1
|
Wu J, Feng R, Wang R, He J. Impact of disease duration on systemic clinical profile in Sjogren's syndrome. Arthritis Res Ther 2025; 27:39. [PMID: 39994738 PMCID: PMC11849184 DOI: 10.1186/s13075-025-03490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Primary Sjogren's Syndrome (pSS) is a systemic autoimmune disorder characterized by lymphocyte infiltration of the exocrine glands. Disease duration plays a pivotal role in evaluating the development of SS. In this study, we aimed to clarify the clinical manifestations of pSS across various stages of its progression, thereby offering critical insights for early diagnosis and targeted management strategies for Sjogren's Syndrome. METHODS We conducted a retrospective analysis involving 3,978 patients with primary Sjogren's Syndrome (mean [SD] age: 53.1[24] years) from Peking University People's Hospital between January 2015 and December 2022. We classified patients into five distinct groups based on the duration of the syndrome: T0 (≤ 1 year), T1 (> 1 year, ≤ 5 years), T2 (> 5 years, ≤ 10 years), T3 (> 10 years, ≤ 20 years), and T4 (> 20 years). RESULTS We observed a statistically significant increase in the percentage of pSS patients with white blood cell (WBC) decrease, specifically: T0 (9.23%), T1 (15.40%), T2 (22.62%), T3 (20.22%), T4 (26.45%). The decreases in hemoglobin (HGB) and platelet (PLT) were also robustly associated with extended disease duration (p < 0.0001). Simultaneously, systemic involvements aggravated with disease progression as incidence rates of skin, joint, lung, and nervous system were strikingly increased in each group. The findings also indicated that patients with long-term pSS exhibit a higher likelihood of developing comorbid conditions, such as diabetes and tumors. In summary, disease duration serves as a crucial determinant for the prognosis of patients with pSS. CONCLUSIONS Therefore, early identification of symptoms and initiation of therapies are imperative for mitigating the risk of significant complications in pSS patients.
Collapse
Affiliation(s)
- Jingchun Wu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Ruiling Feng
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Ruoyi Wang
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Jing He
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
2
|
Nayar S, Turner JD, Asam S, Fennell E, Pugh M, Colafrancesco S, Berardicurti O, Smith CG, Flint J, Teodosio A, Iannizzotto V, Gardner DH, van Roon J, Korsunsky I, Howdle D, Frei AP, Lassen KG, Bowman SJ, Ng WF, Croft AP, Filer A, Fisher BA, Buckley CD, Barone F. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome. Nat Commun 2025; 16:5. [PMID: 39747819 PMCID: PMC11697438 DOI: 10.1038/s41467-024-54686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify a pericyte/mural cell state with potential immunological functions. The identification of cellular properties associated with these structures and the molecular and functional interactions identified by this analysis may provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Collapse
Affiliation(s)
- Saba Nayar
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Saba Asam
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Eanna Fennell
- School of Medicine & HRI & Bernal Institute, University of Limerick, Limerick, Ireland
| | - Matthew Pugh
- Department of Immunology and Immunotherapy, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | | | - Onorina Berardicurti
- Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, Università Campus Bio-Medico, Rome, and Immunorheumatology Unit, Fondazione Policlinico Universitario Campus Bio Medico, Rome, Italy
| | - Charlotte G Smith
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joe Flint
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Ana Teodosio
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Valentina Iannizzotto
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - David H Gardner
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joel van Roon
- Department of Rheumatology & Clinical Immunology/Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn Howdle
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon J Bowman
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wan-Fai Ng
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Adam P Croft
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Benjamin A Fisher
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Francesca Barone
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK.
- Candel Therapeutics, Needham, MA, USA.
