1
|
Budkowska M, Ostrycharz E, Serwin NM, Nazarewski Ł, Cecerska-Heryć E, Poręcka M, Rykowski P, Pietrzak R, Zieniewicz K, Siennicka A, Hukowska-Szematowicz B, Dołęgowska B. Biomarkers of the Complement System Activation (C3a, C5a, sC5b-9) in Serum of Patients before and after Liver Transplantation. Biomedicines 2023; 11:2070. [PMID: 37509709 PMCID: PMC10377212 DOI: 10.3390/biomedicines11072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The liver has a huge impact on the functioning of our body and the preservation of homeostasis. It is exposed to many serious diseases, which may lead to the chronic failure of this organ, which is becoming a global health problem today. Currently, the final form of treatment in patients with end-stage (acute and chronic) organ failure is transplantation. The proper function of transplanted organs depends on many cellular processes and immune and individual factors. An enormous role in the process of acceptance or rejection of a transplanted organ is attributed to, among others, the activation of the complement system. The aim of this study was the evaluation of the concentration of selected biomarkers' complement system activation (C3a, C5a, and sC5b-9 (terminal complement complex)) in the serum of patients before and after liver transplantation (24 h, two weeks). The study was conducted on a group of 100 patients undergoing liver transplantation. There were no complications during surgery and no transplant rejection in any of the patients. All patients were discharged home 2-3 weeks after the surgery. The levels of all analyzed components of the complement system were measured using the ELISA method. Additionally, the correlations of the basic laboratory parameters-C-reactive protein (CRP), hemoglobin (Hb), total bilirubin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), and albumin-with the parameters of the complement system (C3a, C5a, and sC5b-9) were determined. In our study, changes in the concentrations of all examined complement system components before and after liver transplantation were observed, with the lowest values before liver transplantation and the highest concentration two weeks after. The direct increase in components of the complement system (C3a, C5a, and sC5b-9) 24 h after transplantation likely affects liver damage after ischemia-reperfusion injury (IRI), while their increase two weeks after transplantation may contribute to transplant tolerance. Increasingly, attention is being paid to the role of C3a and CRP as biomarkers of damage and failure of various organs. From the point of view of liver transplantation, the most interesting correlation in our own research was found exactly between CRP and C3a, 24 h after the transplantation. This study shows that changes in complement activation biomarkers and the correlation with CRP in blood could be a prognostic signature of liver allograft survival or rejection.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Natalia Maria Serwin
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Poręcka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Radosław Pietrzak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Mizuno T. [The Functional Roles and the Potential as Drug Targets of Glycoproteins Regulating Complement and Coagulation Pathways]. YAKUGAKU ZASSHI 2023; 143:707-712. [PMID: 37661436 DOI: 10.1248/yakushi.23-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Complement (C) activation occurs via three pathways, namely the classical, lectin, and alternative pathways. Intercommunication occurs between the complement and coagulation systems, which can trigger tissue injury and inflammation. Disseminated intravascular coagulation (DIC) is a life-threatening disease characterized by disordered coagulation and systemic inflammation; here, the intercommunication between the complement and coagulation systems contributes to the development of DIC. Extracellular histones, which are contributors to the damage-associated molecular pattern, induce severe thrombosis. C5 is a key molecule in the intercommunication between the complement and coagulation systems and is associated with the development of lethal histone-induced thrombosis. Heparin and chondroitin sulfate (CS) are negatively charged, allowing them to bind to extracellular histones. As the coagulation system is less affected by CS than heparin, CS shows potential as an effective drug for the treatment of patients with DIC who have a high risk of bleeding. Complement receptor type-1-related gene Y (Crry) inhibits the complement pathway via binding to C3b and C4b. Hence, Crry is a potent inhibitor of the classical and alternative C pathways. The expression of Crry is decreased by the endothelial damage induced by extracellular histones. Crry dysfunction promotes the activation of C on the surface of endothelial cells. The prevention of C3 cleavage on endothelial cells might be a useful therapy targeting acute lung injury.
