1
|
Sueiro-Benavides RA, Leiro-Vidal JM, Salas-Sánchez AÁ, Rodríguez-González JA, Ares-Pena FJ, López-Martín ME. Radiofrequency at 2.45 GHz increases toxicity, pro-inflammatory and pre-apoptotic activity caused by black carbon in the RAW 264.7 macrophage cell line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142681. [PMID: 33071139 DOI: 10.1016/j.scitotenv.2020.142681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors such as air pollution by particles and/or electromagnetic fields (EMFs) are studied as harmful agents for human health. We analyzed whether the combined action of EMF with fine and coarse black carbon (BC) particles induced cell damage and inflammatory response in RAW 264.7 cell line macrophages exposed to 2.45 GHz in a gigahertz transverse electromagnetic (GTEM) chamber at sub-thermal specific absorption rate (SAR) levels. Radiofrequency (RF) dramatically increased BC-induced toxicity at high doses in the first 24 h and toxicity levels remained high 72 h later for all doses. The increase in macrophage phagocytosis induced after 24 h of RF and the high nitrite levels obtained by stimulation with lipopolysaccharide (LPS) endotoxin 24 and 72 h after radiation exposure suggests a prolongation of the innate and inflammatory immune response. The increase of proinflammatory cytokines tumor necrosis factor-α, after 24 h, and of interleukin-1β and caspase-3, after 72 h, indicated activation of the pro-inflammatory response and the apoptosis pathways through the combined effect of radiation and BC. Our results indicate that the interaction of BC and RF modifies macrophage immune response, activates apoptosis, and accelerates cell toxicity, by which it can activate the induction of hypersensitivity reactions and autoimmune disorders.
Collapse
Affiliation(s)
- Rosa Ana Sueiro-Benavides
- Research Institute on Chemical and Biological Analysis, Dept. of Microbiology and Parasitology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Jose Manuel Leiro-Vidal
- Research Institute on Chemical and Biological Analysis, Dept. of Microbiology and Parasitology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Aarón Ángel Salas-Sánchez
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; ELEDIA@UniTN - DISI - University of Trento, 38123, Trentino-Alto Adige, Italy.
| | - J Antonio Rodríguez-González
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Francisco J Ares-Pena
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - M Elena López-Martín
- CRETUS Institute, Dept. Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett 2020; 323:35-40. [PMID: 31991167 DOI: 10.1016/j.toxlet.2020.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
This article identifies adverse effects of non-ionizing non-visible radiation (hereafter called wireless radiation) reported in the premier biomedical literature. It emphasizes that most of the laboratory experiments conducted to date are not designed to identify the more severe adverse effects reflective of the real-life operating environment in which wireless radiation systems operate. Many experiments do not include pulsing and modulation of the carrier signal. The vast majority do not account for synergistic adverse effects of other toxic stimuli (such as chemical and biological) acting in concert with the wireless radiation. This article also presents evidence that the nascent 5G mobile networking technology will affect not only the skin and eyes, as commonly believed, but will have adverse systemic effects as well.
Collapse
Affiliation(s)
- Ronald N Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Georgia, United States.
