1
|
Tambaro F, Gigante A, Gallicchio C, Pellicano C, Ramaccini C, Belli R, Gasperini-Zacco ML, Rosato E, Muscaritoli M. Differential modulations of miRNAs in patients with systemic sclerosis-associated skeletal muscle loss. Eur J Intern Med 2025; 135:98-107. [PMID: 40175271 DOI: 10.1016/j.ejim.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease characterized by sustained vascular inflammation and progressive skin and internal organs fibrosis. Up to 22 % of SSc patients may manifest skeletal muscle impairment, which predicts worse clinical outcomes, including increased mortality, however, pathogenesis is still largely unclear and could be associated with modulation of circulating microRNAs (miRNAs). Aims of the present study were to evaluate differentially modulated miRNAs in SSc patients and to evaluate their association with changes in body composition(s) and with the clinical course and type of the disease. METHODS Circulating levels of miRNAs were detected by RT-qPCR. ELISA assay was performed to measure the TGF-β1 protein. Muscularity (FFMI kg/m2) and phase angle (PhA, °) were estimated by Bioelectrical Impedance Analysis. RESULTS We enrolled 47 SSc patients and 21 controls (C). We observed downregulation of miR-15b (p = 0.024), -21 (p < 0.001), -29a (p < 0.001), -29b (p = 0.007) and -133a (p < 0.001), whereas miR-206 (p < 0.001) and -486 (p < 0.001) were upregulated in SSc vs C. In SSc, miR-29b negatively correlates with TGF-β1 (r = -0.303, p = 0.046). MiR-206 was downregulated vs high FFMI (p = 0.040) in SSc with low FFMI, and miR-15b positively correlates with PhA (r = 0.356, p = 0.014). MiR-15b and -486 were modulated in early vs late nailfold capillaroscopy stage (p = 0.028 and p = 0.045, respectively). MiR-133a was higher in SSc with Scl70 v ACA subset of autoantibodies (p = 0.002). CONCLUSIONS In SSc patients, differential modulations of miRNAs involved in muscularity occur. The data obtained suggest that mechanisms other than disease-related malnutrition might be responsible for SSc-associated skeletal muscle loss.
Collapse
Affiliation(s)
- Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmen Gallicchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Belli
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | | | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Wang P, Zhang X, Yao M, Li J, Wei X, Qiu Z, Chen L, Zhang L. Targeting high mobility group protein B2 exerts antiproliferative effects in hypoxic pulmonary hypertension by modulating miR-21. Toxicol Appl Pharmacol 2025; 497:117265. [PMID: 39952300 DOI: 10.1016/j.taap.2025.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE Pulmonary hypertension (PH) is characterized by excessive vascular cell proliferation, leading to vascular remodeling. In this study, we aimed to investigate the molecular mechanisms underlying the regulation of vascular cell proliferation in the context of HMGB2 and its potential involvement in the pathogenesis of PH. METHODS Animals and pulmonary vascular smooth muscle cells (PASMCs) were exposed to hypoxia. Pathological changes in pulmonary vessels were detected by HE and Masson staining. The effect of HMGB2 on cell proliferation was detected by siRNA transfections and recombinant protein treatment. miR-21 inhibitor and mimics were applied, and TPM1 expression was detected. HMGB2-/- mice were applied to observe the possible preventive effect of HMGB2 in PH development. RESULTS HMGB2 expression was increased in hypoxic rats and PASMCs. Silencing ZDHHC5 reduced HMGB2 expression and cell proliferation. Cell proliferation was inhibited by knocking down HMGB2 and promoted by its over-expression. Hypoxia-induced miR-21 upregulation and TPM1 downregulation were mediated by HMGB2. 8-Br-cGMP suppressed HMGB2-induced PASMC proliferation and increased SOX2 expression by activating the cGMP/PKG signaling pathway. HMGB2-/- attenuated pulmonary vascular remodeling and fibrosis in hypoxia induced PH mice. CONCLUSIONS HMGB2 promotes PASMC proliferation through the cGMP/PKG-SOX2-miR-21-TPM1 pathway, which provides a new theoretical basis and possible targets for the pathogenesis and clinical prevention of PH.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Male
- HMGB2 Protein/genetics
- HMGB2 Protein/metabolism
- Hypoxia/metabolism
- Hypoxia/complications
- Mice
- Rats
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats, Sprague-Dawley
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Remodeling
- Mice, Inbred C57BL
- Mice, Knockout
- Tropomyosin/metabolism
- Tropomyosin/genetics
- Cells, Cultured
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Pan Wang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China; Department of Clinical Laboratory, Xi'an Fifth Hospital, Xi'an, China
| | - Xu Zhang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Mengge Yao
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Jiakang Li
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Xiaozhen Wei
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China.
