1
|
Ma Y, Gao K, Sun X, Wang J, Yang Y, Wu J, Chai A, Yao L, Liu N, Yu H, Su Y, Lu T, Wang L, Yue W, Zhang X, Xu L, Zhang D, Li J. STON2 variations are involved in synaptic dysfunction and schizophrenia-like behaviors by regulating Syt1 trafficking. Sci Bull (Beijing) 2024; 69:1458-1471. [PMID: 38402028 DOI: 10.1016/j.scib.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Synaptic dysfunction is a core component of the pathophysiology of schizophrenia. However, the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood. The Stonin 2 (STON2) gene encodes a major adaptor for clathrin-mediated endocytosis (CME) of synaptic vesicles. In this study, we showed that the C-C (307Pro-851Ala) haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME. We found that schizophrenia-related STON2 variations led to protein dephosphorylation, which affected its interaction with synaptotagmin 1 (Syt1), a calcium sensor protein located in the presynaptic membrane that is critical for CME. STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission, short-term plasticity, and schizophrenia-like behaviors. Moreover, among seven antipsychotic drugs, patients with the C-C (307Pro-851Ala) haplotype responded better to haloperidol than did the T-A (307Ser-851Ser) carriers. The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice. Our findings demonstrated the effect of schizophrenia-related STON2 variations on synaptic dysfunction through the regulation of CME, which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Yuanlin Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; The First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Kai Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; Changping Laboratory, Beijing 102206, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jinxin Wang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jianying Wu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Anping Chai
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Nan Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hao Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yi Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lin Xu
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; Changping Laboratory, Beijing 102206, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
2
|
Jaehne EJ, Corrone M, van den Buuse M. Administering a Behavioral Test Battery in Rodents. Methods Mol Biol 2024; 2746:87-100. [PMID: 38070082 DOI: 10.1007/978-1-0716-3585-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Although animal models cannot broadly represent uniquely human psychiatric or psychological syndromes such as anxiety, depression, or schizophrenia, behavioral testing in rodents can be extremely helpful to investigate specific disease aspects and symptoms. Animal behavioral test batteries allow researchers to reveal specific behavioral changes in genetically modified mice or following targeted treatments or in response to environmental interventions. Examples of types of behaviors that can be combined in a test battery include anxiety-like behavior, learning and memory, depression-relevant behavior, social interaction, and locomotor hyperactivity. Here, we describe several commonly used and relatively simple behavioral tests which can be combined in the same cohort of animals.
Collapse
Affiliation(s)
- Emily J Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Arizanovska D, Emodogo JA, Lally AP, Palavicino-Maggio CB, Liebl DJ, Folorunso OO. Cross species review of the physiological role of D-serine in translationally relevant behaviors. Amino Acids 2023; 55:1501-1517. [PMID: 37833512 PMCID: PMC10689556 DOI: 10.1007/s00726-023-03338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Bridging the gap between preclinical models of neurological and psychiatric disorders with their human manifestations is necessary to understand their underlying mechanisms, identify biomarkers, and develop novel therapeutics. Cognitive and social impairments underlie multiple neuropsychiatric and neurological disorders and are often comorbid with sleep disturbances, which can exacerbate poor outcomes. Importantly, many symptoms are conserved between vertebrates and invertebrates, although they may have subtle differences. Therefore, it is essential to determine the molecular mechanisms underlying these behaviors across different species and their translatability to humans. Genome-wide association studies have indicated an association between glutamatergic gene variants and both the risk and frequency of psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. For example, changes in glutamatergic neurotransmission, such as glutamate receptor subtype N-methyl-D-aspartate receptor (NMDAR) hypofunction, have been shown to contribute to the pathophysiology of schizophrenia. Furthermore, in neurological disorders, such as traumatic brain injury and Alzheimer's disease, hyperactivation of NMDARs leads to synaptic damage. In addition to glutamate binding, NMDARs require the binding of a co-agonist D-serine or glycine to the GluN1 subunit to open. D-serine, which is racemized from L-serine by the neuronal enzyme serine racemase (SRR), and both SRR and D-serine are enriched in cortico-limbic brain regions. D-serine is critical for complex behaviors, such as cognition and social behavior, where dysregulation of its synthesis and release has been implicated in many pathological conditions. In this review, we explore the role of D-serine in behaviors that are translationally relevant to multiple psychiatric and neurological disorders in different models across species.
