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
10
|
Shendi D, Marzi J, Linthicum W, Rickards A, Dolivo D, Keller S, Kauss M, Wen Q, McDevitt T, Dominko T, Schenke-Layland K, Rolle M. Hyaluronic acid as a macromolecular crowding agent for production of cell-derived matrices. Acta Biomater 2019; 100:292-305. [PMID: 31568877 DOI: 10.1016/j.actbio.2019.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Cell-derived matrices (CDMs) provide an exogenous source of human extracellular matrix (ECM), with applications as cell delivery vehicles, substrate coatings for cell attachment and differentiation, and as biomaterial scaffolds. However, commercial application of CDMs has been hindered due to the prolonged culture time required for sufficient ECM accumulation. One approach to increasing matrix deposition in vitro is macromolecular crowding (MMC), which is a biophysical phenomenon that limits the diffusion of ECM precursor proteins, resulting in increased ECM accumulation at the cell layer. Hyaluronic acid (HA), a natural MMC highly expressed in vivo during fetal development, has been shown to play a role in ECM production, but has not been investigated as a macromolecule for increasing cell-mediated ECM deposition in vitro. In the current study, we hypothesized that HA can act as a MMC, and increase cell-mediated ECM production. Human dermal fibroblasts were cultured for 3, 7, or 14 days with 0%, 0.05%, or 0.5% high molecular weight HA. Ficoll 70/400 was used as a positive control. SDS-PAGE, Sircol, and hydroxyproline assays indicated that 0.05% HA-treated cultures had significantly higher mean collagen deposition at 14 days, whereas Ficoll 70/400-treated cultures had significantly lower collagen production compared to the HA and untreated controls. However, fluorescent immunostaining of ECM proteins and quantification of mean gray values did not indicate statistically significant differences in ECM production in HA or Ficoll 70/400-treated cultures compared to untreated controls. Raman imaging (a marker-free spectral imaging method) indicated that HA increased ECM deposition in human dermal fibroblasts. These results are consistent with decreases in CDM stiffness observed in Ficoll 70/400-treated cultures by atomic force microscopy. Overall, these results indicate that there are macromolecule- and cell type- dependent effects on matrix assembly, turnover, and stiffness in cell-derived matrices. STATEMENT OF SIGNIFICANCE: Cell-derived matrices (CDMs) are versatile biomaterials with many regenerative medicine applications, including as cell and drug delivery vehicles and scaffolds for wound healing and tissue regeneration. While CDMs have several advantages, their commercialization has been limited due to the prolonged culture time required to achieve CDM synthesis in vitro. In this study, we explored the use of hyaluronic acid (HA) as a macromolecular crowder in human fibroblast cell cultures to support production of CDM biomaterials. Successful application of macromolecular crowding will allow development of human cell-derived, xeno-free biomaterials that re-capitulate the native human tissue microenvironment.
Collapse
|
11
|
Tan F, Al-Rubeai M. Customizable Implant-specific and Tissue-Specific Extracellular Matrix Protein Coatings Fabricated Using Atmospheric Plasma. Front Bioeng Biotechnol 2019; 7:247. [PMID: 31637236 PMCID: PMC6787931 DOI: 10.3389/fbioe.2019.00247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Progression in implant science has benefited from ample amount of technological contributions from various disciplines, including surface biotechnology. In this work, we successfully used atmospheric plasma to enhance the biological functions of surgical implants by coating them with extracellular matrix proteins. The developed collagen and laminin coatings demonstrate advantageous material properties. Chemical analysis by XPS and morphological investigation by SEM both suggested a robust coating. Contact angle goniometry and dissolution study in simulated body fluid (SBF) elicited increased hydrophilicity and physiological durability. Furthermore, these coatings exhibited improved biological interactions with human mesenchymal and neural stem cells (NSCs). Cell adhesion, proliferation, and differentiation proved markedly refined as shown by enzymatic detachment, flow cytometry, and ELISA data, respectively. Most importantly, using the pathway-specific PCR array, our study discovered dozens of deregulated genes during osteogenesis and neurogenesis on our newly fabricated ECM coatings. The coating-induced change in molecular profile serves as a promising clue for designing future implant-based therapy. Collectively, we present atmospheric plasma as a versatile tool for enhancing surgical implants, through customizable implant-specific and tissue-specific coatings.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otolaryngology - Head & Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin—National University of Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| | | |
Collapse
|
12
|