| | - Li Zhang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China.
| |
Collapse
|
3
|
Liu Y, Nie D, Lou X. The Cardiovascular Benefits of Glucagon-Like Peptide-1 Receptor Agonists as Novel Diabetes Drugs Are Mediated via the Suppression of miR-203a-3p and miR-429 Expression. DNA Cell Biol 2024; 43:387-394. [PMID: 38923881 DOI: 10.1089/dna.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Coronary artery disease (CAD) is associated with a high fatality rate and a heavy global health care burden. Glucagon-like peptide-1 (GLP-1) exerts positive cardiovascular effects, although the molecular mechanisms are unclear. Therefore, this study aimed to verify whether the cardioprotective effects of GLP-1 are mediated through the regulation of micro-RNA (miRNA) expression. Follow-up assessments were conducted for 116 patients with type 2 diabetes mellitus (T2DM) alone (controls) and 123 patients with both T2DM and CAD. After matching, each group comprised 63 patients, and age, body mass index, and serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides (TG), and hemoglobin A1C (HbA1c) were compared. Subsequently, the expression profiles of four circulating miRNAs (miR-203a-3p, miR-429, miR-205-5p, and miR-203b-5p) were assessed via quantitative reverse transcription real-time polymerase chain reaction in the 63 patients with diabetes and CAD between 6 months (baseline) and 12 months after the initiation of GLP-1 receptor (GLP-1R) therapy. As expected, the metabolic factors were significantly improved after 6 months of treatment with GLP-1R compared with pre-treatment values, and the expression levels of two of the miRNAs (miR-203a-3p and miR-429) decreased from baseline levels in those with diabetes and CAD. The results suggest that the cardiovascular benefits induced by GLP-1R are mediated via suppressed expression of two miRNAs: miR-203a-3p and miR-429.
Collapse
Affiliation(s)
| | | | - Xueyong Lou
- Department of Endocrinology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
4
|
Soffritti I, D’Accolti M, Bini F, Mazziga E, Di Luca D, Maccari C, Arcangeletti MC, Caselli E. Virus-Induced MicroRNA Modulation and Systemic Sclerosis Disease. Biomedicines 2024; 12:1360. [PMID: 38927567 PMCID: PMC11202132 DOI: 10.3390/biomedicines12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA sequences that regulate gene expression at the post-transcriptional level. They are involved in the regulation of multiple pathways, related to both physiological and pathological conditions, including autoimmune diseases, such as Systemic Sclerosis (SSc). Specifically, SSc is recognized as a complex and multifactorial disease, characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis, affecting skin and internal organs. Among predisposing environmental triggers, evidence supports the roles of oxidative stress, chemical agents, and viral infections, mostly related to those sustained by beta-herpesviruses such as HCMV and HHV-6. Dysregulated levels of miRNA expression have been found in SSc patients compared to healthy controls, at both the intra- and extracellular levels, providing a sort of miRNA signature of the SSc disease. Notably, HCMV/HHV-6 viral infections were shown to modulate the miRNA profile, often superposing that observed in SSc, potentially promoting pathological pathways associated with SSc development. This review summarizes the main data regarding miRNA alterations in SSc disease, highlighting their potential as prognostic or diagnostic markers for SSc disease, and the impact of the putative SSc etiological agents on miRNA modulation.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Clara Maccari
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Maria-Cristina Arcangeletti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| |
Collapse
|
5
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
6
|