Collapse
Affiliation(s)
- Tomohiro Mizuno
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University
| |
Collapse
|
3
|
Matola AT, Fülöp A, Rojkovich B, Nagy G, Sármay G, Józsi M, Uzonyi B. Autoantibodies against complement factor B in rheumatoid arthritis. Front Immunol 2023; 14:1113015. [PMID: 36891314 PMCID: PMC9986603 DOI: 10.3389/fimmu.2023.1113015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder affecting the joints. Many patients carry anti-citrullinated protein autoantibodies (ACPA). Overactivation of the complement system seems to be part of the pathogenesis of RA, and autoantibodies against the pathway initiators C1q and MBL, and the regulator of the complement alternative pathway, factor H (FH), were previously reported. Our aim was to analyze the presence and role of autoantibodies against complement proteins in a Hungarian RA cohort. To this end, serum samples of 97 ACPA-positive RA patients and 117 healthy controls were analyzed for autoantibodies against FH, factor B (FB), C3b, C3-convertase (C3bBbP), C1q, MBL and factor I. In this cohort, we did not detect any patient with FH autoantibodies but detected C1q autoantibodies in four patients, MBL autoantibodies in two patients and FB autoantibodies in five patients. Since the latter autoantibodies were previously reported in patients with kidney diseases but not in RA, we set out to further characterize such FB autoantibodies. The isotypes of the analyzed autoantibodies were IgG2, IgG3, IgGκ, IgGλ and their binding site was localized in the Bb part of FB. We detected in vivo formed FB-autoanti-FB complexes by Western blot. The effect of the autoantibodies on the formation, activity and FH-mediated decay of the C3 convertase in solid phase convertase assays was determined. In order to investigate the effect of the autoantibodies on complement functions, hemolysis assays and fluid phase complement activation assays were performed. The autoantibodies partially inhibited the complement-mediated hemolysis of rabbit red blood cells, inhibited the activity of the solid phase C3-convertase and C3 and C5b-9 deposition on complement activating surfaces. In summary, in ACPA-positive RA patients we identified FB autoantibodies. The characterized FB autoantibodies did not enhance complement activation, rather, they had inhibitory effect on complement. These results support the involvement of the complement system in the pathomechanism of RA and raise the possibility that protective autoantibodies may be generated in some patients against the alternative pathway C3 convertase. However, further analyses are needed to assess the exact role of such autoantibodies.
Collapse
Affiliation(s)
- Alexandra T Matola
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH) at the Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Angéla Fülöp
- Buda Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | | | - György Nagy
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary.,Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.,Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabriella Sármay
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH) at the Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH) at the Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Xu Y, Xu Y, Zhang W, Li M, Wendel HP, Geis-Gerstorfer J, Li P, Wan G, Xu S, Hu T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front Chem 2022; 10:860040. [PMID: 35734444 PMCID: PMC9208203 DOI: 10.3389/fchem.2022.860040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials’ biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.
Collapse
Affiliation(s)
- Yan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Materials Engineering, Sichuan Engineering Technical College, Deyang, China
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Xu S, Han S, Dai Y, Wang L, Zhang X, Ding Y. A Review of the Mechanism of Vascular Endothelial Injury in Immunoglobulin A Vasculitis. Front Physiol 2022; 13:833954. [PMID: 35370802 PMCID: PMC8966136 DOI: 10.3389/fphys.2022.833954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin A (IgA) vasculitis (IgAV), also known as Henoch-Schönlein purpura, is the most common form of childhood vasculitis. It is characterized by cutaneous hemorrhage, resulting from red blood cell leakage into the skin or mucosae, possibly caused by damage to small blood vessels. These acute symptoms usually disappear without treatment. Endothelial cells are distributed on the inner surfaces of blood vessels and lymphatic vessels, and have important functions in metabolism and endocrine function, as well as being the primary targets of external stimuli and endogenous immune activity. Injury to endothelial cells is a feature of IgA vasculitis. Endothelial cell damage may be related to the deposition of immune complexes, the activation of complement, inflammatory factors, and chemokines, oxidative stress, hemodynamics, and coagulation factors. Both epigenetic mechanisms and genetic diversity provide a genetic background for endothelial cell injury. Here, research on the role of endothelial cells in allergic IgA vasculitis is reviewed.