| |
Collapse
|
3
|
Barcelos F, Brás-Geraldes C, Martins C, Papoila AL, Monteiro R, Cardigos J, Madeira N, Alves N, Vaz-Patto J, Cunha-Branco J, Borrego LM. Added value of lymphocyte subpopulations in the classification of Sjögren's syndrome. Sci Rep 2023; 13:6872. [PMID: 37106029 PMCID: PMC10140065 DOI: 10.1038/s41598-023-31782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Sjögren's Syndrome (SjS) is a chronic systemic immune-mediated inflammatory disease characterized by lymphocytic infiltration and consequent lesion of exocrine glands. SjS diagnosis and classification remains a challenge, especially at SjS onset, when patients may have milder phenotypes of the disease or uncommon presentations. New biomarkers are needed for the classification of SjS, thus, we aimed to evaluate the added-value of lymphocyte subpopulations in discriminating SjS and non-Sjögren Sicca patients. Lymphocyte subsets from 62 SjS and 63 Sicca patients were characterized by flow cytometry. The 2002 AECG and the 2016 ACR/EULAR SjS classification criteria were compared with clinical diagnosis. The added discriminative ability of joining lymphocytic populations to classification criteria was assessed by the area under the Receiver-Operating-Characteristic Curve (AUC). Considering clinical diagnosis as the gold-standard, we obtained an AUC = 0.952 (95% CI: 0.916-0.989) for AECG and an AUC = 0.921 (95% CI: 0.875-0.966) for ACR/EULAR criteria. Adding Tfh and Bm1 subsets to AECG criteria, performance increased, attaining an AUC = 0.985 (95% CI: 0.968-1.000) (p = 0.021). Th1/Breg-like CD24hiCD27+ and switched-memory B-cells maximized the AUC of ACR/EULAR criteria to 0.953 (95% CI: 0.916-0.990) (p = 0.043). Our exploratory study supports the potential use of lymphocyte subpopulations, such as unswitched memory B cells, to improve the performance of classification criteria, since their discriminative ability increases when specific subsets are added to the criteria.
Collapse
Affiliation(s)
- Filipe Barcelos
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal.
- Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.
| | - Carlos Brás-Geraldes
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Estatística E Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Martins
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana-Luísa Papoila
- Centro de Estatística E Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
- NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ricardo Monteiro
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Cardigos
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António Dos Capuchos, Lisbon, Portugal
| | - Nathalie Madeira
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Nuno Alves
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António Dos Capuchos, Lisbon, Portugal
- Ophthalmology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - José Vaz-Patto
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Jaime Cunha-Branco
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal
- Chronic Diseases Research Center, NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Lisbon, Portugal
| | - Luís-Miguel Borrego
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Immunoalergy Department, Hospital da Luz Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Ma D, Wu Z, Zhao X, Zhu X, An Q, Wang Y, Zhao J, Su Y, Yang B, Xu K, Zhang L. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4 + T cells in patients with primary Sjögren's syndrome. Inflammopharmacology 2023:10.1007/s10787-023-01189-x. [PMID: 37012581 DOI: 10.1007/s10787-023-01189-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune disease that leads to the destruction of exocrine glands and multisystem lesions. Abnormal proliferation, apoptosis, and differentiation of CD4+ T cells are key factors in the pathogenesis of pSS. Autophagy is one of the important mechanisms to maintain immune homeostasis and function of CD4+ T cells. Human umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) may simulate the immunoregulation of MSCs while avoiding the risks of MSCs treatment. However, whether UCMSC-Exos can regulate the functions of CD4+ T cells in pSS, and whether the effects via the autophagy pathway remains unclear. METHODS The study analyzed retrospectively the peripheral blood lymphocyte subsets in pSS patients, and explored the relationship between lymphocyte subsets and disease activity. Next, peripheral blood CD4+ T cells were sorted using immunomagnetic beads. The proliferation, apoptosis, differentiation, and inflammatory factors of CD4+ T cells were determined using flow cytometry. Autophagosomes of CD4+ T cells were detected using transmission electron microscopy, autophagy-related proteins and genes were detected using western blotting or RT-qPCR. RESULTS The study demonstrated that the peripheral blood CD4+ T cells decreased in pSS patients, and negatively correlated with disease activity. UCMSC-Exos inhibited excessive proliferation and apoptosis of CD4+ T cells in pSS patients, blocked them in the G0/G1 phase, inhibited them from entering the S phase, reduced the Th17 cell ratio, elevated the Treg ratio, inhibited IFN-γ, TNF-α, IL-6, IL-17A, and IL-17F secretion, and promoted IL-10 and TGF-β secretion. UCMSC-Exos reduced the elevated autophagy levels in the peripheral blood CD4+ T cells of patients with pSS. Furthermore, UCMSC-Exos regulated CD4+ T cell proliferation and early apoptosis, inhibited Th17 cell differentiation, promoted Treg cell differentiation, and restored the Th17/Treg balance in pSS patients through the autophagy pathway. CONCLUSIONS The study indicated that UCMSC-Exos exerts an immunomodulatory effect on the CD4+ T cells, and maybe as a new treatment for pSS.