Shaikh FS, Siegel RJ, Srivastava A, Fox DA, Ahmed S. Challenges and promise of targeting miRNA in rheumatic diseases: a computational approach to identify miRNA association with cell types, cytokines, and disease mechanisms. Front Immunol 2024; 14:1322806. [PMID: 38264662 PMCID: PMC10803576 DOI: 10.3389/fimmu.2023.1322806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that alter the expression of target genes at the post-transcriptional level, influencing diverse outcomes in metabolism, cell differentiation, proliferation, cell survival, and cell death. Dysregulated miRNA expression is implicated in various rheumatic conditions, including ankylosing spondylitis (AS), gout, juvenile idiopathic arthritis (JIA), osteoarthritis (OA), psoriatic arthritis, rheumatoid arthritis (RA), Sjogren's syndrome, systemic lupus erythematosus (SLE) and systemic sclerosis. For this review, we used an open-source programming language- PowerShell, to scan the massive number of existing primary research publications on PubMed on miRNAs in these nine diseases to identify and count unique co-occurrences of individual miRNAs and the disease name. These counts were used to rank the top seven most relevant immuno-miRs based on their research volume in each rheumatic disease. Individual miRNAs were also screened for publication with the names of immune cells, cytokines, and pathological processes involved in rheumatic diseases. These occurrences were tabulated into matrices to identify hotspots for research relevance. Based on this information, we summarize the basic and clinical findings for the top three miRNAs - miR-146, miR-155, and miR-21 - whose relevance spans across multiple rheumatic diseases. Furthermore, we highlight some unique miRNAs for each disease and why some rheumatic conditions lack research in this emerging epigenetics field. With the overwhelming number of publications on miRNAs in rheumatic diseases, this review serves as a 'relevance finder' to guide researchers in selecting miRNAs based on the compiled existing knowledge of their involvement in disease pathogenesis. This approach applies to other disease contexts with the end goal of developing miRNA-based therapeutics.
Collapse
Affiliation(s)
- Farheen S. Shaikh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Ruby J. Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Aayush Srivastava
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - David A. Fox
- Department of Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical System, Ann Arbor, MI, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
- Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
7
|
Pettorossi F, Gasparotto M, Ghirardello A, Franco C, Ceolotto G, Giannella A, Iaccarino L, Zanatta E, Doria A, Gatto M. MicroRNAs in idiopathic inflammatory myopathies: state-of-the-art and future perspectives. Curr Opin Rheumatol 2023; 35:374-382. [PMID: 37582051 DOI: 10.1097/bor.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders characterized by muscle weakness and inflammation. MicroRNAs (miRNAs) are the main class of small noncoding RNAs regulating a wide range of physiological and pathological processes and play a role in mediating autoimmunity and inflammation. In this review, we summarize the latest knowledge on the role of miRNAs in systemic autoimmune diseases with particular focus on IIMs. RECENT FINDINGS Study on miRNA expression in IIMs is helping in understanding the pathogenetic basis of the disease at a tissue and systemic level. Several miRNAs, even with a muscle-specific expression (myomiRs), have been shown to be involved in immune and nonimmune mechanisms of myofiber damage. MiRNAs modulate and orchestrate the local inflammatory infiltrate and could be used as potential biomarkers as they correlate with disease activity and response to therapy. SUMMARY IIMs comprise different clinical phenotypes and still little is known about the molecular signature of each subset. Further research about miRNA profiling will provide additional insights in the disease characterization with an expected impact on the therapeutic strategies.