Collapse
Affiliation(s)
- Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jada A Emodogo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Anna P Lally
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, USA
| | - Caroline B Palavicino-Maggio
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Neurobiological Mechanisms of Aggression Laboratory, McLean Hospital, Belmont, MA, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
4
|
Corrone M, Ratnayake R, de Oliveira N, Jaehne EJ, van den Buuse M. Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: interaction with brain-derived neurotrophic factor Val66Met genotype. Behav Pharmacol 2023; 34:20-36. [PMID: 36373697 DOI: 10.1097/fbp.0000000000000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic methamphetamine (Meth) abuse may induce psychosis similar to that observed in schizophrenia. Brain-derived neurotrophic factor (BDNF) has been implicated in the development of psychosis. We have previously shown long-term protein expression changes in mice treated chronically with Meth depending on BDNF Val66Met genotype. The aim of this study was to investigate if these protein expression changes were associated with differential changes in a range of behavioural paradigms for cognition, anxiety, social and other behaviours. Male and female Val/Val, Val/Met and Met/Met mice were treated with an escalating Meth dose protocol from 6 to 9 weeks of age, with controls receiving saline injections. Several overlapping cohorts were tested in the Y-maze for short-term spatial memory, novel-object recognition test, context and cued fear conditioning, sociability and social preference, elevated plus maze for anxiety-like behaviour and prepulse inhibition (PPI) of acoustic startle. Finally, the animals were assessed for spontaneous exploratory locomotor activity and acute Meth-induced locomotor hyperactivity. Acute Meth caused significantly greater locomotor hyperactivity in mice previously treated with the drug than in saline-pretreated controls. Meth-pretreated female mice showed a mild increase in spontaneous locomotor activity. There were no Meth-induced deficits in any of the other behavioural tests. Val/Met mice showed higher overall social investigation time and lower PPI compared with the Val/Val genotype independent of pretreatment. These results show limited long-term effects of chronic Meth on a range of cognitive, affective and social behaviours despite marked drug-induced locomotor sensitization in mice. There was no interaction with BDNF Val66Met genotype.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
5
|
Increased self-triggered vocalizations in an epidermal growth factor-induced rat model for schizophrenia. Sci Rep 2022; 12:12917. [PMID: 35902695 PMCID: PMC9334381 DOI: 10.1038/s41598-022-17174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Rats elicit two types of ultrasonic vocalizations (USVs), positive (30–80 kHz; high pitch) and negative (10–30 kHz; low pitch) voices. As patients with schizophrenia often exhibit soliloquy-like symptoms, we explored whether an animal model for schizophrenia is similarly characterized by such self-triggered vocalizations. We prepared the animal model by administering an inflammatory cytokine, epidermal growth factor (EGF), to rat neonates, which later develop behavioral and electroencephalographic deficits relevant to schizophrenia. EGF model rats and controls at young (8–10 weeks old) and mature (12–14 weeks old) adult stages were subjected to acclimation, female pairing, and vocalization sessions. In acclimation sessions, low pitch USVs at the mature adult stage were more frequent in EGF model rats than in controls. In the vocalization session, the occurrences of low pitch self-triggered USVs were higher in EGF model rats in both age groups, although this group difference was eliminated by their risperidone treatment. Unlike conventional negative USVs of rats, however, the present low pitch self-triggered USVs had short durations of 10–30 ms. These results suggest the potential that self-triggered vocalization might serve as a translatable pathological trait of schizophrenia to animal models.
Collapse
|
6
|
Interference of commissural connections through the genu of the corpus callosum specifically impairs sensorimotor gating. Behav Brain Res 2021; 411:113383. [PMID: 34048871 DOI: 10.1016/j.bbr.2021.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022]
Abstract
White matter abnormalities in schizophrenic patients are characterized as regional tract-specific. Myelin loss at the genu of the corpus callosum (GCC) is one of the most consistent findings in schizophrenic patients across the different populations. We characterized the axons that pass through the GCC by stereotactically injecting an anterograde axonal tracing viral vector into the forceps minor of the corpus callosum in one hemisphere, and identified the homotopic brain structures that have commissural connections in the two hemispheres of the prefrontal cortex, including the anterior cingulate area, the prelimbic area, the secondary motor area, and the dorsal part of the agranular insular area, along with commissural connections with the primary motor area, caudoputamen, and claustrum. To investigate whether dysmyelination in these commissural connections is critical for the development of schizophrenia symptoms, we generated a mouse model with focal demyelination at the GCC by stereotactically injecting demyelinating agent lysolecithin into this site, and tested these mice in a battery of behavioral tasks that are used to model the schizophrenia-like symptom domains. We found that demyelination at the GCC influenced neither the social interest or mood state, nor the locomotive activity or motor coordination. Nevertheless, it specifically reduced the prepulse inhibition of acoustic startle that is a well-known measure of sensorimotor gating. This study advances our understanding of the pathophysiological contributions of the GCC-specific white matter lesion to the related disease, and demonstrates an indispensable role of interhemispheric communication between the frontal cortices for the top-down regulation of the sensorimotor gating.
