1
|
Gao Y, Perez CA, Chhor C, Heller SL. Breast Cancer Screening in Survivors of Childhood Cancer. Radiographics 2023; 43:e220155. [PMID: 36927127 DOI: 10.1148/rg.220155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Women who survived childhood cancers or cancers at a young age are at high risk for breast cancer later in life. The accentuated risk is notable among those treated at a young age with a high radiation dose but also extends to survivors treated with therapies other than or in addition to radiation therapy. The predisposing risk factors are complex. Advances in radiation therapy continue to curtail exposure, yet the risk of a second cancer has no dose threshold and a long latency period, and concurrent use of chemotherapy may have an additive effect on long-term risk of cancer. Early screening with annual mammography and MRI is recommended for chest radiation exposure of 10 Gy or greater, beginning 8 years after treatment or at age 25 years, whichever is later. However, there is a lack of recommendations for those at high risk without a history of radiation therapy. Because mortality after breast cancer among survivors is higher than in women with de novo breast cancer, and because there is a higher incidence of a second asynchronous breast cancer in survivors than that in the general population, regular screening is essential and is expected to improve mortality. However, awareness and continuity of care may be lacking in these young patients and is reflected in their poor screening attendance. The transition of care from childhood to adulthood for survivors requires age-targeted and lifelong strategies of education and risk prevention that are needed to improve long-term outcomes for these patients. © RSNA, 2023 See the invited commentary by Chikarmane in this issue. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Yiming Gao
- From the Departments of Radiology (Y.G., C.C., S.L.H.) and Pathology (C.A.P.), New York University School of Medicine, 160 E 34th St, New York, NY 10016
| | - Carmen A Perez
- From the Departments of Radiology (Y.G., C.C., S.L.H.) and Pathology (C.A.P.), New York University School of Medicine, 160 E 34th St, New York, NY 10016
| | - Chloe Chhor
- From the Departments of Radiology (Y.G., C.C., S.L.H.) and Pathology (C.A.P.), New York University School of Medicine, 160 E 34th St, New York, NY 10016
| | - Samantha L Heller
- From the Departments of Radiology (Y.G., C.C., S.L.H.) and Pathology (C.A.P.), New York University School of Medicine, 160 E 34th St, New York, NY 10016
| |
Collapse
|
2
|
Yi L, Hu N, Mu H, Sun J, Yin J, Dai K, Xu F, Yang N, Ding D. Identification of Cofilin-1 and Destrin as Potential Early-warning Biomarkers for Gamma Radiation in Mouse Liver Tissues. HEALTH PHYSICS 2019; 116:749-759. [PMID: 30913056 DOI: 10.1097/hp.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma radiation causes cell injury and leads to an increased risk of cancer, so it is of practical significance to identify biomarkers for gamma radiation. We used proteomic analysis to identify differentially expressed proteins in liver tissues of C57BL/6J mice treated with gamma radiation from Cs for 360 d. We confirmed obvious pathological changes in mouse liver tissues after irradiation. Compared with the control group, 74 proteins showed a fold change of ≥1.5 in the irradiated groups. We selected 24 proteins for bioinformatics analysis and peptide mass fingerprinting and found that 20 of the identified proteins were meaningful. These proteins were associated with tumorigenesis, tumor suppression, catalysis, cell apoptosis, cytoskeleton, metabolism, gene transcription, T-cell response, and other pathways. We confirmed that both cofilin-1 and destrin were up regulated in the irradiated groups by western blot and real-time polymerase chain reaction. Our findings indicate that cofilin-1 and destrin are sensitive to gamma radiation and may be potential biomarkers for gamma radiation. Whether these proteins are involved in radiation-induced tumorigenesis requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| | - Hongxiang Mu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jing Sun
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Keren Dai
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Fanghui Xu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nanyang Yang
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| |
Collapse
|
5
|
Scarbrough PM, Weber RP, Iversen ES, Brhane Y, Amos CI, Kraft P, Hung RJ, Sellers TA, Witte JS, Pharoah P, Henderson BE, Gruber SB, Hunter DJ, Garber JE, Joshi AD, McDonnell K, Easton DF, Eeles R, Kote-Jarai Z, Muir K, Doherty JA, Schildkraut JM. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2016; 25:193-200. [PMID: 26637267 PMCID: PMC4713268 DOI: 10.1158/1055-9965.epi-15-0649] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. METHODS We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. RESULTS We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. CONCLUSIONS Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. IMPACT Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria.
Collapse
Affiliation(s)
- Peter M Scarbrough
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - John S Witte
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Pharoah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom. Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Stephen B Gruber
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amit D Joshi
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Kevin McDonnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Doug F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Ros Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom. Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
6
|
Morath J, Moreno-Villanueva M, Hamuni G, Kolassa S, Ruf-Leuschner M, Schauer M, Elbert T, Bürkle A, Kolassa IT. Effects of psychotherapy on DNA strand break accumulation originating from traumatic stress. PSYCHOTHERAPY AND PSYCHOSOMATICS 2015; 83:289-97. [PMID: 25116690 DOI: 10.1159/000362739] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous research reveals an association between traumatic stress and an increased risk for numerous diseases, including cancer. At the molecular level, stress may increase carcinogenesis via increased DNA damage and impaired DNA repair mechanisms. We assessed DNA breakage in peripheral blood mononuclear cells from individuals with post-traumatic stress disorder (PTSD) and measured the cellular capacity to repair single-strand breaks after exposure to ionizing X-radiation. We also investigated the effect of psychotherapy on both DNA breakage and DNA repair. METHODS In a first study we investigated DNA breakage and repair in 34 individuals with PTSD and 31 controls. Controls were subdivided into 11 trauma-exposed subjects and 20 individuals without trauma exposure. In a second study, we analysed the effect of psychotherapy (Narrative Exposure Therapy) on DNA breakage and repair. Thirty-eight individuals with PTSD were randomly assigned to either a treatment or a waitlist control condition. Follow-up was performed 4 months and 1 year after therapy. RESULTS In study 1 we found higher levels of basal DNA breakage in individuals with PTSD and trauma-exposed subjects than in controls, indicating that traumatic stress is associated with DNA breakage. However, single-strand break repair was unimpaired in individuals with PTSD. In study 2, we found that psychotherapy reversed not only PTSD symptoms, but also DNA strand break accumulation. CONCLUSION Our results show - for the first time in vivo - an association between traumatic stress and DNA breakage; they also demonstrate changes at the molecular level, i.e., the integrity of DNA, after psychotherapeutic interventions.
Collapse
Affiliation(s)
- Julia Morath
- Center of Excellence for Psychotraumatology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|