| | - Paul Heroux
- Toxicology and Health Effects of Electromagnetism, McGill University, Canada
| | - Michael Aschner
- Molecular Pharmacology, Einstein Center of Toxicology, Albert Einstein College of Medicine, United States
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Lundberg L, Sienkiewicz Z, Anthony DC, Broom KA. Effects of 50 Hz magnetic fields on circadian rhythm control in mice. Bioelectromagnetics 2019; 40:250-259. [PMID: 30945762 PMCID: PMC6617993 DOI: 10.1002/bem.22188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Artificial light and power frequency magnetic fields are ubiquitous in the built environment. Light is a potent zeitgeber but it is unclear whether power frequency magnetic fields can influence circadian rhythm control. To study this possibility, 8-12-week-old male C57BL/6J mice were exposed for 30 min starting at zeitgeber time 14 (ZT14, 2 h into the dark period of the day) to 50 Hz magnetic fields at 580 μT using a pair of Helmholtz coils and/or a blue LED light at 700 lux or neither. Our experiments revealed an acute adrenal response to blue light, in terms of increased adrenal per1 gene expression, increased serum corticosterone levels, increased time spent sleeping, and decreased locomotor activity (in all cases, P < 0.0001) compared to an unexposed control group. There appeared to be no modulating effect of the magnetic fields on the response to light, and there was also no effect of the magnetic fields alone (in both cases, P > 0.05) except for a decrease in locomotor activity (P < 0.03). Gene expression of the cryptochromes cry1 and cry2 in the adrenals, liver, and hippocampus was also not affected by exposures (in all cases, P > 0.05). In conclusion, these results suggest that 50 Hz magnetic fields do not significantly affect the acute light response to a degree that can be detected in the adrenal response. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Louise Lundberg
- Public Health EnglandChiltonUnited Kingdom
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | | | | | | |
Collapse
|
4
|
Turner MC, Benke G, Bowman JD, Figuerola J, Fleming S, Hours M, Kincl L, Krewski D, McLean D, Parent ME, Richardson L, Sadetzki S, Schlaefer K, Schlehofer B, Schüz J, Siemiatycki J, van Tongeren M, Cardis E. Interactions between occupational exposure to extremely low frequency magnetic fields and chemicals for brain tumour risk in the INTEROCC study. Occup Environ Med 2017; 74:802-809. [PMID: 28600451 PMCID: PMC8640944 DOI: 10.1136/oemed-2016-104080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 11/03/2022]
Abstract
OBJECTIVES In absence of clear evidence regarding possible effects of occupational chemical exposures on brain tumour aetiology, it is worthwhile to explore the hypothesis that such exposures might act on brain tumour risk in interaction with occupational exposure to extremely low frequency magnetic fields (ELF). METHODS INTEROCC is a seven-country (Australia, Canada, France, Germany, Israel, New Zealand and UK), population-based, case-control study, based on the larger INTERPHONE study. Incident cases of primary glioma and meningioma were ascertained from 2000 to 2004. Job titles were coded into standard international occupational classifications and estimates of ELF and chemical exposures were assigned based on job-exposure matrices. Dichotomous indicators of cumulative ELF (≥50th vs <50th percentile, 1-4 year exposure time window) and chemical exposures (ever vs never, 5-year lag) were created. Interaction was assessed on both the additive and multiplicative scales. RESULTS A total of 1939 glioma cases, 1822 meningioma cases and 5404 controls were included in the analysis, using conditional logistic regression. There was no clear evidence for interactions between ELF and any of the chemical exposures assessed for either glioma or meningioma risk. For glioma, subjects in the low ELF/metal exposed group had a lower risk than would be predicted from marginal effects. Results were similar according to different exposure time windows, to cut-points of exposure or in exposed-only analyses. CONCLUSIONS There was no clear evidence for interactions between occupational ELF and chemical exposures in relation to glioma or meningioma risk observed. Further research with more refined estimates of occupational exposures is recommended.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | | | - Joseph D Bowman
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Jordi Figuerola
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Martine Hours
- Université de Lyon, Université Lyon 1/IFSTTAR, Unité Mixte de Recherche Epidémiologique Transport Travail Environnement, Lyon, France
| | | | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
- School of Epidemiology, Public Health and Disease Prevention, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | - Siegal Sadetzki
- The Cancer & Radiation Epidemiology Unit, The Gertner Institute, Chaim Sheba Medical Center, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Klaus Schlaefer
- Unit of Environmental Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Brigitte Schlehofer
- Unit of Environmental Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| | - Jack Siemiatycki
- University of Montreal Hospital Research Centre, Montreal, Canada
| | | | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci Rep 2017; 7:749. [PMID: 28389657 PMCID: PMC5429732 DOI: 10.1038/s41598-017-00913-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Our previous studies showed that low frequency magnetic fields (LF-MF) suppressed tumor growth and influenced the function of immune system. Nevertheless the mechanisms behind the effect of LF-MF still remain to be elucidated. In this study, Tumor- bearing mice subcutaneously inoculated with Lewis lung cancer cells were exposed to a LF-MF (0.4T, 7.5 Hz) for 35 days and Survival rate, tumor growth and the tumor markers were measured. Results showed that tumor growth was obviously inhibited with a prolonged survival of tumor- bearing mice by LF-MF exposure. In vitro experiments, LF-MF was found to induce cell growth arrest, cell senescence and inhibit iron metabolism of lung cancer cells. Moreover, LF-MF stabilized p53 protein via inhibiting cell iron metabolism and the stabilized p53 protein enhanced miR-34a transcription. Furthermore, increased expression of miR-34a induced cell proliferation inhibition, cell cycle arrest and cell senescence of lung cancer cells by targeting E2F1/E2F3. We also detected the relevant indicator in tumor tissue such as the iron content, the level of miR-34a and related protein, corresponding results were obtained. Taken together, these observations imply that LF-MF suppressed lung cancer via inhibiting cell iron metabolism, stabilizing p53 protein and activation P53- miR-34a-E2F1/E2F3 pathway.