Collapse
Affiliation(s)
- Federico Pettorossi
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Michela Gasparotto
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Trieste
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Chiara Franco
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | | | - Alessandra Giannella
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine, University of Padua, Padua
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Elisabetta Zanatta
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Chen Y, Tang Y, Hou S, Luo J, Chen J, Qiu H, Chen W, Li K, He J, Li J. Differential expression spectrum and targeted gene prediction of tRNA-derived small RNAs in idiopathic pulmonary arterial hypertension. Front Mol Biosci 2023; 10:1204740. [PMID: 37496778 PMCID: PMC10367008 DOI: 10.3389/fmolb.2023.1204740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (PAH) is a potentially fatal pulmonary vascular disease with an extremely poor natural course. The limitations of current treatment and the unclear etiology and pathogenesis of idiopathic PAH require new targets and avenues of exploration involved in the pathogenesis of PAH. tRNA-derived small RNAs (tsRNAs), a new type of small non-coding RNAs, have a significant part in the progress of diverse diseases. However, the potential functions behind tsRNAs in idiopathic PAH remain unknown. Methods: Small RNA microarray was implemented on three pairs of plasma of idiopathic PAH patients and healthy controls to investigate and compare tsRNAs expression profiles. Validation samples were used for real-time polymerase chain reaction (Real-time PCR) to verify several dysregulated tsRNAs. Bioinformatic analysis was adopted to determine potential target genes and mechanisms of the validated tsRNAs in PAH. Results: Microarray detected 816 statistically significantly dysregulated tsRNAs, of which 243 tsRNAs were upregulated and 573 were downregulated in PAH. Eight validated tsRNAs in the results of Real-time PCR were concordant with the small RNA microarray: four upregulated (tRF3a-AspGTC-9, 5'tiRNA-31-GluCTC-16, i-tRF-31:54-Val-CAC-1 and tRF3b-TyrGTA-4) and four downregulated (5'tiRNA-33-LysTTT-4, i-tRF-8:32-Val-AAC-2, i-tRF-2:30-His-GTG-1, and i-tRF-15:31-Lys-CTT-1). The Gene Ontology analysis has shown that the verified tsRNAs are related to cellular macromolecule metabolic process, regulation of cellular process, and regulation of cellular metabolic process. It is disclosed that potential target genes of verified tsRNAs are widely involved in PAH pathways by Kyoto Encyclopedia of Genes and Genomes. Conclusion: This study investigated tsRNA profiles in idiopathic PAH and found that the dysregulated tsRNAs may become a novel type of biomarkers and possible targets for PAH.
Collapse
Affiliation(s)
- Yusi Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Tang
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China
| | - Sitong Hou
- Clinical Medicine, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Jun Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjie Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kexing Li
- Department of Pharmacology, Hebei University, Baoding, Hebei, China
| | - Jin He
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China
| | - Jiang Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Kohon MY, Zaaroor Levy M, Hornik-Lurie T, Shalom A, Berl A, Drucker L, Levy Y, Tartakover Matalon S. αvβ3 Integrin as a Link between the Development of Fibrosis and Thyroid Hormones in Systemic Sclerosis. Int J Mol Sci 2023; 24:ijms24108927. [PMID: 37240272 DOI: 10.3390/ijms24108927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs. Key players mediating fibrosis are myofibroblasts (MF) that, following transforming growth factor β (TGFβ) exposure, produce a collagen-rich extracellular matrix (ECM) that induces myofibroblast differentiation. Myofibroblasts express αvβ3 integrin (a membrane receptor for thyroid hormones) and miRNA-21 that promotes deiodinase-type-3 expression (D3), causing the degradation of triiodothyronine (T3) that attenuates fibrosis. We hypothesized that αvβ3 affects the fibrotic processes through its thyroid hormones (THs) binding site. To test this, dermal fibroblasts (DF) were cultured with/without TGFβ and removed with a base, leaving only normal/fibrotic ECMs in wells. Then, DF were cultured on the ECMs with/without tetrac (αvβ3 ligand, T4 antagonist), and evaluated for pro-fibrotic characteristics, αvβ3, miRNA-21, and D3 levels. Blood free-T3 (fT3), miRNA-21 levels, and the modified Rodnan skin score (MRSS) were evaluated in SSc patients. We found that the "fibrotic-ECM" significantly increased the pro-fibrotic characteristics of DF and the levels of miRNA-21, D3, and αvβ3, compared to the "normal-ECM." Tetrac significantly inhibited the effects of the "fibrotic-ECM" on the cells. In accordance with tetrac's effect on D3/miRNA-21, a negative correlation was found between the patients' fT3 to miRNA-21 levels, and to the development of pulmonary arterial hypertension (PAH). We conclude that occupying the THs binding site of αvβ3 may delay the development of fibrosis.
