1
|
Cai X, Zhang S, Xiao C, Dang Z, Huang W, Xu W, Wu G. Orchestrating Macrophage and Bone Mesenchymal Stem Cells to Promote Bone Regeneration via Modulation of the Internal Surface Morphology inside 3D Printed Scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8853-8865. [PMID: 40146177 DOI: 10.1021/acs.langmuir.5c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Surface morphology has been widely used to orchestrate multicellular function. However, most studies are mainly based on two-dimensional (2D) surface morphology. Therefore, a new scaffold that could be used to design and obtain controllable internal surface morphology was fabricated to explore the effect of a micropatterned scaffold on bone repair. In this study, through the combination of three-dimensional (2D) printing and soft lithography, a controllable micropatterned poly(ε-caprolactone) scaffold was obtained, which realized the transformation from 2D micropattern research to 3D research. Pit micropatterns with morphology sizes of 0, 25, and 45 μm (Flat, P25, and P45) were constructed. In vitro, the results showed that the P25 micropattern had a better effect on the promotion of M2 polarization, inhibition of the M1 polarization of RAW264.7 cells, and promotion of the osteogenic differentiation of bone marrow stromal stem cells (BMSCs). Direct and indirect coculture models of macrophages and BMSCs were constructed to study the bone immunomodulation of the pit micropatterns. Compared with the Flat and P45 groups, the P25 group could promote the secretion of M2 markers, inhibit the secretion of M1 markers, and immunomodulate the promotion of osteogenic differentiation of BMSCs. In vivo, the results also showed that the P25 group had a lower proinflammatory effect and better performance than scaffolds without micropatterned surfaces and a bigger morphology size (the P45 group), which could regulate the immune function of macrophages, reduce the inflammatory response, and accelerate bone regeneration and repair. This work provides a new strategy for the preparation of scaffolds for bone defect regeneration.
Collapse
Affiliation(s)
- Xiayu Cai
- National Engineering Research Center for Human Tissue Restoration and Function Reconstruction, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307, Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
| | - Shaohui Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307, Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
| | - Chujie Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
- School of Biology and Biological Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, Guangdong 510641, China
| | - Zhaohui Dang
- National Engineering Research Center for Human Tissue Restoration and Function Reconstruction, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307, Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
| | - Weihua Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307, Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
- The Second Affiliated Hospital of Guangzhou Medical University, The Second Clinical Medicine School of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong 510260, China
- Department of Orthopedic Surgery, Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, No. 35, Yinquan North Road, Qingcheng District, Qingyuan, Guangdong 511518, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307, Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
- Guangdong Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology Research Center, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong 510316, China
| | - Gang Wu
- National Engineering Research Center for Human Tissue Restoration and Function Reconstruction, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2025; 39:1826-1846. [PMID: 39625224 DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
Osteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology-an emerging field of study-investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune-related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
4
|
Yuan Y, Zou M, Wu S, Liu C, Hao L. Recent advances in nanomaterials for the treatment of femoral head necrosis. Hum Cell 2024; 37:1290-1305. [PMID: 38995503 DOI: 10.1007/s13577-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.
Collapse
Affiliation(s)
- Yalin Yuan
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shuqin Wu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Congcong Liu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
6
|
Hedvičáková V, Žižková R, Buzgo M, Vištejnová L, Klein P, Hovořáková M, Bartoš M, Steklíková K, Luňáčková J, Šebová E, Paurová I, Rysová M, Filová E, Rampichová M. The Gradual Release of Alendronate for the Treatment of Critical Bone Defects in Osteoporotic and Control Rats. Int J Nanomedicine 2023; 18:541-560. [PMID: 36756052 PMCID: PMC9901358 DOI: 10.2147/ijn.s386784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose Osteoporosis is a severe health problem with social and economic impacts on society. The standard treatment consists of the systemic administration of drugs such as bisphosphonates, with alendronate (ALN) being one of the most common. Nevertheless, complications of systemic administration occur with this drug. Therefore, it is necessary to develop new strategies, such as local administration. Methods In this study, emulsion/dispersion scaffolds based on W/O emulsion of PCL and PF68 with ALN, containing hydroxyapatite (HA) nanoparticles as the dispersion phase were prepared using electrospinning. Scaffolds with different release kinetics were tested in vitro on the co-cultures of osteoblasts and osteoclast-like cells, isolated from adult osteoporotic and control rats. Cell viability, proliferation, ALP, TRAP and CA II activity were examined. A scaffold with a gradual release of ALN was tested in vivo in the bone defects of osteoporotic and control rats. Results The release kinetics were dependent on the scaffold composition and the used system of the poloxamers. The ALN was released from the scaffolds for more than 22 days. The behavior of cells cultured in vitro on scaffolds with different release kinetics was comparable. The difference was evident between cell co-cultures isolated from osteoporotic and control animals. The PCL/HA scaffold show slow degradation in vivo and residual scaffold limited new bone formation inside the defects. Nevertheless, the released ALN supported bone formation in the areas surrounding the residual scaffold. Interestingly, a positive effect of systemic administration of ALN was not proved. Conclusion The prepared scaffolds enabled tunable control release of ALN. The effect of ALN was proved in vitro and in in vivo study supported peri-implant bone formation.