Zhu Y, Jiang P, Luo B, Lan F, He J, Wu Y. Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds in vivo. NANOSCALE 2019; 11:6817-6827. [PMID: 30912535 DOI: 10.1039/c8nr08614a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An inflammatory reaction initiates fracture healing and directly influences the osteoinductive effect of the magnetic hydroxyapatite (MHA) scaffold, but the underlying mechanism is yet to be elucidated. Protein corona as a real biological identity of a biomaterial significantly affects the biological function of the bone regenerative scaffold. Hence, we developed a simple and effective in vivo dynamic model for the protein corona of MHA scaffolds to predict the correlation between the inflammatory reaction and bone wound healing, as well as the underlying mechanism governing such a process. Certain proteins including proteins related to the immune response and inflammation, bone and wound healing, extracellular matrix, cell behavior, and signaling increased in the protein corona of the magnetic nanoparticle (MNP)-infiltrated scaffolds in a time-dependent manner. Moreover, the enriched proteins related to the immune response and inflammation adsorbed on the MHA scaffolds correlated well with the proteins that significantly enhanced bone wound healing, as suggested by the same variation tendency of the proteins related to bone and wound healing, and immune response and inflammation. The presence of MNPs suppressed the chronic inflammatory responses and highly promoted the acute inflammatory responses. More importantly, the activation of the acute inflammatory responses led to the recruitment of immune cells, remodeling of the extracellular matrix and even the acceleration of bone healing. The bone repair in vivo model and inflammatory cytokine in vitro model results further corroborated the critical involvement of inflammatory reaction in enhancing bone wound healing. This opens up the great potential of protein corona formation to understand the complicated mechanisms involved in immune-modulated bone wound healing.
Collapse
Affiliation(s)
- Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery. Int J Biol Macromol 2018; 118:2014-2020. [DOI: 10.1016/j.ijbiomac.2018.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
|
14
|
Tang J, Chen J, Guo J, Wei Q, Fan H. Construction and evaluation of fibrillar composite hydrogel of collagen/konjac glucomannan for potential biomedical applications. Regen Biomater 2018; 5:239-250. [PMID: 30094063 PMCID: PMC6077832 DOI: 10.1093/rb/rby018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Konjac glucomannan (KGM) is recognized as a safe material for its health-promoting benefits and thus widely used in various fields including pharmaceutical industry. In recent decades, the combination of collagen and KGM attracts more attentions for biomedical purpose, especially the hybrid films of collagen–KGM or collagen–KGM–polysaccharide. In this study, to further and deeply develop the intrinsic values of both collagen and KGM as biomaterials, a novel kind of composite hydrogel comprising collagen and KGM at a certain ratio was fabricated under mild conditions via fibrillogenesis process of the aqueous blends of collagen and KGM that experienced deacetylation simultaneously. The chemical composition, microcosmic architectures, swelling behavior, biodegradation and dynamic mechanic properties of such resulted composite hydrogels were systematically investigated. Biologic experiments, including cell culture in vitro and hypodermic implantation in vivo, were also conducted on these collagen/KGM composite hydrogels to evaluate their biologic performances. The relevant results prove that, based on collagen self-assembly behavior, this synthesis strategy is efficient to construct a composite hydrogel of collagen/KGM with improved mechanical properties, biodegradability, excellent biocompatibility and bioactivity, which are promising for potential biomedical applications such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiayuan Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Jinlin Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Jing Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
15
|
Li Y, Ye D, Li M, Ma M, Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem 2018. [DOI: 10.1002/cphc.201701294] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Dewen Ye
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Mingxi Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ming Ma
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ning Gu
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| |
Collapse
|
16
|
Ni Y, Tang Z, Yang J, Gao Y, Lin H, Guo L, Zhang K, Zhang X. Collagen structure regulates MSCs behavior by MMPs involved cell–matrix interactions. J Mater Chem B 2018; 6:312-326. [DOI: 10.1039/c7tb02377d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various scaffolds have been studied in the formation of cell niches and regulation of mesenchymal stem cells (MSCs) behaviors.
Collapse
Affiliation(s)
- Yilu Ni
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhurong Tang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jirong Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hai Lin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
17
|
Guo L, Fan Y, Kawazoe N, Fan H, Zhang X, Chen G. Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. J Mater Chem B 2018; 6:1018-1025. [DOI: 10.1039/c7tb03165c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micropatterned surface with different surface chemistries was fabricated for the direct comparison of their effect on the behaviors of hMSCs and to avoid any batch to batch variations during cell culture.
Collapse
Affiliation(s)
- Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
- Research Center for Functional Materials
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|