Collapse
|
6
|
Mansourian M, Marateb HR, Vaseghi G. The effect of extremely low-frequency magnetic field (50-60 Hz) exposure on spontaneous apoptosis: The results of a meta-analysis. Adv Biomed Res 2016; 5:141. [PMID: 27656610 PMCID: PMC5025908 DOI: 10.4103/2277-9175.187375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 09/19/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND This paper is a meta-analysis of the published data from in vitro studies to evaluate whether spontaneous apoptosis might be influenced by extremely low frequency (ELF) magnetic fields (MFs). MATERIALS AND METHODS A comprehensive scientific literature search in electronic databases was conducted and studies covering the period 2000-2010 were selected. Then, published studies involving the desired topic were retrieved. The inclusion criteria were percentage of apoptosis in the cells exposed to 50-60 Hz ELF-MFs. The statistical analysis was performed by comprehensive meta-analysis version 2. RESULTS The summary measure of association (95% confidence interval) for all 18 effect estimated from 8 studies was 1.18 (1.15, 1.20). Heterogeneity among studies was found. There was no evidence of publication bias for the association between exposure to MF and apoptosis risk. CONCLUSION Our meta-analysis provided conclusive data that ELF-MFs can increase apoptosis in cancer and normal cells. Furthermore, there is a possibly individual intensity and time range with maximum created effect according to window effect.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Hamid Reza Marateb
- Department of Biomedical Engineering, Faculty of Engineering, The University of Isfahan, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Zhang Y, Lai J, Ruan G, Chen C, Wang DW. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: a pooled analysis of epidemiologic studies. ENVIRONMENT INTERNATIONAL 2016; 88:36-43. [PMID: 26703095 DOI: 10.1016/j.envint.2015.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/23/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Studies have suggested that extremely low frequency electromagnetic fields (ELF-EMF) may affect physiological functions in animal models. However, epidemiologic studies investigating the association of ELF-EMF with the susceptibility to cancer yield contradictory results. In this comprehensive analysis, we conducted a search for case-control surveys regarding the associations of ELF-EMF and cancer susceptibility in electronic databases. A total of 42 studies involving 13,259 cases and 100,882 controls were retrieved. Overall, increased susceptibility to cancer was identified in the ELF-EMF exposed population (OR=1.08, 95% CI: 1.01, 1.15, P=0.02). In the stratified analyses, increased risk was found in North America (OR=1.10; 95% CI: 1.02, 1.20, P=0.02), especially the United States (OR=1.10; 95% CI: 1.01, 1.20, P=0.03). However, studies from Europe contradict these results. Moreover, a higher risk was found to be statistically significantly associated with the residential exposed population (OR=1.18; 95% CI: 1.02, 1.37, P=0.03). Furthermore, an increased cancer risk was found in interview-based surveys (OR=1.16; 95% CI: 1.00, 1.35, P=0.04). In device measurement-based studies, a slight increased risk was found only in premenopausal breast cancer (OR=1.23; 95% CI: 1.01, 1.49, P=0.04). Our meta-analysis suggests that ELF-EMFs are associated with cancer risk, mainly in the United States and in residential exposed populations. Methodological challenges might explain the differences among studies.