Collapse
Affiliation(s)
- Shanshan Xu
- Pediatric Kidney Disease Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shanshan Han
- Pediatric Kidney Disease Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yanlin Dai
- Pediatric Kidney Disease Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Long Wang
- Pediatric Kidney Disease Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xia Zhang
- Pediatric Kidney Disease Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Ding
- Pediatric Kidney Disease Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
- *Correspondence: Ying Ding,
| |
Collapse
|
6
|
Antirheumatic therapy is associated with reduced complement activation in rheumatoid arthritis. PLoS One 2022; 17:e0264628. [PMID: 35213675 PMCID: PMC8880951 DOI: 10.1371/journal.pone.0264628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/13/2022] [Indexed: 12/29/2022] Open
Abstract
Background The complement system plays an important role in pathophysiology of cardiovascular disease (CVD), and might be involved in accelerated atherogenesis in rheumatoid arthritis (RA). The role of complement activation in response to treatment, and in development of premature CVD in RA, is limited. Therefore, we examined the effects of methotrexate (MTX) and tumor necrosis factor inhibitors (TNFi) on complement activation using soluble terminal complement complex (TCC) levels in RA; and assessed associations between TCC and inflammatory and cardiovascular biomarkers. Methods We assessed 64 RA patients starting with MTX monotherapy (n = 34) or TNFi with or without MTX co-medication (TNFi±MTX, n = 30). ELISA was used to measure TCC in EDTA plasma. The patients were examined at baseline, after 6 weeks and 6 months of treatment. Results Median TCC was 1.10 CAU/mL, and 57 (89%) patients had TCC above the estimated upper reference limit (<0.70). Compared to baseline, TCC levels were significantly lower at 6-week visit (0.85 CAU/mL, p<0.0001), without significant differences between the two treatment regimens. Notably, sustained reduction in TCC was only achieved after 6 months on TNFi±MTX (0.80 CAU/mL, p = 0.006). Reductions in TCC after treatment were related to decreased C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and interleukin 6, and increased levels of total, high and low-density lipoprotein cholesterol. Similarly, baseline TCC was significantly related to baseline CRP, ESR and interleukin 6. Patients with endothelial dysfunction had higher baseline TCC than those without (median 1.4 versus 1.0 CAU/mL, p = 0.023). Conclusions Patients with active RA had elevated TCC, indicating increased complement activation. TCC decreased with antirheumatic treatment already after 6 weeks. However, only treatment with TNFi±MTX led to sustained reduction in TCC during the 6-month follow-up period. RA patients with endothelial dysfunction had higher baseline TCC compared to those without, possibly reflecting involvement of complement in the atherosclerotic process in RA.
Collapse
|
7
|
Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep 2020; 10:19500. [PMID: 33177623 PMCID: PMC7659012 DOI: 10.1038/s41598-020-76441-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.
Collapse
Affiliation(s)
- Diane Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mitra J Hooshmand
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Manuel D Galvan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Zhang W, Li P, Neumann B, Haag H, Li M, Xu Z, Zhou C, Scheideler L, Wendel HP, Zhang H, Geis-Gerstorfer J, Wan G. Chandler-Loop surveyed blood compatibility and dynamic blood triggered degradation behavior of Zn-4Cu alloy and Zn. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111594. [PMID: 33321638 DOI: 10.1016/j.msec.2020.111594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Zinc (Zn) and its alloys have been considered promising absorbable metals for medical implants. However, the dynamic interaction between Zn-based materials and human blood after implantation remains unclear. In this study, a modified Chandler-Loop system was applied to assess the blood compatibility and initial degradation behavior of a Zn-4.0Cu (wt%) alloy (Zn-4Cu) and Zn with human peripheral blood under circulation conditions. In this dynamic in vitro model, the Zn-4Cu and Zn showed sufficient blood compatibility. The numbers of erythrocytes, platelets, and leukocytes were not significantly altered, and appropriate activations of the coagulation and complement system were observed. Concerning initial degradation behavior, the product layers formed on the surfaces comprise a mixture of organic and inorganic compounds while the inorganic constituents decrease toward the outer surface. Considering the corrosion morphology and electrochemical behaviors, Zn-4Cu exhibited milder and more uniform degradation than Zn. Additionally, long-term degradation tests of 28 days in human peripheral blood, human serum, and Dulbecco's phosphate-buffered saline (DPBS) demonstrated that the Zn-4Cu showed relatively uniform degradation in blood and serum. On the contrary, in DPBS, severe localized corrosion appeared along the grain boundary of the secondary phase, which was likely attributed to the acceleration of galvanic corrosion. The Zn was found with localized corrosion impeded in the blood albeit with apparently developed deep pitting holes in the serum and DPBS.
Collapse
Affiliation(s)
- Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ping Li
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstr. 2-8, Tübingen 72076, Germany
| | - Bernd Neumann
- Department of Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, Tübingen 72076, Germany
| | - Hanna Haag
- Department of Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, Tübingen 72076, Germany
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zeqian Xu
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstr. 2-8, Tübingen 72076, Germany
| | - Chao Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lutz Scheideler
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstr. 2-8, Tübingen 72076, Germany
| | - Hans-Peter Wendel
- Department of Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, Tübingen 72076, Germany
| | - Haijun Zhang
- Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, China; National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, Shandong 251100, China.