Collapse
Affiliation(s)
- Věra Hedvičáková
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Radmila Žižková
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic,Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Matěj Buzgo
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic,BIOFABICS Lda, Porto, Portugal
| | - Lucie Vištejnová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic,Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Maria Hovořáková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Bartoš
- Institute of Dental Medicine, First Faculty of Medicine and General University Hospital, Prague, Czech Republic,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klára Steklíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Luňáčková
- Institute of Dental Medicine, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Eva Šebová
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Iveta Paurová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miroslava Rysová
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Eva Filová
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Michala Rampichová
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic,Correspondence: Michala Rampichová, Department of Tissue engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic, Tel +420 241 062 692, Email
| |
Collapse
|
7
|
Wang S, Gu R, Wang F, Zhao X, Yang F, Xu Y, Yan F, Zhu Y, Xia D, Liu Y. 3D-Printed PCL/Zn scaffolds for bone regeneration with a dose-dependent effect on osteogenesis and osteoclastogenesis. Mater Today Bio 2022; 13:100202. [PMID: 35036897 PMCID: PMC8753274 DOI: 10.1016/j.mtbio.2021.100202] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Polycaprolactone (PCL) is a polymer material suitable for being prepared into porous scaffolds used in bone tissue engineering, however, insufficient osteogenic ability and mechanical strength limit its application. Zinc (Zn) alloy with proper mechanical strength and osteogenesis is a promising biodegradable metal that have attracted much attention. Herein, we combined the advantages of PCL and Zn by fabricating PCL/Zn composite scaffolds with different Zn powder contents (1 wt%, 2 wt%, 3 wt%) through fused deposition modelling. The mechanical property, cytocompatibility and Zn ions release behavior of PCL/Zn scaffolds were analyzed in vitro. The osteogenesis and osteoclastogenesis properties of the scaffolds were evaluated by being implanted into Sprague-Dawley rats calvaria defect. Results showed that the PCL/Zn scaffolds exhibited improved mechanical properties and cytocompatibility compared with the pure PCL scaffolds. At 8 weeks after in vivo implantaion, the addition of Zn powder promoted new bone formation, in a dose-dependent manner. The scaffolds with 2 wt% Zn displayed the best osteogenic effect, while the osteogenic effect was slightly reduced in the scaffolds with 3 wt% Zn. In the studied Zn contents, the PCL/Zn scaffolds gradually promoted osteoclastogenesis with increasd Zn content. In the 3 wt% Zn group, TRAP-positive cells were observed on the newly formed bone edges around the scaffolds. These dose-dependent effects were verified in vitro using MC3T3-E1 and RAW264.7 cells. Finally, we revealed that Zn2+ regulated osteogenesis and osteoclastogenesis by activation of the Wnt/β-catenin and NF-κB signalling pathways, respectively.
Collapse
Affiliation(s)
- Siyi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xiao Zhao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yuqian Xu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Fanyu Yan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Dandan Xia
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| |
Collapse
|
8
|
Karimzadeh Bardeei L, Seyedjafari E, Hossein G, Nabiuni M, Majles Ara MH, Salber J. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. Int J Mol Sci 2021; 22:10332. [PMID: 34638673 PMCID: PMC8508893 DOI: 10.3390/ijms221910332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Steroid-associated osteonecrosis (SAON) is a chronic disease that leads to the destruction and collapse of bone near the joint that is subjected to weight bearing, ultimately resulting in a loss of hip and knee function. Zn2+ ions, as an essential trace element, have functional roles in improving the immunophysiological cellular environment, accelerating bone regeneration, and inhibiting biofilm formation. In this study, we reconstruct SAON lesions with a three-dimensional (3D)-a printed composite made of poly (epsilon-caprolactone) (PCL) and nanoparticulate Willemite (npW). Rabbit bone marrow stem cells were used to evaluate the cytocompatibility and osteogenic differentiation capability of the PCL/npW composite scaffolds. The 2-month bone regeneration was assessed by a Micro-computed tomography (micro-CT) scan and the expression of bone regeneration proteins by Western blot. Compared with the neat PCL group, PCL/npW scaffolds exhibited significantly increased cytocompatibility and osteogenic activity. This finding reveals a new concept for the design of a 3D-printed PCL/npW composite-based bone substitute for the early treatment of osteonecrosis defects.