Collapse
|
7
|
Rampino A, Torretta S, Gelao B, Veneziani F, Iacoviello M, Marakhovskaya A, Masellis R, Andriola I, Sportelli L, Pergola G, Minelli A, Magri C, Gennarelli M, Vita A, Beaulieu JM, Bertolino A, Blasi G. Evidence of an interaction between FXR1 and GSK3β polymorphisms on levels of Negative Symptoms of Schizophrenia and their response to antipsychotics. Eur Psychiatry 2021; 64:e39. [PMID: 33866994 PMCID: PMC8260562 DOI: 10.1192/j.eurpsy.2021.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ. FXR1 protein is regulated by glycogen synthase kinase-3β (GSK3β), which has been implicated in pathophysiology of SCZ and response to antipsychotics (APs). rs496250 and rs12630592, two eQTLs (Expression Quantitative Trait Loci) of FXR1 and GSK3β, respectively, interact on emotion stability and amygdala/prefrontal cortex activity during emotion processing. These two phenotypes are associated with Negative Symptoms (NSs) of SCZ suggesting that the interaction between these SNPs may also affect NS severity and responsiveness to medication. METHODS To test this hypothesis, in two independent samples of patients with SCZ, we investigated rs496250 by rs12630592 interaction on NS severity and response to APs. We also tested a putative link between APs administration and FXR1 expression, as already reported for GSK3β expression. RESULTS We found that rs496250 and rs12630592 interact on NS severity. We also found evidence suggesting interaction of these polymorphisms also on response to APs. This interaction was not present when looking at positive and general psychopathology scores. Furthermore, chronic olanzapine administration led to a reduction of FXR1 expression in mouse frontal cortex. DISCUSSION Our findings suggest that, like GSK3β, FXR1 is affected by APs while shedding new light on the role of the FXR1/GSK3β pathway for NSs of SCZ.
Collapse
Affiliation(s)
- Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Federica Veneziani
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Matteo Iacoviello
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Rita Masellis
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Ileana Andriola
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Leonardo Sportelli
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Vita
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
8
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
9
|
The Effect of Chronic Methamphetamine Treatment on Schizophrenia Endophenotypes in Heterozygous Reelin Mice: Implications for Schizophrenia. Biomolecules 2020; 10:biom10060940. [PMID: 32580454 PMCID: PMC7355789 DOI: 10.3390/biom10060940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 01/29/2023] Open
Abstract
Reelin has been implicated in the development of schizophrenia but the mechanisms involved in this interaction remain unclear. Chronic methamphetamine (Meth) use may cause dopaminergic sensitisation and psychosis and has been proposed to affect brain dopamine systems similarly to changes seen in schizophrenia. We compared the long-term effect of chronic Meth treatment between heterozygous reelin mice (HRM) and wildtype controls (WT) with the aim of better understanding the role of reelin in schizophrenia. Meth pretreatment induced sensitisation to the effect of an acute Meth challenge on locomotor activity, but it had no effect on baseline PPI or sociability and social preference. In all behavioural models, HRM did not significantly differ from WT at baseline, except spontaneous exploratory locomotor activity which was higher in HRM than WT, and sociability which was enhanced in HRM. Locomotor hyperactivity sensitisation was not significantly different between HRM and WT. Chronic Meth treatment reduced spontaneous locomotor activity to the level of WT. No deficits in PPI or social behaviour were induced by chronic Meth pretreatment in either strain. In conclusion, these data do not support a role of reelin in schizophrenia, at least not in HRM and in the methamphetamine sensitisation model.
Collapse
|
10
|
Büki A, Horvath G, Benedek G, Ducza E, Kekesi G. Impaired GAD1 expression in schizophrenia‐related WISKET rat model with sex‐dependent aggressive behavior and motivational deficit. GENES BRAIN AND BEHAVIOR 2018; 18:e12507. [DOI: 10.1111/gbb.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Affiliation(s)
- A. Büki
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Horvath
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Benedek
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - E. Ducza
- Department of Pharmacodynamics and BiopharmacyFaculty of Pharmacy, University of Szeged Szeged Hungary
| | - G. Kekesi
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| |
Collapse
|
11
|
Konefal SC, Stellwagen D. Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0160. [PMID: 28093554 DOI: 10.1098/rstb.2016.0160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine tumour necrosis factor-alpha (TNFα) has long been characterized for its role in the innate immune system, but more recently has been found to have a distinct role in the nervous system that does not overlap with other proinflammatory cytokines. Through regulation of neuronal glutamate and GABA receptor trafficking, TNF mediates a homeostatic form of synaptic plasticity, but plays no direct role in Hebbian forms of plasticity. As yet, there is no evidence to suggest that this adaptive plasticity plays a significant role in normal development, but it does maintain neuronal circuit function in the face of several types of disruption. This includes developmental plasticity in primary sensory cortices, as well as modulating the response to antidepressants, chronic antipsychotics and drugs of abuse. TNF is also a prominent component of the neuroinflammation occurring in most neuropathologies, but the role of TNF-mediated synaptic plasticity in this context remains to be determined. We tested this in a maternal immune activation (MIA) model of neurodevelopmental disorders. Using TNF-/- mice, we observed that TNF is not required for the expression of abnormal social or anxious behaviour in this model. This indicates that TNF does not uniquely contribute to the development of neuronal dysfunction in this model, and suggests that during neuroinflammatory events, compensation between the various proinflammatory cytokines is the norm.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Sarah C Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