Collapse
Affiliation(s)
- Maia Yamila Kohon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Mor Zaaroor Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Tzipi Hornik-Lurie
- Data Research Department, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Oncogenetics Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Yair Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Shelly Tartakover Matalon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| |
Collapse
|
10
|
DÜZGÜN Z, KAYIKÇIOĞLU M, AKTAN Ç, BARA B, EROĞLU Z, YAĞMUR B, BOZOK ÇETİNTAŞ V, BAYINDIR M, NALBANTGİL S, ı TETİK VARDARLI A. Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turk J Med Sci 2023; 53:130-141. [PMID: 36945942 PMCID: PMC10388131 DOI: 10.55730/1300-0144.5566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 10/10/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by maladaptation of pulmonary vasculature which is leading to right ventricular hypertrophy and heart failure. miRNAs play a crucial role in the regulation of many diseases such as viral infection, cancer, cardiovascular diseases, and pulmonary hypertension (PH). In this study, we aimed to investigate the expression pattern of eight human plasma miRNAs (hsa-miR-21-3p, hsa-miR-143- 3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, hsa-miR-210-3p) in mild-to-severe PH patients and healthy controls. METHODS : miRNAs were extracted from the peripheral plasma of the PH patients (n: 44) and healthy individuals (n: 30) by using the miRNA Isolation Kit. cDNA was synthesized using All in-One First strand cDNA Synthesis Kit. Expression of the human plasma hsa-miR- 21-3p, hsa-miR-143-3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204- 3p, hsa-miR-206, hsa-miR210-3p, and miRNAs were analyzed by qRT-PCR. RESULTS According to our results, in PH patients hsa-miR-21-3p and hsa-miR-143-3p expression levels were decreased by 4.7 and 2.3 times, respectively. No significant changes were detected in hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, and hsa-miR-210-3p expression levels between PH and control groups. In addition, considering the severity of the disease, it was observed that the decrease in miR-138, miR-143, miR-145, miR-190, mir-204, mir-206 and miR-208 expressions was significant in patients with severe PH. DISCUSSION : In the early diagnosis of PAH, hsa-miR-21-3p and especially hsa-miR-143-3p in peripheral plasma can be considered as potential biomarkers.
Collapse
Affiliation(s)
- Zekeriya DÜZGÜN
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun,
Turkey
| | - Meral KAYIKÇIOĞLU
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Çağdaş AKTAN
- Department of Medical Biology, Beykent University School of Medicine, İstanbul,
Turkey
| | - Busra BARA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Zuhal EROĞLU
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Burcu YAĞMUR
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | | | - Melike BAYINDIR
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Sanem NALBANTGİL
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - As ı TETİK VARDARLI
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| |
Collapse
|
11
|
Li Y, Peng B, Li Y, Huang A, Peng Y, Yu Q, Li Y. MiR-203a-3p/153-3p improves cognitive impairments induced by ischemia/reperfusion via blockade of SRC-mediated MAPK signaling pathway in ischemic stroke. Chem Biol Interact 2022; 358:109900. [DOI: 10.1016/j.cbi.2022.109900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
|
12
|
Zaaroor Levy M, Rabinowicz N, Yamila Kohon M, Shalom A, Berl A, Hornik-Lurie T, Drucker L, Tartakover Matalon S, Levy Y. MiRNAs in Systemic Sclerosis Patients with Pulmonary Arterial Hypertension: Markers and Effectors. Biomedicines 2022; 10:biomedicines10030629. [PMID: 35327430 PMCID: PMC8945806 DOI: 10.3390/biomedicines10030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a major cause of death in systemic sclerosis (SSc). Early detection may improve patient outcomes. Methods: We searched for circulating miRNAs that would constitute biomarkers in SSc patients with PAH (SSc-PAH). We compared miRNA levels and laboratory parameters while evaluating miRNA levels in white blood cells (WBCs) and myofibroblasts. Results: Our study found: 1) miR-26 and miR-let-7d levels were significantly lower in SSc-PAH (n = 12) versus SSc without PAH (SSc-noPAH) patients (n = 25); 2) a positive correlation between miR-26 and miR-let-7d and complement-C3; 3) GO-annotations of genes that are miR-26/miR-let-7d targets and that are expressed in myofibroblast cells, suggesting that these miRNAs regulate the TGF-β-pathway; 4) reduced levels of both miRNAs accompanied fibroblast differentiation to myofibroblasts, while macitentan (endothelin receptor-antagonist) increased the levels. WBCs of SSc-noPAH and SSc-PAH patients contained equal amounts of miR-26/miR-let-7d. During the study, an echocardiograph that predicted PAH development, showed increased pulmonary artery pressure in three SSc-noPAH patients. At study initiation, those patients and an additional SSc-noPAH patient, who eventually developed PAH, had miR-let-7d/miR-26 levels similar to those of SSc-PAH patients. This implies that reduced miR-let-7d/miR-26 levels might be an early indication of PAH. Conclusions: miR-26 and miR-let-7d may be serological markers for SSc-PAH. The results of our study suggest their involvement in myofibroblast differentiation and complement pathway activation, both of which are active in PAH development.
Collapse
Affiliation(s)
- Mor Zaaroor Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Noa Rabinowicz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Maia Yamila Kohon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Ariel Berl
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | | | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Shelly Tartakover Matalon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| | - Yair Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| |
Collapse
|
13
|
Huang YX, Li F, Liu D, Sun YY, Zhao QH, Jiang R, Wang L, Yuan P, Liu JM, Wu Y, Zhang J. The expression profiling of microRNA in systemic sclerosis-associated pulmonary arterial hypertension. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1458. [PMID: 34734010 PMCID: PMC8506742 DOI: 10.21037/atm-21-4342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Background The role of microRNAs (miRNAs) in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) remains to be fully elucidated. This study evaluated the expression profile of miRNAs in the lung tissue of patients with SSc-PAH. Methods Lung tissue samples were collected from 3 SSc-PAH patients and 4 healthy controls. A small RNA high throughput sequence approach was used for screening the differentially expressed miRNAs in the lung tissue samples. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate 4 highly significant differentially expressed miRNAs. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis for mRNAs were performed using the R package clusterProfiler software. Results A total of 82 upregulated miRNAs and 35 downregulated miRNAs were detected in the lung tissues of patients with SSc-PAH compared with healthy controls. GO enrichment analysis demonstrated that the upregulated target genes were closely involved in biological processes such as nervous system development, anatomical structure morphogenesis, system development, cellular macromolecule metabolic processes, and cellular processes. The downregulated target genes were involved in the plasma membrane bound cell projection morphogenesis and the regulation of macromolecule metabolic processes. The KEGG enrichment analysis showed that the upregulated genes were associated with important pathways involved in cancer biology, and the target genes of the downregulated miRNAs were involved in axon guidance. High throughput sequencing and qRT-PCR revealed that hsa-miR-205-5p and hsa-miR-539-3p were differentially expressed in SSc-PAH tissue. The target genes of hsa-miR-205-5p and hsa-miR-539-3p, IRF1and ADCYAP1, respectively, were verified using the high throughput dataset GSE48149. Conclusions miRNAs may play an important role in the pathogenesis of SSc-PAH, and hsa-miR-205-5p and hsa-miR-539-3p may be potential therapeutic targets in patients with SSc-PAH.
Collapse
Affiliation(s)
- Yu-Xia Huang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Li
- Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Liu
- Department of Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yuan-Yuan Sun
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Ming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ji Zhang
- Department of Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|