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstr. 2-8, Tübingen 72076, Germany.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
9
|
Xie CB, Jane-Wit D, Pober JS. Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1138-1150. [PMID: 32194049 DOI: 10.1016/j.ajpath.2020.02.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The complement membrane attack complex (MAC) is classically known as a cytolytic effector of innate and adaptive immunity that forms pores in the plasma membrane of pathogens or targeted cells, leading to osmolysis. Nucleated cells resist MAC-mediated cytolysis by expression of inhibitors that block MAC assembly or by rapid removal of MAC through endocytosis or shedding. In the absence of lysis, MAC may induce intracellular signaling and cell activation, responses implicated in a variety of autoimmune, inflammatory, and transplant disease settings. New discoveries into the structure and biophysical properties of MAC revealed heterogeneous MAC precursors and conformations that provide insights into MAC function. In addition, new mechanisms of MAC-mediated signaling and its contribution to disease pathogenesis have recently come to light. MAC-activated cells have been found to express proinflammatory proteins-often through NF-κB-dependent transcription, assemble inflammasomes, enabling processing, and facilitate secretion of IL-1β and IL-18, as well as other signaling pathways. These recent insights into the mechanisms of action of MAC provide an updated framework to therapeutic approaches that can target MAC assembly, signaling, and proinflammatory effects in various complement-mediated diseases.
Collapse
Affiliation(s)
- Catherine B Xie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Dan Jane-Wit
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
10
|
Guo DD, Hu B, Tang HY, Sun YY, Liu B, Tian QM, Bi HS. Proteomic Profiling Analysis Reveals a Link between Experimental Autoimmune Uveitis and Complement Activation in Rats. Scand J Immunol 2017; 85:331-342. [DOI: 10.1111/sji.12539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- D. D. Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong; Eye Institute of Shandong University of Traditional Chinese Medicine; Jinan China
| | - B. Hu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine; Jinan China
| | - H. Y. Tang
- The Second Clinical Medical College; Shandong University of Traditional Chinese Medicine; Jinan China
| | - Y. Y. Sun
- The Second Clinical Medical College; Shandong University of Traditional Chinese Medicine; Jinan China
| | - B. Liu
- The Second Clinical Medical College; Shandong University of Traditional Chinese Medicine; Jinan China
| | - Q. M. Tian
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine; Jinan China
| | - H. S. Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong; Eye Institute of Shandong University of Traditional Chinese Medicine; Jinan China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine; Jinan China
| |
Collapse
|
11
|
Morgan BP, Walters D, Serna M, Bubeck D. Terminal complexes of the complement system: new structural insights and their relevance to function. Immunol Rev 2016; 274:141-151. [PMID: 27782334 DOI: 10.1111/imr.12461] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complement is a key component of innate immunity in health and a powerful driver of inflammation and tissue injury in disease. The biological and pathological effects of complement activation are mediated by activation products. These come in two flavors: (i) proteolytic fragments of complement proteins (C3, C4, C5) generated during activation that bind specific receptors on target cells to mediate effects; (ii) the multimolecular membrane attack complex generated from the five terminal complement proteins that directly binds to and penetrates target cell membranes. Several recent publications have described structural insights that have changed perceptions of the nature of this membrane attack complex. This review will describe these recent advances in understanding of the structure of the membrane attack complex and its by-product the fluid-phase terminal complement complex and relate these new structural insights to functional consequences and cell responses to complement membrane attack.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | - David Walters
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marina Serna
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
12
|
Cardiovascular risk assessment in patients with rheumatoid arthritis: The relevance of clinical, genetic and serological markers. Autoimmun Rev 2016; 15:1013-1030. [DOI: 10.1016/j.autrev.2016.07.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022]
|
13
|
Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G. Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci 2016; 73:2017-27. [PMID: 26910728 PMCID: PMC4834097 DOI: 10.1007/s00018-016-2164-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/01/2022]
Abstract