12
|
Anxiety does not contribute to social withdrawal in the subchronic phencyclidine rat model of schizophrenia. Behav Pharmacol 2017; 28:512-520. [PMID: 28704273 DOI: 10.1097/fbp.0000000000000325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Social withdrawal should not be considered a direct measure of the negative symptoms of schizophrenia as it may result not only from asociality (primary negative symptom) but also from other altered processes such as anxiety. To understand the contribution of these two factors to social deficit, we investigated whether the social withdrawal observed in the subchronic phencyclidine (PCP) rat model of schizophrenia could be attributed to increased anxiety. Compared to saline controls, PCP-treated rats (5 mg/kg, twice daily for 7 days, followed by a washout period) spent significantly less time in social interaction, but did not show anxiety-like behaviors in different relevant behavioral paradigms. In addition, their social deficit was not affected by a behavioral procedure known to reduce anxiety-like behavior (repeated exposure to the same partner) nor by systemic administration of the classical anxiolytic diazepam. In contrast, PCP-induced social withdrawal was reversed by the cannabinoid agonist CP55,940, a drug with known anxiogenic properties. Furthermore, when using the social approach task, PCP-treated animals performed similarly to control animals treated with diazepam, but not to those treated with the anxiogenic compound pentylenetetrazole. Taken together, our results indicate that PCP-induced social withdrawal cannot be attributed to increased anxiety. These data are discussed in the context of primary versus secondary negative symptoms and the deficit syndrome of schizophrenia.
Collapse
|
13
|
Glerup S, Bolcho U, Mølgaard S, Bøggild S, Vaegter CB, Smith AH, Nieto-Gonzalez JL, Ovesen PL, Pedersen LF, Fjorback AN, Kjolby M, Login H, Holm MM, Andersen OM, Nyengaard JR, Willnow TE, Jensen K, Nykjaer A. SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Mol Psychiatry 2016; 21:1740-1751. [PMID: 27457814 DOI: 10.1038/mp.2016.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficit-hyperactivity disorder. Here we report that hippocampal N-methyl-d-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75NTR, required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75NTR was static, SorCS2 bound to TrkB in an activity-dependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2-/- mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75NTR and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.
Collapse
Affiliation(s)
- S Glerup
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - U Bolcho
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Mølgaard
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Bøggild
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A H Smith
- Yale School of Medicine, Interdepartmental Neuroscience Program and Medical Scientist Training Program, New Haven, CT, USA
- Department of Psychiatry, VAT CT Healthcare Center, and Yale School of Medicine, New Haven, CT, USA
| | | | - P L Ovesen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - L F Pedersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A N Fjorback
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M Kjolby
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - H Login
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M M Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - O M Andersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - J R Nyengaard
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, Aarhus C, Denmark
| | - T E Willnow
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - K Jensen
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - A Nykjaer
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
14
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
15
|
Sato C, Hane M, Kitajima K. Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders. Biochim Biophys Acta Gen Subj 2016; 1860:1739-52. [PMID: 27105834 DOI: 10.1016/j.bbagen.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique and functionally important glycan, particularly in vertebrate brains. It is involved in higher brain functions such as learning, memory, and social behaviors. Recently, an association between several genetic variations and single nucleotide polymorphisms (SNPs) of ST8SIA2/STX, one of two polysialyltransferase genes in vertebrates, and psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD), was reported based on candidate gene approaches and genome-wide studies among normal and mental disorder patients. It is of critical importance to determine if the reported mutations and SNPs in ST8SIA2 lead to impairments of the structure and function of polySia, which is the final product of ST8SIA2. To date, however, only a few such forward-directed studies have been conducted. In addition, the molecular mechanisms underlying polySia-involved brain functions remain unknown, although polySia was shown to have an anti-adhesive effect. In this report, we review the relationships between psychiatric disorders and polySia and/or ST8SIA2, and describe a new function of polySia as a regulator of neurologically active molecules, such as brain-derived neurotrophic factor (BDNF) and dopamine, which are deeply involved in psychiatric disorders. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Manning EE, van den Buuse M. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure. Behav Brain Res 2016; 305:181-5. [PMID: 26965573 DOI: 10.1016/j.bbr.2016.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 11/29/2022]
Abstract
Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.