Collapse
Affiliation(s)
- Yemao Zhang
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan, People's Republic of China
| | - Jinsheng Lai
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guoran Ruan
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chen Chen
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Dao Wen Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Gapeyev AB, Lukyanova NA. Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Zentai N, Csathó Á, Trunk A, Fiocchi S, Parazzini M, Ravazzani P, Thuróczy G, Hernádi I. No Effects of Acute Exposure to Wi-Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers. Radiat Res 2015; 184:568-77. [DOI: 10.1667/rr13896.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Xiang G, Xiang L, He H, Zhang J, Dong J. Impact of cardiac magnetic resonance on endothelial function in type 2 diabetic patients. Atherosclerosis 2015; 239:131-6. [PMID: 25602854 DOI: 10.1016/j.atherosclerosis.2014.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/30/2014] [Accepted: 12/09/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Recent studies have shown that cardiac magnetic resonance (CMR) scanning is associated with cellular DNA damage. The aim of the present study was to assess the impact of CMR scanning on endothelial function in Chinese men with type 2 diabetes. METHODS A randomized, single-blind, parallel-group study was conducted in 60 Chinese men with type 2 diabetes treated with or without CMR (CMR and sham CMR group), and the changes of endothelial function before and after CMR were compared. High-resolution ultrasound was used to measure flow-mediated endothelium-dilation (FMD) of the brachial artery. RESULTS The FMD in CMR group at Day 1 after CMR was 3.60%, which was significantly lower than that (3.85%) in sham CMR group (p < 0.001). The levels of C-reactive protein (CRP), thiobarbituric acid-reactive substances (TBARS), tumor necrosis factor alpha (TNF-α) and interleukin-6(IL-6) in CMR group were significantly higher than those in sham CMR group at Day 1 (p < 0.001). But these characteristics did not differ between two groups at baseline, Day 2 and Day 3 (p > 0.05). Linear correlation and multiple regression analyses showed that CRP, TBARS, TNF-α and IL-6 were associated with FMD in the CMR group (p < 0.01). CONCLUSIONS The present data showed that CMR scanning can reversibly suppress endothelial function, probably through the increased production of oxygen-derived free radicals and inflammatory reactions in Chinese men with type 2 diabetes, indicating that CMR should be used with caution in order to avoid unnecessary damage to the endothelium. CLINICAL TRIAL REGISTRATION URL https://register.clinicaltrials.gov/, Unique Identifier: NCT02001753.
Collapse
Affiliation(s)
- Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuluo Road 627, Wuhan 430070, Hubei, China.
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuluo Road 627, Wuhan 430070, Hubei, China.
| | - Honglin He
- Department of Radiology, Wuhan General Hospital of Guangzhou Command, Wuluo Road 627, Wuhan 430070, Hubei, China.
| | - Junxia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuluo Road 627, Wuhan 430070, Hubei, China.
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuluo Road 627, Wuhan 430070, Hubei, China.
| |
Collapse
|
11
|
Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0326-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractIt is believed that non-ionizing electromagnetic radiation (EMR) and low-level hydrogen peroxide (H2O2) may change nonspecific resistance and modify DNA damage caused by ionizing radiation. To check this assumption, the combined effects of extremely high-frequency EMR (EHF EMR) and X-rays on induction of DNA damage in mouse whole blood leukocytes were studied. The cells were exposed to X-rays with or without preliminary treatment with EHF EMR or low-level H2O2. With the use of enhanced chemiluminescence, it was shown for the first time that pulse-modulated EHF EMR (42.2 GHz, incident power density of 0.1 mW/cm2, exposure duration of 20 min, modulation frequency of 1 Hz) induced H2O2 at a concentration of 4.6 ± 0.3 nM L−1 in physiological saline. With the use of an alkaline comet assay, it was found that the exposure of cells to the pulse-modulated EHF EMR, 25 min prior to treatment with X-rays at a dose of 4 Gy reduced the level of ionizing radiation-induced DNA damage. Continuous EHF EMR was inefficient. In turn, it was shown that low-level H2O2 (30–500 nM L−1) protected the cells against X-irradiation. Thus, the mechanisms of radiation protective effect of EHF EMR are connected with the induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated EHF EMR.
Collapse
|
12
|
Grellier J, Ravazzani P, Cardis E. Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe. ENVIRONMENT INTERNATIONAL 2014; 62:55-63. [PMID: 24161447 DOI: 10.1016/j.envint.2013.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 05/16/2023]
Abstract
Over the last two decades residential exposure to extremely low frequency magnetic fields (ELF MF) has been associated with childhood leukaemia relatively consistently in epidemiological studies, though causality is still under investigation. We aimed to estimate the cases of childhood leukaemia that might be attributable to exposure to ELF MF in the European Union (EU27), if the associations seen in epidemiological studies were causal. We estimated distributions of ELF MF exposure using studies identified in the existing literature. Individual distributions of exposure were integrated using a probabilistic mixture distribution approach. Exposure-response functions were estimated from the most recently published pooled analysis of epidemiological data. Probabilistic simulation was used to estimate population attributable fractions (AFP) and attributable cases of childhood leukaemia in the EU27. By assigning the literature review-based exposure distribution to all EU27 countries, we estimated the total annual number of cases of leukaemia attributable to ELF MF at between ~50 (95% CIs: -14, 132) and ~60 (95% CIs: -9, 610), depending on whether exposure-response was modelled categorically or continuously, respectively, for a non-threshold effect. This corresponds to between ~1.5% and ~2.0% of all incident cases of childhood leukaemia occurring annually in the EU27. Considerable uncertainties are due to scarce data on exposure and the choice of exposure-response model, demonstrating the importance of further research into better understanding mechanisms of the potential association between ELF MF exposure and childhood leukaemia and the need for improved monitoring of residential exposures to ELF MF in Europe.