The TNF-related apoptosis inducing ligand TRAIL is a member of the TNF superfamily that has been firstly studied and evaluated for its anti-cancer activity, and the insights into its biology have already led to the identification of several TRAIL-based anticancer strategies with strong clinical therapeutic potentials. Nonetheless, the TRAIL system is far more complex and it can lead to a wider range of biological effects other than the ability of inducing apoptosis in cancer cells. By virtue of the different receptors and the different signalling pathways involved, TRAIL plays indeed a role in the regulation of different processes of the innate and adaptive immune system and this feature makes it an intriguing molecule under consideration in the development/progression/treatment of several immunological disorders. In this context, central nervous system represents a peculiar anatomic site where, despite its "status" of immune-privileged site, both innate and adaptive inflammatory responses occur and are involved in several pathological conditions. A number of studies have evaluated the role of TRAIL and of TRAIL-related pathways as pro-inflammatory or protective stimuli, depending on the specific pathological condition, confirming a twofold nature of this molecule. In this light, the aim of this review is to summarize the main preclinical evidences of the potential/involvement of TRAIL molecule and TRAIL pathways for the treatment of central nervous system disorders and the key suggestions coming from their assessment in preclinical models as proof of concept for future clinical studies.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|
14
|
Feyerabend F, Wendel HP, Mihailova B, Heidrich S, Agha NA, Bismayer U, Willumeit-Römer R. Blood compatibility of magnesium and its alloys. Acta Biomater 2015. [PMID: 26210283 DOI: 10.1016/j.actbio.2015.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. OBJECTIVE The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. METHODS AND RESULTS Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. CONCLUSIONS The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. STATEMENT OF SIGNIFICANCE The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications.
Collapse
Affiliation(s)
- Frank Feyerabend
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Material Design and Characterisation, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Hans-Peter Wendel
- Department of Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Calwerstr. 7/1, 72076 Tuebingen, Germany
| | - Boriana Mihailova
- University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg, Germany
| | - Stefanie Heidrich
- University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg, Germany
| | - Nezha Ahmad Agha
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Material Design and Characterisation, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Ulrich Bismayer
- University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg, Germany
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Material Design and Characterisation, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
15
|
Fcγ and Complement Receptors and Complement Proteins in Neutrophil Activation in Rheumatoid Arthritis: Contribution to Pathogenesis and Progression and Modulation by Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:429878. [PMID: 26346244 PMCID: PMC4540990 DOI: 10.1155/2015/429878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs). In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i) the participation of Fcγ and complement receptors in mediating the effector functions of neutrophils in RA; (ii) the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii) the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation.
Collapse
|
16
|
Label-free quantitative proteomic analysis reveals strong involvement of complement alternative and terminal pathways in human glomerular sclerotic lesions. J Proteomics 2015; 123:89-100. [DOI: 10.1016/j.jprot.2015.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022]
|
17
|
Wang H, Wang K, Wang C, Qiu W, Lu Z, Hu X. Increased soluble C5b-9 in CSF of neuromyelitis optica. Scand J Immunol 2014; 79:127-30. [PMID: 24313854 DOI: 10.1111/sji.12132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/21/2013] [Indexed: 01/12/2023]
Abstract
Neuromyelitis optica (NMO) and multiple sclerosis (MS) are two of the autoimmune inflammatory demyelinating diseases in the central nervous system. Complement is thought to have an important role in pathogenesis of these diseases, especially in NMO. However, the change of terminal complement complex (TCC, C5b-9) in patients with NMO is still unclear. Cerebrospinal fluid (CSF) C3a, C5a, sC5b-9 were measured by enzyme-linked immunosorbent assay in patients with NMO (n = 26), MS (n = 25) and other neurological disease (OND, n = 19). CSF levels of C5a in patients with NMO were higher than patients with OND (P = 0.006). Increased CSF sC5b-9 were found in the patients with NMO compared with patients with MS (P = 0.029) and OND (P = 0.0001). CSF sC5b-9 in patients with MS were also higher than patients with OND (P = 0.030). Patients with NMO revealed a trend to an increased disease disability with increased CSF sC5b-9 during relapse but not in MS (NMO: P = 0.006, MS: P = 0.097). CSF levels of sC5b-9 are increased in patients with NMO and reflect the activation of complement in NMO.