Collapse
Affiliation(s)
- Elizabeth E Manning
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia; Translational OCD Laboratory, Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Maarten van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
| |
Collapse
|
17
|
Flores G, Morales-Medina JC, Diaz A. Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res 2016; 301:190-203. [DOI: 10.1016/j.bbr.2015.12.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
|
18
|
Seillier A, Giuffrida A. Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: Possible involvement of the endocannabinoid system. Eur Neuropsychopharmacol 2016; 26:298-309. [PMID: 26706691 PMCID: PMC4762710 DOI: 10.1016/j.euroneuro.2015.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/13/2015] [Accepted: 12/04/2015] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that social withdrawal in the phencyclidine (PCP) rat model of schizophrenia results from deficient endocannabinoid-induced activation of CB1 receptors. To understand the underlying cognitive mechanisms of the social deficit in PCP-treated rats, we examined the impact of pharmacological manipulation of the endocannabinoid system on sociability (i.e. social approach) and social novelty preference (which relies on social recognition). Control rats showed a clear preference for a "social" cage (i.e. unfamiliar stimulus rat placed under a wire mesh cage) versus an "empty" cage, and spent more time exploring a "novel" cage (i.e. new stimulus rat) versus a "familiar" cage. In contrast, rats receiving PCP (5 mg/kg, b.i.d. for 7 days, followed by a 7 day-washout period) showed intact sociability, but lacked social novelty preference. This PCP-induced deficit was due to increased activity at CB1 receptors as it was reversed by systemic administration of the CB1 antagonist AM251 (1 mg/kg). In agreement with this hypothesis, the cannabinoid agonist CP55,940 (0.003-0.03 mg/kg) dose-dependently suppressed social novelty preference in control animals without affecting sociability. Taken together, these data suggest that PCP-treated rats have a deficit in social cognition, possibly induced by increased stimulation of CB1 receptors. This deficit, however, is distinct from the social withdrawal previously observed in these animals, as the latter is due to deficient, rather than increased, CB1 stimulation.
Collapse
Affiliation(s)
- Alexandre Seillier
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | - Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| |
Collapse
|
19
|
Dachtler J, Elliott C, Rodgers RJ, Baillie GS, Clapcote SJ. Missense mutation in DISC1 C-terminal coiled-coil has GSK3β signaling and sex-dependent behavioral effects in mice. Sci Rep 2016; 6:18748. [PMID: 26728762 PMCID: PMC4700527 DOI: 10.1038/srep18748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal 'head' domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1's C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1(D453G) mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1(D453G) mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1(D453G) mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans.
Collapse
Affiliation(s)
- James Dachtler
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christina Elliott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - R John Rodgers
- Institute of Psychological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
20
|
Culig L, Belzung C. Modeling Affective Symptoms of Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility. Sci Rep 2015; 5:16778. [PMID: 26608841 PMCID: PMC4660359 DOI: 10.1038/srep16778] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/20/2015] [Indexed: 01/21/2023] Open
Abstract
Dysfunction of parvalbumin (PV)-positive GABAergic interneurons (PVIs) within the prefrontal cortex (PFC) has been implicated in schizophrenia pathology. It is however unclear, how impaired signaling of these neurons may contribute to PFC dysfunction. To identify how PVIs contribute to PFC-dependent behaviors we inactivated PVIs in the PFC in mice using region- and cell-type-selective expression of tetanus toxin light chain (TeLC) and compared the functional consequences of this manipulation with non-cell-type-selective perturbations of the same circuitry. By sampling for behavioral alterations that map onto distinct symptom categories in schizophrenia, we show that dysfunction of PVI signaling in the PFC specifically produces deficits in the cognitive domain, but does not give rise to PFC-dependent correlates of negative or positive symptoms. Our results suggest that distinct aspects of the complex symptomatology of PFC dysfunction in schizophrenia can be attributed to specific prefrontal circuit elements.
Collapse
|
22
|
Park SJ, Lee JY, Kim SJ, Choi SY, Yune TY, Ryu JH. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci Rep 2015; 5:8502. [PMID: 25687169 PMCID: PMC4330527 DOI: 10.1038/srep08502] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/22/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Sang Jeong Kim
- Department of Physiology, Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Se-Young Choi
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Korea
| | - Tae Young Yune
- 1] Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Korea [2] Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Jong Hoon Ryu
- 1] Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Korea [2] Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
23
|
Methods for Dissecting Motivation and Related Psychological Processes in Rodents. Curr Top Behav Neurosci 2015; 27:451-70. [PMID: 26272262 DOI: 10.1007/7854_2015_380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Motivational impairments are increasingly recognized as being critical to functional deficits and decreased quality of life in patients diagnosed with psychiatric disease. Accordingly, much preclinical research has focused on identifying psychological and neurobiological processes which underlie motivation . Inferring motivation from changes in overt behavioural responding in animal models, however, is complicated, and care must be taken to ensure that the observed change is accurately characterized as a change in motivation , and not due to some other, task-related process. This chapter discusses current methods for assessing motivation and related psychological processes in rodents. Using an example from work characterizing the motivational impairments in an animal model of the negative symptoms of schizophrenia, we highlight the importance of careful and rigorous experimental dissection of motivation and the related psychological processes when characterizing motivational deficits in rodent models . We suggest that such work is critical to the successful translation of preclinical findings to therapeutic benefits for patients.