Collapse
Affiliation(s)
- James Grellier
- Centre for Research in Environmental Epidemiology (CREAL), PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain; Department of Epidemiology and Biostatistics, Imperial College, St. Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | | | |
Collapse
|
13
|
Abstract
Autism spectrum conditions (ASCs) are defined behaviorally, but they also involve multileveled disturbances of underlying biology that find striking parallels in the physiological impacts of electromagnetic frequency and radiofrequency radiation exposures (EMF/RFR). Part I (Vol 776) of this paper reviewed the critical contributions pathophysiology may make to the etiology, pathogenesis and ongoing generation of behaviors currently defined as being core features of ASCs. We reviewed pathophysiological damage to core cellular processes that are associated both with ASCs and with biological effects of EMF/RFR exposures that contribute to chronically disrupted homeostasis. Many studies of people with ASCs have identified oxidative stress and evidence of free radical damage, cellular stress proteins, and deficiencies of antioxidants such as glutathione. Elevated intracellular calcium in ASCs may be due to genetics or may be downstream of inflammation or environmental exposures. Cell membrane lipids may be peroxidized, mitochondria may be dysfunctional, and various kinds of immune system disturbances are common. Brain oxidative stress and inflammation as well as measures consistent with blood-brain barrier and brain perfusion compromise have been documented. Part II of this paper documents how behaviors in ASCs may emerge from alterations of electrophysiological oscillatory synchronization, how EMF/RFR could contribute to these by de-tuning the organism, and policy implications of these vulnerabilities. It details evidence for mitochondrial dysfunction, immune system dysregulation, neuroinflammation and brain blood flow alterations, altered electrophysiology, disruption of electromagnetic signaling, synchrony, and sensory processing, de-tuning of the brain and organism, with autistic behaviors as emergent properties emanating from this pathophysiology. Changes in brain and autonomic nervous system electrophysiological function and sensory processing predominate, seizures are common, and sleep disruption is close to universal. All of these phenomena also occur with EMF/RFR exposure that can add to system overload ('allostatic load') in ASCs by increasing risk, and can worsen challenging biological problems and symptoms; conversely, reducing exposure might ameliorate symptoms of ASCs by reducing obstruction of physiological repair. Various vital but vulnerable mechanisms such as calcium channels may be disrupted by environmental agents, various genes associated with autism or the interaction of both. With dramatic increases in reported ASCs that are coincident in time with the deployment of wireless technologies, we need aggressive investigation of potential ASC-EMF/RFR links. The evidence is sufficient to warrant new public exposure standards benchmarked to low-intensity (non-thermal) exposure levels now known to be biologically disruptive, and strong, interim precautionary practices are advocated.
