1
|
Schwarze M, Hilgers G, Rabus H. Nanodosimetric investigation of the track structure of therapeutic carbon ion radiation part2: detailed simulation. Biomed Phys Eng Express 2024; 11:015018. [PMID: 39530642 DOI: 10.1088/2057-1976/ad9152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Objectivea previous study reported nanodosimetric measurements of therapeutic-energy carbon ions penetrating simulated tissue. The results are incompatible with the predicted mean energy of the carbon ions in the nanodosimeter and previous experiments with lower energy monoenergetic beams. The purpose of this study is to explore the origin of these discrepancies.Approachdetailed simulations using the Geant4 toolkit were performed to investigate the radiation field in the nanodosimeter and provide input data for track structure simulations, which were performed with a developed version of the PTra code.Main resultsthe Geant4 simulations show that with the narrow-beam geometry employed in the experiment, only a small fraction of the carbon ions traverse the nanodosimeter and their mean energy is between 12% and 30% lower than the values estimated using the SRIM software. Only about one-third or less of these carbon ions hit the trigger detector. The track structure simulations indicate that the observed enhanced ionization cluster sizes are mainly due to coincidences with events in which carbon ions miss the trigger detector. In addition, the discrepancies observed for high absorber thicknesses of carbon ions traversing the target volume could be explained by assuming an increase in thickness or interaction cross-sections in the order of 1%.Significancethe results show that even with strong collimation of the radiation field, future nanodosimetric measurements of clinical carbon ion beams will require large trigger detectors to register all events with carbon ions traversing the nanodosimeter. Energy loss calculations of the primary beam in the absorbers are insufficient and should be replaced by detailed simulations when planning such experiments. Uncertainties of the interaction cross-sections in simulation codes may shift the Bragg peak position.
Collapse
Affiliation(s)
- Miriam Schwarze
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Gerhard Hilgers
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| |
Collapse
|
2
|
Hilgers G, Schwarze M, Rabus H. Nanodosimetric investigation of the track structure of therapeutic carbon ion radiation part 1: measurement of ionization cluster size distributions. Biomed Phys Eng Express 2024; 10:065030. [PMID: 39288784 DOI: 10.1088/2057-1976/ad7bc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
At the Heidelberg Ion-Beam Therapy Center, the track structure of carbon ions of therapeutic energy after penetrating layers of simulated tissue was investigated for the first time. Measurements were conducted with carbon ion beams of different energies and polymethyl methacrylate (PMMA) absorbers of different thicknesses to realize different depths in the phantom along the pristine Bragg peak. Ionization cluster size (ICS) distributions resulting from the mixed radiation field behind the PMMA absorbers were measured using an ion-counting nanodosimeter. Two different measurements were carried out: (i) variation of the PMMA absorber thickness with constant carbon ion beam energy and (ii) combined variation of PMMA absorber thickness and carbon ion beam energy such that the kinetic energy of the carbon ions in the target volume is constant. The data analysis revealed unexpectedly high mean ICS values compared to stopping power calculations and the data measured at lower energies in earlier work. This suggests that in the measurements the carbon ion kinetic energies behind the PMMA absorber may have deviated considerably from the expected values obtained by the calculations. In addition, the results indicate the presence of a marked contribution of nuclear fragments to the measured ICS distributions, especially if the carbon ion does not cross the target volume.