Collapse
|
24
|
Arime Y, Fukumura R, Miura I, Mekada K, Yoshiki A, Wakana S, Gondo Y, Akiyama K. Effects of background mutations and single nucleotide polymorphisms (SNPs) on the Disc1 L100P behavioral phenotype associated with schizophrenia in mice. Behav Brain Funct 2014; 10:45. [PMID: 25487992 PMCID: PMC4295473 DOI: 10.1186/1744-9081-10-45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023] Open
Abstract
Background Disrupted-in-schizophrenia 1 (DISC1) is a promising candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder and major depression. Several previous studies reported that mice with N-ethyl-N-nitrosourea (ENU)-induced L100P mutation in Disc1 showed some schizophrenia-related behavioral phenotypes. This line originally carried several thousands of ENU-induced point mutations in the C57BL/6 J strain and single nucleotide polymorphisms (SNPs) from the DBA/2 J inbred strain. Methods To investigate the effect of Disc1 L100P, background mutations and SNPs on phenotypic characterization, we performed behavioral analyses to better understand phenotypes of Disc1 L100P mice and comprehensive genetic analyses using whole-exome resequencing and SNP panels to map ENU-induced mutations and strain-specific SNPs, respectively. Results We found no differences in spontaneous or methamphetamine-induced locomotor activity, sociability or social novelty preference among Disc1 L100P/L100P, L100P/+ mutants and wild-type littermates. Whole-exome resequencing of the original G1 mouse identified 117 ENU-induced variants, including Disc1 L100P per se. Two females and three males from the congenic L100P strain after backcrossing to C57BL/6 J were deposited to RIKEN BioResource Center in 2008. We genotyped them with DBA/2 J × C57BL/6 J SNPs and found a number of the checked SNPs still remained. Conclusion These results suggest that causal attribution of the discrepancy in behavioral phenotypes to the Disc1 L100P mutant mouse line existing among different research groups needs to be cautiously investigated in further study by taking into account the effect(s) of other ENU-induced mutations and/or SNPs from DBA/2 J. Electronic supplementary material The online version of this article (doi:10.1186/1744-9081-10-45) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 800 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.
| |
Collapse
|
25
|
Wolf DH, Satterthwaite TD, Kantrowitz JJ, Katchmar N, Vandekar L, Elliott MA, Ruparel K. Amotivation in schizophrenia: integrated assessment with behavioral, clinical, and imaging measures. Schizophr Bull 2014; 40:1328-37. [PMID: 24657876 PMCID: PMC4193711 DOI: 10.1093/schbul/sbu026] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Motivational deficits play a central role in disability caused by schizophrenia and constitute a major unmet therapeutic need. Negative symptoms have previously been linked to hypofunction in ventral striatum (VS), a core component of brain motivation circuitry. However, it remains unclear to what extent this relationship holds for specific negative symptoms such as amotivation, and this question has not been addressed with integrated behavioral, clinical, and imaging measures. Here, 41 individuals with schizophrenia and 37 controls performed a brief, computerized progressive ratio task (PRT) that quantifies effort exerted in pursuit of monetary reward. Clinical amotivation was assessed using the recently validated Clinical Assessment Interview for Negative Symptoms (CAINS). VS function was probed during functional magnetic resonance imaging using a monetary guessing paradigm. We found that individuals with schizophrenia had diminished motivation as measured by the PRT, which significantly and selectively related to clinical amotivation as measured by the CAINS. Critically, lower PRT motivation in schizophrenia was also dimensionally related to VS hypofunction. Our results demonstrate robust dimensional associations between behavioral amotivation, clinical amotivation, and VS hypofunction in schizophrenia. Integrating behavioral measures such as the PRT will facilitate translational efforts to identify biomarkers of amotivation and to assess response to novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA;,*To whom correspondence should be addressed; Department of Psychiatry, University of Pennsylvania, 10th Floor Gates Building, 3400 Spruce Street, Philadelphia, PA 19104, US; tel: (215)-662-3692, fax: (215)-662-7903, e-mail:
| | | | | | - Natalie Katchmar
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Lillie Vandekar
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Mark A. Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Nunes EA, Hallak JEC. Modelos animais em psiquiatria: avanços e desafios. REVISTA LATINOAMERICANA DE PSICOPATOLOGIA FUNDAMENTAL 2014. [DOI: 10.1590/1415-4714.2014v17n3p528-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivos: Discutir os avanços e limitações do uso dos modelos animais nos transtornos psiquiátricos. Método: Uma revisão narrativa de artigos. Resultados: Diferentes modelos animais atualmente demonstram validade adequada para características específicas de determinados transtornos mentais. Conclusão: Resguardadas as devidas limitações que impossibilitam mimetizar sintomas psicopatológicos complexos em modelos animais, estes seguem como úteis ferramentas de estudo na psiquiatria.
