1
|
Deprez K, Van de Steene T, Verloock L, Tanghe E, Gommé L, Verlaek M, Goethals M, van Campenhout K, Plets D, Joseph W. 50 Hz Temporal Magnetic Field Monitoring from High-Voltage Power Lines: Sensor Design and Experimental Validation. SENSORS (BASEL, SWITZERLAND) 2024; 24:5325. [PMID: 39205019 PMCID: PMC11487399 DOI: 10.3390/s24165325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
A low-cost, tri-axial 50 Hz magnetic field monitoring sensor was designed, calibrated and verified. The sensor was designed using off-the-shelf components and commercially available coils. It can measure 50 Hz magnetic fields originating from high-voltage power lines from 0.08 µT to 364 µT, divided into two measurement ranges. The sensor was calibrated both on-board and in-lab. The on-board calibration takes the circuit attenuation, noise and parasitic components into account. In the in-lab calibration, the output of the developed sensor is compared to the benchmark, a narrowband EHP-50. The sensor was then verified in situ under high-voltage power lines at two independent measurement locations. The measured field values during this validation were between 0.10 µT and 13.43 µT, which is in agreement with other reported measurement values under high-voltage power lines in literature. The results were compared to the benchmark, for which average deviations of 6.2% and 1.4% were found, at the two independent measurement locations. Furthermore, fields up to 113.3 µT were measured in a power distribution sub-station to ensure that both measurement ranges were verified. Our network, four active sensors in the field, had high uptimes of 96%, 82%, 81% and, 95% during a minimum 3-month interval. In total, over 6 million samples were gathered with field values that ranged from 0.08 µT to 45.48 µT. This suggests that the proposed solution can be used for this monitoring, although more extensive long-term testing with more sensors is required to confirm the uptime under multiple circumstances.
Collapse
Affiliation(s)
- Kenneth Deprez
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Tom Van de Steene
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Leen Verloock
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Emmeric Tanghe
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Liesbeth Gommé
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - Mart Verlaek
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - Michel Goethals
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - Karen van Campenhout
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - David Plets
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Silva LB, Beserra Melo CJ, Lisboa de Souza AG, de Oliveira LG. Ergonomics, Health, and Perceptions about Remote Domestic Workposts: Study in Areas of City of João Pessoa, Paraíba, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:941. [PMID: 39063517 PMCID: PMC11276999 DOI: 10.3390/ijerph21070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Home office (HO) stands out as one of the most promising and popular forms of teleworking, especially after the COVID-19 pandemic. Therefore, many companies want to implement or maintain this working method, given its numerous advantages. However, there are adverse effects that are mainly related to physical and mental health. This article presents ergonomic analyses of HOs in neighborhoods considered heat islands. Temperature levels, extreme low-frequency non-ionizing radiation (ELF-NIR), illuminance, physical layout characteristics, and physiological parameters of teleworkers were measured. The results reveal that 92% of these professionals work 6 to 8 h daily with an ambient temperature between 25 and 30 °C, illumination levels in the range 11.20-290 Lux, and ELF-NIR > 0.4 µT. The majority of teleworkers are overweight (BMI > 24.9), and some of them have blood pressure higher than average values (129 mmHg for systolic and 84 mmHg for diastolic) in addition to a reduction in the number of red blood cells and hematocrits. Symptoms such as burning sensation, dryness, tired eyes, redness, itching, and photophobia (light sensitivity) show a 68.95% similarity. These HOs do not meet the required ergonomic and health standards.
Collapse
Affiliation(s)
- Luiz Bueno Silva
- Department of Production Engineering, Federal University of Paraíba, João Pessoa 58051-970, Brazil; (C.J.B.M.); (A.G.L.d.S.); (L.G.d.O.)
| | | | | | | |
Collapse
|
3
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Magnetic Fields of Devices during Electric Vehicle Charging: A Slovak Case Study. Symmetry (Basel) 2021. [DOI: 10.3390/sym13111979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of this contribution is to identify and quantify the magnetic field parameter (MP) devices for charging electric vehicles (EVs). An EV is a mobile device. The EV remains a mobile device even when it is charging in a fixed charging stand. ICNIRP and SBM standards apply to stable devices. A magnetic field (MF) creates local gradient fields that change cyclically over time near the charging stations. The rotating vector MF is a specific parameter. An MF is evaluated by its strength and spatial changes. The triaxial fluxgate magnetometer VEMA-041 was used for the measurements. The MF was observed in the frequency range of 0–250 Hz, and the magnetic induction density was from T 2 × 10−9 T to 2 × 10−5 T, with a sensitivity of 1.7 nT. The MF analysis was performed within the time and frequency range. The rotating vector MF was identified at the measurement points. Measurements were realized for the charge under the following parameters: cables, 600 A; transformer, 250 kVA (22 kV/400 V); a cab-fixed charging stand, and an AC/DC charger in the EV. EV charging was performed with 6.6 kW of power and 43-kW fast charging. The measured results were satisfactory, according to the ICNIRP and SBM 2015 standard. The values measured at a distance of 1 m from the wall of the transformer were BRMS < 2 µT. BRMS values < 3 µT were measured in the space of the cable’s entry into the distribution box. EV values should not be assessed under this regulation. However, an EV is a mobile device. In the selected EV sample (a first-generation Nissan Leaf), a frequency of 10 Hz and its multiples were detected during charging. The frequencies were generated in an AC/DC charger in the EV. These frequencies reached BRMS < 0.2 µT in the driver’s footwell. The maximum value of the MF rotating vector was Btotal < 0.3 µT and was directed to the crew area of the EV. The AC/DC charger generated BRMS = 0.95 µTin the driver’s footwell. It is necessary to look for new tools for evaluating MFs for EVs, such as the standards used for stable sources today. These standards should be based on dosimetric principles.