Collapse
Affiliation(s)
- Gerhard Hilgers
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Miriam Schwarze
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| |
Collapse
|
3
|
Mietelska M, Pietrzak M, Bancer A, Ruciński A, Szefliński Z, Brzozowska B. Ionization Detail Parameters for DNA Damage Evaluation in Charged Particle Radiotherapy: Simulation Study Based on Cell Survival Database. Int J Mol Sci 2024; 25:5094. [PMID: 38791135 PMCID: PMC11121214 DOI: 10.3390/ijms25105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Details of excitation and ionization acts hide a description of the biological effects of charged particle traversal through living tissue. Nanodosimetry enables the introduction of novel quantities that characterize and quantify the particle track structure while also serving as a foundation for assessing biological effects based on this quantification. This presents an opportunity to enhance the planning of charged particle radiotherapy by taking into account the ionization detail. This work uses Monte Carlo simulations with Geant4-DNA code for a wide variety of charged particles and their radiation qualities to analyze the distribution of ionization cluster sizes within nanometer-scale volumes, similar to DNA diameter. By correlating these results with biological parameters extracted from the PIDE database for the V79 cell line, a novel parameter R2 based on ionization details is proposed for the evaluation of radiation quality in terms of biological consequences, i.e., radiobiological cross section for inactivation. By incorporating the probability p of sub-lethal damage caused by a single ionization, we address limitations associated with the usually proposed nanodosimetric parameter Fk for characterizing the biological effects of radiation. We show that the new parameter R2 correlates well with radiobiological data and can be used to predict biological outcomes.
Collapse
Affiliation(s)
- Monika Mietelska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland;
- Radiological Metrology and Biomedical Physics Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, 05-400 Świerk, Poland; (M.P.); (A.B.)
| | - Marcin Pietrzak
- Radiological Metrology and Biomedical Physics Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, 05-400 Świerk, Poland; (M.P.); (A.B.)
- Laboratory of Translational Imaging in Oncology, Inserm, Institut Curie, Université Paris Saclay, 91401 Orsay, France
| | - Aleksandr Bancer
- Radiological Metrology and Biomedical Physics Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, 05-400 Świerk, Poland; (M.P.); (A.B.)
| | | | | | - Beata Brzozowska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland;
| |
Collapse
|
4
|
Ngcezu SA, Rabus H. Investigation into the foundations of the track-event theory of cell survival and the radiation action model based on nanodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:559-578. [PMID: 34427743 PMCID: PMC8551112 DOI: 10.1007/s00411-021-00936-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This work aims at elaborating the basic assumptions behind the "track-event theory" (TET) and its derivate "radiation action model based on nanodosimetry" (RAMN) by clearly distinguishing between effects of tracks at the cellular level and the induction of lesions in subcellular targets. It is demonstrated that the model assumptions of Poisson distribution and statistical independence of the frequency of single and clustered DNA lesions are dispensable for multi-event distributions because they follow from the Poisson distribution of the number of tracks affecting the considered target volume. It is also shown that making these assumptions for the single-event distributions of the number of lethal and sublethal lesions within a cell would lead to an essentially exponential dose dependence of survival for practically relevant values of the absorbed dose. Furthermore, it is elucidated that the model equation used for consideration of repair within the TET is based on the assumption that DNA lesions induced by different tracks are repaired independently. Consequently, the model equation is presumably inconsistent with the model assumptions and requires an additional model parameter. Furthermore, the methodology for deriving model parameters from nanodosimetric properties of particle track structure is critically assessed. Based on data from proton track simulations it is shown that the assumption of statistically independent targets leads to the prediction of negligible frequency of clustered DNA damage. An approach is outlined how track structure could be considered in determining the model parameters, and the implications for TET and RAMN are discussed.
Collapse
Affiliation(s)
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt (PTB), 10587, Berlin, Germany.