Collapse
|
27
|
Gil-Pisa I, Cebrián C, Ortega JE, Meana JJ, Sulzer D. Cytokine pathway disruption in a mouse model of schizophrenia induced by Munc18-1a overexpression in the brain. J Neuroinflammation 2014; 11:128. [PMID: 25069615 PMCID: PMC4128549 DOI: 10.1186/1742-2094-11-128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/26/2014] [Indexed: 01/17/2023] Open
Abstract
Background An accumulating body of evidence points to the significance of neuroinflammation and immunogenetics in schizophrenia, and an imbalance of cytokines in the central nervous system (CNS) has been suggested to be associated with the disorder. Munc18-overexpressing mice (Munc18-OE) have provided a model for the study of the alterations that may underlie the symptoms of subjects with schizophrenia. The aim of the present study was to elucidate the involvement of neuroinflammation and cytokine imbalance in this model. Methods Cytokines were evaluated in the cortex and the striatum of Munc18-OE and wild-type (WT) mice by enzyme-linked immunosorbent assay (ELISA). Protein levels of specific microglia and macrophage, astrocytic and neuroinflammation markers were quantified by western blot in the cortex and the striatum of Munc18-OE and WT mice. Results Each cytokine evaluated (Interferon-gamma (IFN-γ), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-2 (IL-2) and CCL2 chemokine) was present at higher levels in the striatum of Munc18-OE mice than WT. Cortical TNF-α and IL-2 levels were significantly lower in Munc18-OE mice than WT mice. The microglia and macrophage marker CD11b was lower in the cortexes of Munc18-OE mice than WT, but no differences were observed in the striatum. Glial Fibrillary Acidic Protein (GFAP) and Nuclear Factor-kappaB (NF-κB)p65 levels were not different between the groups. Interleukin-1beta (IL-1β) and IL-6 levels were beneath detection limits. Conclusions The disrupted levels of cytokines detected in the brain of Munc18-OE mice was found to be similar to clinical reports and endorses study of this type for analysis of this aspect of the disorder. The lower CD11b expression in the cortex but not in the striatum of the Munc18-OE mice may reflect differences in physiological activity. The cytokine expression pattern observed in Munc18-OE mice is similar to a previously published model of schizophrenia caused by maternal immune activation. Together, these data suggest a possible role for an immune imbalance in this disorder.
Collapse
Affiliation(s)
- Itziar Gil-Pisa
- Department of Neurology, Columbia University Medical Center, 710 W, 168th Street, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
28
|
Genetically modified mice related to schizophrenia and other psychoses: seeking phenotypic insights into the pathobiology and treatment of negative symptoms. Eur Neuropsychopharmacol 2014; 24:800-21. [PMID: 24290531 DOI: 10.1016/j.euroneuro.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/11/2013] [Accepted: 08/31/2013] [Indexed: 01/05/2023]
Abstract
Modelling negative symptoms in any animal model, particularly in mice mutant for genes related to schizophrenia, is complicated by the absence of the following key elements that might assist in developing validation criteria: clinical clarity surrounding this symptom constellation; any clear association between negative symptoms and pathological signature(s) in the brain; and therapeutic strategies with material clinical efficacy against these symptoms. In this review, the application of mutant mouse models to the study of negative symptoms is subjected to critical evaluation, focussing on the following challenges: (a) conceptual issues relating to negative symptoms and their evaluation in mutant models; (b) measurement of negative symptoms in mice, in terms of social behaviour, motivational deficits/avolition and anhedonia; (c) studies in mutants with disruption of genes either regulating aspects of neurotransmission implicated in schizophrenia or associated with risk for psychotic illness; (d) the disaggregation of behavioural phenotypes into underlying pathobiological processes, as a key to the development of new therapeutic strategies for negative symptoms. Advances in genetic and molecular technologies are facilitating these processes, such that more accurate models of putative schizophrenia-linked genetic abnormalities are becoming feasible. This progress in terms of mimicking the genetic contribution to distinct domains of psychopathology associated with psychotic illness must be matched by advances in conceptual/clinical relevance and sensitivity/specificity of phenotypic assessments at the level of behaviour.