Collapse
Affiliation(s)
- H Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, Multiple Sclerosis Center, The Third Affiliated Hospital of Sun-yatsen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
18
|
Dessein PH, López-Mejias R, González-Juanatey C, Genre F, Miranda-Filloy JA, Llorca J, González-Gay MA. Independent relationship of osteoprotegerin concentrations with endothelial activation and carotid atherosclerosis in patients with severe rheumatoid arthritis. J Rheumatol 2014; 41:429-36. [PMID: 24488413 DOI: 10.3899/jrheum.131037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Osteoprotegerin (OPG) may contribute to the link between systemic inflammation and increased cardiovascular risk. We investigated the relationship of OPG concentrations with endothelial activation and carotid atherosclerosis in rheumatoid arthritis (RA). METHODS OPG concentrations and those of endothelial activation molecules were measured by using ELISA in 34 patients who were treated with infliximab (IFX), both immediately before and after an IFX infusion. Carotid intima-media thickness (CIMT) and plaque were determined by ultrasound in 27 of the study participants. RESULTS Median (interquartile range) OPG concentrations decreased from 4.8 pmol/l (2.8-6.5) to 4.4 pmol/l (2.9-6.1; p = 0.04) upon IFX infusion. Baseline OPG concentrations were inversely associated with those of total and low-density lipoprotein (LDL) cholesterol (partial R = -0.50, p = 0.004, and R = -0.48, p = 0.007, respectively). Prior to IFX administration, OPG concentrations were associated with those of intercellular adhesion molecule (ICAM)-1 (partial R = 0.34, p = 0.05), CIMT (partial R = 0.51 to 0.52, p < 0.009), and plaque (OR = 1.52, 95% CI 1.01-2.29 to OR = 1.61, 95% CI 1.03-2.51; p < 0.04), independent of conventional risk factors and C-reactive protein concentrations or disease activity. Except for the OPG concentrations-plaque association (p = 0.09), these relationships remained significant subsequent to IFX administration (p < 0.05). Reductions in OPG levels related to those in vascular cell adhesion molecule (VCAM)-1 concentrations (partial R = 0.35, p = 0.04) and had borderline significance (p = 0.09) with those in ICAM-1 (partial R = 0.29) concentrations. CONCLUSION OPG concentrations are independently associated with endothelial activation and carotid atherosclerosis in RA. Reductions in OPG concentrations upon IFX administration are associated with decreased endothelial activation. OPG may be involved in increased cardiovascular disease risk and may improve its stratification in patients with RA.
Collapse
Affiliation(s)
- Patrick H Dessein
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IFIMAV, Santander; Cardiology Division, Hospital Xeral-Calde, Lugo; Rheumatology Division, Hospital Xeral-Calde, Lugo; Department of Epidemiology and Computational Biology, School of Medicine, University of Cantabria, IFIMAV, and CIBER Epidemiología y Salud Pública (CIBERESP), Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Wickramaarachchi WDN, Whang I, Kim E, Lim BS, Jeong HB, De Zoysa M, Oh MJ, Jung SJ, Yeo SY, Kim SY, Park HC, Lee J. Genomic characterization and transcriptional evidence for the involvement of complement component 7 in immune response of rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:44-49. [PMID: 23603298 DOI: 10.1016/j.dci.2013.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
The complement component 7 (C7) is the central mediator of pathogenic attack at the membrane surface and its binding to the C5b-7 complex triggers cytolytic signaling. In this study, C7 of rock bream (Oplegnathus fasciatus) was identified (Rb-C7) and characterized at the genomic level. The Rb-C7 gene contains 18 exons and 17 introns and is composed of a 2490 bp complete open reading frame (ORF). The encoded polypeptide (830 amino acids) contains a number of well-conserved C7 signature domains. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, are present in the 5'-flanking region of Rb-C7. Phylogenetic analysis revealed a close proximity of Rb-C7 with the orthologues in tilapia and Japanese flounder. Quantitative real-time PCR (qPCR) analysis confirmed constitutive Rb-C7 expression throughout all the examined tissue of healthy rock bream, with highest expression in liver. In immune challenge experiment, Rb-C7 expression was up-regulated in head kidney and liver in response to Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide and rock bream iridovirus (RBIV). Furthermore, significant increases of both intracellular expression level and the number of Rb-C7-expressing cells were detected by in situ hybridization assay in head kidney and liver tissues upon E. tarda infection. These results suggested that Rb-C7 is lytic pathway gene in complement system and its transcriptional regulation may be an important immune response in pathogenic defense mechanism of rock bream.