| |
Collapse
|
5
|
Harrison RM, Ainsbury E, Alves J, Bottollier-Depois JF, Breustedt B, Caresana M, Clairand I, Fantuzzi E, Fattibene P, Gilvin P, Hupe O, Knežević Ž, Lopez MA, Olko P, Olšovcová V, Rabus H, Rühm W, Silari M, Stolarczyk L, Tanner R, Vanhavere F, Vargas A, Woda C. EURADOS STRATEGIC RESEARCH AGENDA 2020: VISION FOR THE DOSIMETRY OF IONISING RADIATION. RADIATION PROTECTION DOSIMETRY 2021; 194:42-56. [PMID: 33989429 PMCID: PMC8165425 DOI: 10.1093/rpd/ncab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 05/02/2023]
Abstract
Since 2012, the European Radiation Dosimetry Group (EURADOS) has developed its Strategic Research Agenda (SRA), which contributes to the identification of future research needs in radiation dosimetry in Europe. Continued scientific developments in this field necessitate regular updates and, consequently, this paper summarises the latest revision of the SRA, with input regarding the state of the art and vision for the future contributed by EURADOS Working Groups and through a stakeholder workshop. Five visions define key issues in dosimetry research that are considered important over at least the next decade. They include scientific objectives and developments in (i) updated fundamental dose concepts and quantities, (ii) improved radiation risk estimates deduced from epidemiological cohorts, (iii) efficient dose assessment for radiological emergencies, (iv) integrated personalised dosimetry in medical applications and (v) improved radiation protection of workers and the public. This SRA will be used as a guideline for future activities of EURADOS Working Groups but can also be used as guidance for research in radiation dosimetry by the wider community. It will also be used as input for a general European research roadmap for radiation protection, following similar previous contributions to the European Joint Programme for the Integration of Radiation Protection Research, under the Horizon 2020 programme (CONCERT). The full version of the SRA is available as a EURADOS report (www.eurados.org).
Collapse
Affiliation(s)
| | - E Ainsbury
- Public Health England, Chilton, Didcot, UK
| | - J Alves
- Instituto Superior Técnico (IST), CTN, Lisboa, Portugal
| | - J-F Bottollier-Depois
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - B Breustedt
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - I Clairand
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - E Fantuzzi
- ENEA - Radiation Protection Institute, Bologna, Italy
| | - P Fattibene
- Istituto Superiore di Sanità (ISS), Rome, Italy
| | - P Gilvin
- Public Health England, Chilton, Didcot, UK
| | - O Hupe
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Ž Knežević
- Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - M A Lopez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - P Olko
- Instytut Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN), Kraków, Poland
| | - V Olšovcová
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Dolní Břežany, Czech Republic
| | - H Rabus
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - W Rühm
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - M Silari
- CERN, 1211 Geneva 23, Switzerland
| | - L Stolarczyk
- Danish Centre for Particle Therapy, Aarhus, Denmark
- Instytut Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN), Kraków, Poland
| | - R Tanner
- Public Health England, Chilton, Didcot, UK
| | - F Vanhavere
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - A Vargas
- Institute of Energy Technologies, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - C Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| |
Collapse
|
6
|
Monini C, Cunha M, Chollier L, Testa E, Beuve M. Determination of the Effective Local Lethal Function for the NanOx Model. Radiat Res 2020; 193:331-340. [PMID: 32017667 DOI: 10.1667/rr15463.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NanOx is a biophysical model recently developed in the context of hadrontherapy to predict the cell survival probability from ionizing radiation. It postulates that this may be factorized into two independent terms describing the cell response to two classes of biological events that occur in the sequence of an irradiation: the local lethal events that occur at nanometric scale and can by themselves induce cell death, and the non-local lethal events that lead to cell death by an effect of accumulation and/or interaction at a larger scale. Here we address how local lethal events are modeled in terms of the inactivation of undifferentiated nanometric targets via an "effective local lethal function F", which characterizes the response of each cell line to the spectra of "restricted specific energy". F is initially determined as a linear combination of basis functions. Then, a parametric expression is used to reproduce the function's main features, a threshold and a saturation, while at the same time reducing the number of free parameters. This strategy was applied to three cell lines in response to ions of different type and energy, which allows for benchmarking of the α(LET) curves predicted with both effective local lethal functions against the experimental data.
Collapse
Affiliation(s)
- Caterina Monini
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Micaela Cunha
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Laurie Chollier
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Etienne Testa
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Michael Beuve
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| |
Collapse
|