Collapse
Affiliation(s)
- Latifeh Karimzadeh Bardeei
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Ghamartaj Hossein
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| | - Mohammad Hosein Majles Ara
- Photonics Laboratory, Physics Department, Kharazmi University, Tehran 15719-14911, Iran;
- Applied Science Research Centre, Kharazmi University, Tehran 15719-14911, Iran
| | - Jochen Salber
- Salber Laboratory, Centre for Clinical Research, Department of Experimental Surgery, Ruhr-Universität Bochum, 44780 Bochum, Germany;
- Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, 44892 Bochum, Germany
| |
Collapse
|
9
|
Sun Y, Liu X, Tan J, Lv D, Song W, Su R, Li L, Liu X, Ouyang L, Liao Y. Strontium ranelate incorporated 3D porous sulfonated PEEK simulating MC3T3-E1 cell differentiation. Regen Biomater 2021; 8:rbaa043. [PMID: 33732489 PMCID: PMC7947580 DOI: 10.1093/rb/rbaa043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has been used as an implant material because it has similar mechanical properties to natural bone. However, inferior osseointegration and bioinertness hamper the clinical application of PEEK. In this study, the surfaces of sulfonated three-dimensional (3D) PEEK porous structures were loaded with different concentrations of strontium ranelate, a compound commonly used in the treatment or prevention of osteoporosis by promoting bone formation and inhibiting bone resorption. Field-emission scanning electron microscopy was used to characterize the topography of the structures, elemental carbon, oxygen and strontium contents were measured by X-ray photoelectron spectroscopy, and surface zeta potentials and water-contact angle were also measured. The results indicated that strontium ranelate was successfully loaded onto the 3D porous structures. In vitro cellular results showed that strontium ranelate-treated sulfonated PEEK (SP-SR) strengthened the adhesion of MC3T3-E1 cells. The activity of alkaline phosphatase, collagen secretion and extracellular matrix mineralization deposition of MC3T3-E1 cells were also improved on the surface of SP-SR. These results indicate that SP-SR could serve a new implant candidate for surgical treatment.
Collapse
Affiliation(s)
- Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Changning District, Shanghai 200050, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Changning District, Shanghai 200050, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Wengang Song
- Graduate School of Beihua University, Beihua University, Fengman District Jilin 132013, China
| | - Rui Su
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Changning District, Shanghai 200050, China
| | - Liping Ouyang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
10
|
Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. COATINGS 2020. [DOI: 10.3390/coatings10100971] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The main aim of bone tissue engineering is to fabricate highly biocompatible, osteoconductive and/or osteoinductive biomaterials for tissue regeneration. Bone implants should support bone growth at the implantation site via promotion of osteoblast adhesion, proliferation, and formation of bone extracellular matrix. Moreover, a very desired feature of biomaterials for clinical applications is their osteoinductivity, which means the ability of the material to induce osteogenic differentiation of mesenchymal stem cells toward bone-building cells (osteoblasts). Nevertheless, the development of completely biocompatible biomaterials with appropriate physicochemical and mechanical properties poses a great challenge for the researchers. Thus, the current trend in the engineering of biomaterials focuses on the surface modifications to improve biological properties of bone implants. This review presents the most recent findings concerning surface modifications of biomaterials to improve their osteoconductivity and osteoinductivity. The article describes two types of surface modifications: (1) Additive and (2) subtractive, indicating biological effects of the resultant surfaces in vitro and/or in vivo. The review article summarizes known additive modifications, such as plasma treatment, magnetron sputtering, and preparation of inorganic, organic, and composite coatings on the implants. It also presents some common subtractive processes applied for surface modifications of the biomaterials (i.e., acid etching, sand blasting, grit blasting, sand-blasted large-grit acid etched (SLA), anodizing, and laser methods). In summary, the article is an excellent compendium on the surface modifications and development of advanced osteoconductive and/or osteoinductive coatings on biomaterials for bone regeneration.
Collapse
|
11
|
Zou W, Li X, Li N, Guo T, Cai Y, Yang X, Liang J, Sun Y, Fan Y. A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model. Regen Biomater 2020; 8:rbaa040. [PMID: 33732488 PMCID: PMC7947581 DOI: 10.1093/rb/rbaa040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Repair and reconstruction of large bone defect were often difficult, and bone substitute materials, including autogenous bone, allogenic bone and artificial bone, were common treatment strategies. The key to elucidate the clinical effect of these bone repair materials was to study their osteogenic capacity and immunotoxicological compatibility. In this paper, the mechanical properties, micro-CT imaging analysis, digital image analysis and histological slice analysis of the three bone grafts were investigated and compared after different time points of implantation in rat femur defect model. Autogenous bone and biphasic calcium phosphate particular artificial bone containing 61.4% HA and 38.6% β-tricalcium phosphate with 61.64% porosity and 0.8617 ± 0.0068 g/cm3 density (d ≤ 2 mm) had similar and strong bone repair ability, but autogenous bone implant materials caused greater secondary damage to experimental animals; allogenic bone exhibited poor bone defect repair ability. At the early stage of implantation, the immunological indexes such as Immunoglobulin G, Immunoglobulin M concentration and CD4 cells' population of allogenic bone significantly increased in compared with those of autologous bone and artificial bone. Although the repair process of artificial bone was relatively inefficient than autologous bone graft, the low immunotoxicological indexes and acceptable therapeutic effects endowed it as an excellent alternative material to solve the problems with insufficient source and secondary trauma of autogenous bone.
Collapse
Affiliation(s)
- Wen Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.,Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Na Li
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Tianwei Guo
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yongfu Cai
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Xiaoqin Yang
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.,Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| |
Collapse
|