Collapse
|
14
|
Balassa T, Varró P, Elek S, Drozdovszky O, Szemerszky R, Világi I, Bárdos G. Changes in synaptic efficacy in rat brain slices following extremely low‐frequency magnetic field exposure at embryonic and early postnatal age. Int J Dev Neurosci 2013; 31:724-30. [DOI: 10.1016/j.ijdevneu.2013.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Affiliation(s)
- Tímea Balassa
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Petra Varró
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Szilvia Elek
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Orsolya Drozdovszky
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Renáta Szemerszky
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
- Institute for Health Promotion and Sport SciencesEötvös Loránd University, Faculty of Education and PsychologyBudapestHungary
| | - Ildikó Világi
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - György Bárdos
- Department of Physiology and NeurobiologyInstitute of BiologyFaculty of ScienceEötvös Loránd UniversityBudapestHungary
- Institute for Health Promotion and Sport SciencesEötvös Loránd University, Faculty of Education and PsychologyBudapestHungary
| |
Collapse
|
15
|
Fiechter M, Stehli J, Fuchs TA, Dougoud S, Gaemperli O, Kaufmann PA. Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J 2013; 34:2340-5. [PMID: 23793096 PMCID: PMC3736059 DOI: 10.1093/eurheartj/eht184] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 05/08/2013] [Indexed: 11/14/2022] Open
Abstract
AIMS Magnetic resonance (MR) imaging is widely used for diagnostic imaging in medicine as it is considered a safe alternative to ionizing radiation-based techniques. Recent reports on potential genotoxic effects of strong and fast switching electromagnetic gradients such as used in cardiac MR (CMR) have raised safety concerns. The aim of this study was to analyse DNA double-strand breaks (DSBs) in human blood lymphocytes before and after CMR examination. METHODS AND RESULTS In 20 prospectively enrolled patients, peripheral venous blood was drawn before and after 1.5 T CMR scanning. After density gradient cell separation of blood samples, DNA DSBs in lymphocytes were quantified using immunofluorescence microscopy and flow cytometric analysis. Wilcoxon signed-rank testing was used for statistical analysis. Immunofluorescence microscopic and flow cytometric analysis revealed a significant increase in median numbers of DNA DSBs in lymphocytes induced by routine 1.5 T CMR examination. CONCLUSION The present findings indicate that CMR should be used with caution and that similar restrictions may apply as for X-ray-based and nuclear imaging techniques in order to avoid unnecessary damage of DNA integrity with potential carcinogenic effect.
Collapse
Affiliation(s)
- Michael Fiechter
- Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, Zurich CH-8091, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Julia Stehli
- Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, Zurich CH-8091, Switzerland
| | - Tobias A. Fuchs
- Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, Zurich CH-8091, Switzerland
| | - Svetlana Dougoud
- Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, Zurich CH-8091, Switzerland
| | - Oliver Gaemperli
- Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, Zurich CH-8091, Switzerland
| | - Philipp A. Kaufmann
- Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, Zurich CH-8091, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Trillo MÁ, Martínez MA, Cid MA, Úbeda A. Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncol Rep 2013; 29:885-94. [PMID: 23292364 PMCID: PMC3597587 DOI: 10.3892/or.2012.2212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022] Open
Abstract
We previously reported that intermittent exposure to a 50‑Hz magnetic field (MF) at 100 µT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 µT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50‑Hz MF at a 10 or 100 µT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50‑Hz sine wave MF at 100 µT promotes cell growth in the NB69 cell line, and showed that 10 µT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium.
Collapse
Affiliation(s)
- María Ángeles Trillo
- Department of Research-BEM, IRYCIS, Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Cid MA, Ubeda A, Hernández-Bule ML, Martínez MA, Trillo MÁ. Antagonistic effects of a 50 Hz magnetic field and melatonin in the proliferation and differentiation of hepatocarcinoma cells. Cell Physiol Biochem 2012; 30:1502-16. [PMID: 23235525 DOI: 10.1159/000343338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Epidemiological and experimental evidence exists indicating that exposure to weak, extremely low frequency magnetic fields (ELF - MF) could affect cancer progression. It has been proposed that such hypothetical action could be mediated by MF-induced effects on the cellular response to melatonin (MEL), a potentially oncostatic neurohormone. The present study investigates the response of HepG2 cells to intermittent exposure to a 50 Hz, 10 µT MF, in the presence or absence of MEL at physiological (10 nM) or pharmacological doses (1 µM). METHODS The Trypan blue cell exclusion test, BrdU incorporation and PCNA expression assays were carried out to assess the cellular response in terms of viability and proliferation. In addition, albumin and alpha-fetoprotein, were analyzed as specific hepatocellular differentiation markers. RESULTS The results indicate that the MF exerts significant cytoproliferative and dedifferentiating effects that can be prevented by 10 nM MEL. Conversely, MEL exerts cytostatic and differentiating effects on HepG2 that are abolished by simultaneous exposure to MF. CONCLUSION As a whole, these results support the hypothesis that ELF - MF and MEL exert opposite, mutually counteracting effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- María Antonia Cid
- Dept. Investigación-BEM, Hospital Ramón y Cajal-IRYCIS, Madrid, Spain.