Collapse
Affiliation(s)
- W D Niroshana Wickramaarachchi
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gao X, Lee J, Malladi S, Melendez L, Lascelles BDX, Al-Murrani S. Feline degenerative joint disease: a genomic and proteomic approach. J Feline Med Surg 2013; 15:466-77. [PMID: 23295270 PMCID: PMC10816310 DOI: 10.1177/1098612x12470652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The underlying disease mechanisms for feline degenerative joint disease (DJD) are mostly unidentified. Today, most of what is published on mammalian arthritis is based on human clinical findings or on mammalian models of human arthritis. However, DJD is a common occurrence in the millions of domestic felines worldwide. To get a better understanding of the changes in biological pathways that are associated with feline DJD, this study employed a custom-designed feline GeneChip, and the institution's unique access to large sample populations to investigate genes and proteins from whole blood and serum that may be up- or down-regulated in DJD cats. The GeneChip results centered around three main pathways that were affected in DJD cats: immune function, apoptosis and oxidative phosphorylation. By identifying these key disease-associated pathways it will then be possible to better understand disease pathogenesis and diagnose it more easily, and to better target it with pharmaceutical and nutritional intervention.
Collapse
|
21
|
Shen Y, Zhang J, Xu X, Fu J, Li J. Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp. FISH & SHELLFISH IMMUNOLOGY 2012; 33:448-454. [PMID: 22617254 DOI: 10.1016/j.fsi.2012.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/09/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Activation of the complement system, which forms a major part of the innate immune system, results in the formation of the terminal complement complex. The complement component, C7, plays an integral role in the assembly of this complex within target cell membranes. In this study, C7 was isolated and characterized from grass carp, an important cultured fish in China. The predicted amino acid sequence of C7 cDNA (2644 bp) exhibited 55.4 and 48.3% homology with trout C7-1 and zebrafish C7, respectively. The grass carp C7 gene was consisted of 18 exons and 17 introns. C7 gene expression was detected in the trunk kidney, liver, head kidney, skin, spleen, heart and intestine. Significant changes in C7 transcript expression (>20-fold) were detected following Aeromonas hydrophila infection, indicating C7 involvement in innate immune responses to bacteria in teleost fish.
Collapse
Affiliation(s)
- Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | | | | | | | | |
Collapse
|
22
|
Chauhan AK, Moore TL. Immune complexes and late complement proteins trigger activation of Syk tyrosine kinase in human CD4(+) T cells. Clin Exp Immunol 2012; 167:235-45. [PMID: 22235999 DOI: 10.1111/j.1365-2249.2011.04505.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In systemic lupus erythematosus (SLE), the autoantibodies that form immune complexes (ICs) trigger activation of the complement system. This results in the formation of membrane attack complex (MAC) on cell membrane and the soluble terminal complement complex (TCC). Hyperactive T cell responses are hallmark of SLE pathogenesis. How complement activation influences the T cell responses in SLE is not fully understood. We observed that aggregated human γ-globulin (AHG) bound to a subset of CD4(+) T cells in peripheral blood mononuclear cells and this population increased in the SLE patients. Human naive CD4(+) T cells, when treated with purified ICs and TCC, triggered recruitment of the FcRγ chain with the membrane receptor and co-localized with phosphorylated Syk. These events were also associated with aggregation of membrane rafts. Thus, results presented suggest a role for ICs and complement in the activation of Syk in CD4(+) T cells. Thus, we propose that the shift in signalling from ζ-chain-ZAP70 to FcRγ chain-Syk observed in T cells of SLE patients is triggered by ICs and complement. These results demonstrate a link among ICs, complement activation and phosphorylation of Syk in CD4(+) T cells.
Collapse
Affiliation(s)
- A K Chauhan
- Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
23
|
Tegla CA, Cudrici C, Patel S, Trippe R, Rus V, Niculescu F, Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 2012; 51:45-60. [PMID: 21850539 DOI: 10.1007/s12026-011-8239-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, School of Medicine, University of Maryland, 655 W. Baltimore Street, BRB 12-033, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A, Kucia M, Ratajczak J, Ratajczak MZ. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 2012; 26:106-116. [PMID: 21769103 PMCID: PMC3197954 DOI: 10.1038/leu.2011.185] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 12/15/2022]
Abstract
We have observed that conditioning for hematopoietic transplantation by lethal irradiation induces a proteolytic microenvironment in the bone marrow (BM) that activates the complement cascade (CC). As a result, BM is enriched for proteolytic enzymes and the soluble form of the terminal product of CC activation, the membrane attack complex C5b-C9 (MAC). At the same time, proteolytic enzymes induced in irradiated BM impair the chemotactic activity of α-chemokine stromal-derived factor-1 (SDF-1). As SDF-1 is considered a crucial BM chemoattractant for transplanted hematopoietic stem/progenitor cells (HSPCs), we sought to determine whether other factors that are resistant to proteolytic enzymes have a role in this process, focusing on proteolysis-resistant bioactive lipids. We found that the concentrations of sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) increase in the BM after conditioning for transplantation and that both S1P and, as we show here for the first time, C1P are potent chemoattractants for HSPCs. Next, we observed that C5-deficient mice that do not generate MAC show impaired engraftment of HSPCs. In support of a role for MAC in homing and engraftment, we found that soluble MAC enhances in a CR3 (CD11b/CD18)-dependent manner the adhesion of HSPCs to BM stromal cells and increases the secretion of SDF-1 by BM stroma. We conclude that an increase in BM levels of proteolytic enzyme-resistant S1P and C1P and activation of CC, which leads to the generation of MAC, has an important and previously underappreciated role in the homing of transplanted HSPCs.