Collapse
|
5
|
Ates K, Carlak HF, Ozen S. Dosimetry analysis of the magnetic field of underground power cables and magnetic field mitigation using an electromagnetic shielding technique. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:1672-1682. [PMID: 33870853 DOI: 10.1080/10803548.2021.1918923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-ionizing dosimetry investigations of extremely low frequency (ELF) magnetic fields that are generated by underground power cables as well as the minimization of their health effects are significant topics handled by numerous researchers. In this study, ELF magnetic fields and current densities caused by three-phased underground transmission lines induced in the human model were examined utilizing both analytical and numerical methods. Analyses were carried out using a two-dimensional problem scenario for the comprehensive head and body model. The results of the finite element method (FEM)-based simulation studies and the analytical calculations are consistent with each other. Moreover, a magnetic field shielding method utilizing conductive material was presented in the study. The shielding technique performed with copper material was carried out to mitigate the magnetic field and possible dosimetry hazards in the ELF region. The proposed shield was a 4-mm reverse U-shaped copper material.
Collapse
Affiliation(s)
- Kayhan Ates
- Department of Electrical and Electronics Engineering, Akdeniz University, Turkey
| | - H Feza Carlak
- Department of Electrical and Electronics Engineering, Akdeniz University, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Akdeniz University, Turkey
| |
Collapse
|
6
|
Abstract
This is a review of the research on the genetic effects of non-ionizing electromagnetic field (EMF), mainly on radiofrequency radiation (RFR) and static and extremely low frequency EMF (ELF-EMF). The majority of the studies are on genotoxicity (e.g., DNA damage, chromatin conformation changes, etc.) and gene expression. Genetic effects of EMF depend on various factors, including field parameters and characteristics (frequency, intensity, wave-shape), cell type, and exposure duration. The types of gene expression affected (e.g., genes involved in cell cycle arrest, apoptosis and stress responses, heat-shock proteins) are consistent with the findings that EMF causes genetic damages. Many studies reported effects in cells and animals after exposure to EMF at intensities similar to those in the public and occupational environments. The mechanisms by which effects are induced by EMF are basically unknown. Involvement of free radicals is a likely possibility. EMF also interacts synergistically with different entities on genetic functions. Interactions, particularly with chemotherapeutic compounds, raise the possibility of using EMF as an adjuvant for cancer treatment to increase the efficacy and decrease side effects of traditional chemotherapeutic drugs. Other data, such as adaptive effects and mitotic spindle aberrations after EMF exposure, further support the notion that EMF causes genetic effects in living organisms.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Baaken D, Wollschläger D, Samaras T, Schüz J, Deltour I. Exposure To Extremely Low-Frequency Magnetic Fields In Low- And Middle-Income Countries: An Overview. RADIATION PROTECTION DOSIMETRY 2020; 191:ncaa172. [PMID: 33232971 PMCID: PMC7745074 DOI: 10.1093/rpd/ncaa172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
To compare extremely low-frequency magnetic field (ELF-MF) exposure in the general population in low- and middle-income countries (LMICs) with high-income countries (HIC), we carried out a systematic literature search resulting in 1483 potentially eligible articles; however, only 25 studies could be included in the qualitative synthesis. Studies showed large heterogeneity in design, exposure environment and exposure assessment. Exposure assessed by outdoor spot measurements ranged from 0.03 to 4μT. Average exposure by indoor spot measurements in homes ranged from 0.02 to 0.4μT. Proportions of homes exposed to a threshold of ≥0.3μT were many times higher in LMICs compared to HIC. Based on the limited data available, exposure to ELF-MF in LMICs appeared higher than in HIC, but a direct comparison is hampered by a lack of representative and systematic monitoring studies. Representative measurement studies on residential exposure to ELF-MF are needed in LMICs together with better standardisation in the reporting.
Collapse
Affiliation(s)
- Dan Baaken
- International Agency for Research on Cancer (IARC/WHO), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Daniel Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Theodoros Samaras
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC/WHO), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| | - Isabelle Deltour
- International Agency for Research on Cancer (IARC/WHO), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| |
Collapse
|
8
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|