| | | | | | | | | |
Collapse
|
18
|
Wang T, Nie Y, Zhao S, Han Y, Du Y, Hou Y. Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells. Bioelectromagnetics 2011; 32:443-52. [PMID: 21360556 DOI: 10.1002/bem.20654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 01/15/2011] [Indexed: 11/07/2022]
Abstract
Effects of magnetic fields (MFs) on cancer cells may depend on cell type and exposure conditions. Gene expression levels are different among cancer cells. However, the effect of MFs on cancer cells with different gene expressions is still unclear. In this study, the cancer cell lines BGC-823, MKN-45, MKN-28, A549, SPC-A1, and LOVO were exposed to a low-frequency MF. Specific parameters of MFs were determined. Furthermore, the potential of the MF to influence cancer cell growth with midkine (MK) expression was evaluated. Cell proliferation and cell cycle were detected using the CCK-8 assay and flow cytometry. Cell ultrastructure was observed by transmission electron microscopy. BGC-823 cells with over-expression of MK (BGC-MK cells) and stanniocalcin-1 were generated by plasmid construction and transfection. Results showed that exposure to a 0.4-T, 7.5 Hz MF inhibited the proliferation of BGC-823, MKN-28, A549, and LOVO cells, but not MKN-45 and SPC-A1 cells. Moreover, the inhibitory effect of the MF on BGC-MK cells was lower (12.3%) than that of BGC-823 cells (20.3%). Analysis of the cell cycle showed that exposure to the MF led to a significant increase in the S phase in BGC-823 cells, but not in BGC-MK cells. In addition, organelle morphology was modified in BGC-823 cells exposed to the MF. These results suggest that exposure to a 0.4-T, 7.5 Hz MF could inhibit tumor cell proliferation and disturb the cell cycle. The alteration of MK expression in cancer cells may be related to the inhibitory effect of the MF on these cells.
Collapse
Affiliation(s)
- Tingting Wang
- Immunology and Reproduction Biology Lab, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
19
|
Basile A, Zeppa R, Pasquino N, Arra C, Ammirante M, Festa M, Barbieri A, Giudice A, Pascale M, Turco MC, Rosati A. Exposure to 50 Hz electromagnetic field raises the levels of the anti-apoptotic protein BAG3 in melanoma cells. J Cell Physiol 2011; 226:2901-7. [DOI: 10.1002/jcp.22641] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Lee JW, Kim MS, Kim YJ, Choi YJ, Lee Y, Chung HW. Genotoxic effects of 3 T magnetic resonance imaging in cultured human lymphocytes. Bioelectromagnetics 2011; 32:535-42. [PMID: 21412810 DOI: 10.1002/bem.20664] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/14/2011] [Indexed: 01/07/2023]
Abstract
The clinical and preclinical use of high-field intensity (HF, 3 T and above) magnetic resonance imaging (MRI) scanners have significantly increased in the past few years. However, potential health risks are implied in the MRI and especially HF MRI environment due to high-static magnetic fields, fast gradient magnetic fields, and strong radiofrequency electromagnetic fields. In this study, the genotoxic potential of 3 T clinical MRI scans in cultured human lymphocytes in vitro was investigated by analyzing chromosome aberrations (CA), micronuclei (MN), and single-cell gel electrophoresis. Human lymphocytes were exposed to electromagnetic fields generated during MRI scanning (clinical routine brain examination protocols: three-channel head coil) for 22, 45, 67, and 89 min. We observed a significant increase in the frequency of single-strand DNA breaks following exposure to a 3 T MRI. In addition, the frequency of both CAs and MN in exposed cells increased in a time-dependent manner. The frequencies of MN in lymphocytes exposed to complex electromagnetic fields for 0, 22, 45, 67, and 89 min were 9.67, 11.67, 14.67, 18.00, and 20.33 per 1000 cells, respectively. Similarly, the frequencies of CAs in lymphocytes exposed for 0, 45, 67, and 89 min were 1.33, 2.33, 3.67, and 4.67 per 200 cells, respectively. These results suggest that exposure to 3 T MRI induces genotoxic effects in human lymphocytes.
Collapse
Affiliation(s)
- Joong Won Lee
- Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Garaj-Vrhovac V, Gajski G, Pažanin S, Šarolić A, Domijan AM, Flajs D, Peraica M. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int J Hyg Environ Health 2011; 214:59-65. [DOI: 10.1016/j.ijheh.2010.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 11/26/2022]
|