Collapse
Affiliation(s)
- Chi Hwa Kim
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Wan Wu
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Marcin Wysoczynski
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY USA
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY USA
| | - Andrew Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY USA
| | - Magda Kucia
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Janina Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
25
|
Inhibiting the C5-C5a receptor axis. Mol Immunol 2011; 48:1631-42. [PMID: 21549429 DOI: 10.1016/j.molimm.2011.04.014] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/19/2022]
Abstract
Activation of the complement system is a major pathogenic event that drives various inflammatory responses in numerous diseases. All pathways of complement activation lead to cleavage of the C5 molecule generating the anaphylatoxin C5a and, C5b that subsequently forms the terminal complement complex (C5b-9). C5a exerts a predominant pro-inflammatory activity through interactions with the classical G-protein coupled receptor C5aR (CD88) as well as with the non-G protein coupled receptor C5L2 (GPR77), expressed on various immune and non-immune cells. C5b-9 causes cytolysis through the formation of the membrane attack complex (MAC), and sub-lytic MAC and soluble C5b-9 also possess a multitude of non-cytolytic immune functions. These two complement effectors, C5a and C5b-9, generated from C5 cleavage, are key components of the complement system responsible for propagating and/or initiating pathology in different diseases, including paroxysmal nocturnal hemoglobinuria, rheumatoid arthritis, ischemia-reperfusion injuries and neurodegenerative diseases. Thus, the C5-C5a receptor axis represents an attractive target for drug development. This review provides a comprehensive analysis of different methods of inhibiting the generation of C5a and C5b-9 as well as the signalling cascade of C5a via its receptors. These include the inhibition of C5 cleavage through targeting of C5 convertases or via the C5 molecule itself, as well as blocking the activity of C5a by neutralizing antibodies and pharmacological inhibitors, or by targeting C5a receptors per se. Examples of drugs and naturally occurring compounds used are discussed in relation to disease models and clinical trials. To date, only one such compound has thus far made it to clinical medicine: the anti-C5 antibody eculizumab, for treating paroxysmal nocturnal hemoglobinuria. However, a number of drug candidates are rapidly emerging that are currently in early-phase clinical trials. The C5-C5a axis as a target for drug development is highly promising for the treatment of currently intractable major human diseases.
Collapse
|
26
|
Ratajczak MZ, Kim C. Bioactive Sphingolipids and Complement Cascade as New Emerging Regulators of Stem Cell Mobilization and Homing. ACTA ACUST UNITED AC 2011; 1. [PMID: 24380038 DOI: 10.4172/2157-7633.1000e102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The α-chemokine stromal derived factor-1 (SDF-1) - seven transmembrane span receptor CXCR4 axis plays a crucial role in retention of hematopoietic stem progenitor cells (HSPCs) in BM. However, the mechanisms that govern mobilization/release of HSPCs from bone marrow (BM) into peripheral blood (PB) and direct a reverse process of their homing back into BM microenvironment after transplantation are still poorly understood. Augmenting evidence demonstrates that during both mobilization and myeloablative conditioning for transplantation a proteolytic microenvironment is induced in BM and complement cascade (CC) becomes activated. In this review we will present augmenting evidence that as result of induction of proteolytis microenvironment as well as CC activation bioactive sphingolipids - sphingosine - 1 phosphate (S1P) and ceramide-1-phosphate (C1P) together with CC cleavage fragments (C3a, C5a and C5b-C9) orchestrate both homing and mobilization of HSCPs.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA ; Department of Physiology, Pomeranian Medical University, Poland
| | - Chihwa Kim
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|