Collapse
Affiliation(s)
- Dan Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Zewen Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Xingxing Zhao
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Xueqing Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Qi An
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yajing Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Jingwen Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Baoqi Yang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
5
|
Joachims ML, Khatri B, Li C, Tessneer KL, Ice JA, Stolarczyk AM, Means N, Grundahl KM, Glenn SB, Kelly JA, Lewis DM, Radfar L, Stone DU, Guthridge JM, James JA, Scofield RH, Wiley GB, Wren JD, Gaffney PM, Montgomery CG, Sivils KL, Rasmussen A, Farris AD, Adrianto I, Lessard CJ. Dysregulated long non-coding RNA in Sjögren's disease impacts both interferon and adaptive immune responses. RMD Open 2022; 8:e002672. [PMID: 36456101 PMCID: PMC9717416 DOI: 10.1136/rmdopen-2022-002672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Sjögren's disease (SjD) is an autoimmune disease characterised by inflammatory destruction of exocrine glands. Patients with autoantibodies to Ro/SSA (SjDRo+) exhibit more severe disease. Long non-coding RNAs (lncRNAs) are a functionally diverse class of non-protein-coding RNAs whose role in autoimmune disease pathology has not been well characterised. METHODS Whole blood RNA-sequencing (RNA-seq) was performed on SjD cases (n=23 Ro/SSA negative (SjDRo-); n=27 Ro/SSA positive (SjDRo+) and healthy controls (HCs; n=27). Bioinformatics and pathway analyses of differentially expressed (DE) transcripts (log2 fold change ≥2 or ≤0.5; padj<0.05) were used to predict lncRNA function. LINC01871 was characterised by RNA-seq analyses of HSB-2 cells with CRISPR-targeted LINC01871 deletion (LINC01871-/ -) and in vitro stimulation assays. RESULTS Whole blood RNA-seq revealed autoantibody-specific transcription profiles and disproportionate downregulation of DE transcripts in SjD cases relative to HCs. Sixteen DE lncRNAs exhibited correlated expression with the interferon (IFN)-regulated gene, RSAD2, in SjDRo+ (r≥0.65 or ≤-0.6); four antisense lncRNAs exhibited IFN-regulated expression in immune cell lines. LINC01871 was upregulated in all SjD cases. RNA-seq and pathway analyses of LINC01871-/ - cells implicated roles in cytotoxic function, differentiation and IFNγ induction. LINC01871 was induced by IFNγ in a myeloid cell line and regulated by calcineurin/NFAT pathway and T cell receptor (TCR) signalling in primary human T cells. CONCLUSION LINC01871 influences expression of many immune cell genes and growth factors, is IFNγ inducible, and regulated by calcineurin signalling and TCR ligand engagement. Altered LINC01871 expression may influence the dysregulated T cell inflammatory pathways implicated in SjD.
Collapse
Affiliation(s)
- Michelle L Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Chuang Li
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John A Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Anna M Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kiely M Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Stuart B Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - David M Lewis
- Department of Oral and Maxillofacial Pathology, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- Oral Diagnosis and Radiology Department, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Graham B Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Courtney G Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Li N, Li L, Wu M, Li Y, Yang J, Wu Y, Xu H, Luo D, Gao Y, Fei X, Jiang L. Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren's Syndrome. Front Immunol 2021; 12:697157. [PMID: 34367157 PMCID: PMC8343000 DOI: 10.3389/fimmu.2021.697157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemokines compared to those from healthy controls. However, there is limited evidence supporting the utility of individual markers for different stages of pSS. This study aimed to explore potential biomarkers associated with pSS disease progression and analyze the associations between key genes and immune cells. Methods We combined our own RNA sequencing data with pSS datasets from the NCBI Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) via bioinformatics analysis. Salivary gland biopsies were collected from 14 pSS patients, 6 non-pSS patients, and 6 controls. Histochemical staining and transmission electron micrographs (TEM) were performed to macroscopically and microscopically characterize morphological features of labial salivary glands in different disease stages. Then, we performed quantitative PCR to validate hub genes. Finally, we analyzed correlations between selected hub genes and immune cells using the CIBERSORT algorithm. Results We identified twenty-eight DEGs that were upregulated in pSS patients compared to healthy controls. These were mainly involved in immune-related pathways and infection-related pathways. According to the morphological features of minor salivary glands, severe interlobular and periductal lymphocytic infiltrates, acinar atrophy and collagen in the interstitium, nuclear shrinkage, and microscopic organelle swelling were observed with pSS disease progression. Hub genes based on above twenty-eight DEGs, including MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D, were selected as potential biomarkers and verified by RT-PCR. Expression of these genes was correlated with T follicular helper cells, memory B cells and M1 macrophages. Conclusion Using transcriptome sequencing and bioinformatics analysis combined with our clinical data, we identified seven key genes that have potential value for evaluating pSS severity.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyao Wu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|