Collapse
|
29
|
Moser P. Evaluating negative-symptom-like behavioural changes in developmental models of schizophrenia. Eur Neuropsychopharmacol 2014; 24:774-87. [PMID: 24332891 DOI: 10.1016/j.euroneuro.2013.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/18/2013] [Accepted: 11/17/2013] [Indexed: 01/22/2023]
Abstract
Many lines of evidence suggest that schizophrenia has a major developmental component and that environmental factors that disrupt key stages of development, such as maternal stress during pregnancy as a result of infection or malnutrition, can increase the risk of developing schizophrenia in later life. This review examines how non-clinical neurodevelopmental models pertinent to schizophrenia have been evaluated for their ability to reproduce behavioural deficits related to the negative symptoms of schizophrenia. The more frequently used are the prenatal application of the mitotoxic agent methylazoxymethanol, prenatal immune challenge and the neonatal ventral hippocampus lesion model. In general they have been extensively evaluated in models considered relevant to positive symptoms of schizophrenia. In contrast, very few studies have examined tests related to negative symptoms and, when they have, it has almost exclusively been a social interaction model. Other aspects related to negative symptoms such as anhedonia, affective flattening and avolition have almost never been studied. Further studies examining other components of negative symptomatology are needed to more clearly associate these deficits with a schizophrenia-like profile as social withdrawal is a hallmark of many disorders. Although there are no truly effective treatments for negative symptoms, better characterisation with a broader range of drugs used in schizophrenia will be necessary to better evaluate the utility of these models. In summary, developmental models of schizophrenia have been extensively studied as models of positive symptoms but, given the unmet need in the clinic, the same effort now needs to be made with regard to negative symptoms.
Collapse
Affiliation(s)
- Paul Moser
- Centre de Recherche Pierre Fabre 17, Avenue Jean Moulin, 81106 Castres Cédex, France.
| |
Collapse
|
30
|
Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S, Fellig Y, Cohen H, Lory O, Goelman G, Lerer B. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19:243-52. [PMID: 24042478 DOI: 10.1038/mp.2013.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- A Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - T Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Slonimsky
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E C Broner
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - L Greenbaum
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Abedat
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beersheba, Israel
| | - O Lory
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - G Goelman
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - B Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
31
|
McGonigle P. Animal models of CNS disorders. Biochem Pharmacol 2014; 87:140-9. [DOI: 10.1016/j.bcp.2013.06.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022]
|
32
|
Miyamoto Y, Nitta A. Behavioral Phenotypes for Negative Symptoms in Animal Models of Schizophrenia. J Pharmacol Sci 2014; 126:310-20. [DOI: 10.1254/jphs.14r02cr] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
Abstract
One of the main obstacles faced by translational neuroscience is the development of animal models of psychiatric disorders. Behavioural pharmacology studies indicate that psychedelic drugs, such as lysergic acid diethylamide (LSD) and dissociative drugs, such as phencyclidine (PCP), induce in healthy human volunteers psychotic and cognitive symptoms that resemble some of those observed in schizophrenia patients. Serotonin 5-HT2A and metabotropic glutamate 2 receptors have been involved in the mechanism of action of psychedelic and dissociative drugs. Here we review recent advances using LSD-like and PCP-like drugs in rodent models that implicate these receptors in the neurobiology of schizophrenia and its treatment.
Collapse
|
34
|
Hanks AN, Dlugolenski K, Hughes ZA, Seymour PA, Majchrzak MJ. Pharmacological disruption of mouse social approach behavior: Relevance to negative symptoms of schizophrenia. Behav Brain Res 2013; 252:405-14. [DOI: 10.1016/j.bbr.2013.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022]
|
35
|
O'Tuathaigh CMP, Moran PM, Waddington JL. Genetic models of schizophrenia and related psychotic disorders: progress and pitfalls across the methodological "minefield". Cell Tissue Res 2013; 354:247-57. [PMID: 23715722 DOI: 10.1007/s00441-013-1652-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
The challenge of modelling a complex and multifaceted disorder such as schizophrenia is epitomised by the considerable degree of phenotypic variability described in patients and by the absence of specific and consistent neuropathological biomarkers. The pattern and severity of a range of clinical features, including florid psychotic symptoms such as hallucinations and delusions, negative symptoms and cognitive dysfunction, together with age at onset, course of illness and other indices, can vary greatly between individual patients. The undefined nature of the relationship between diagnosis and underlying aetiology has complicated research in the field of clinical and preclinical neuroscience, thereby making it difficult to generate or evaluate appropriate disease models of schizophrenia. In the present review, we explore those conceptual and practical issues that relate specifically to the genetic modelling of schizophrenia and related disorders in rodents. Practical issues that impact on the robustness of endophenotypic findings and their translational relevance are discussed with reference to evidence from selective genetic models of candidate risk genes and copy number variants implicated in schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland,
| | | | | |
Collapse
|
36
|
Razafsha M, Behforuzi H, Harati H, Wafai RA, Khaku A, Mondello S, Gold MS, Kobeissy FH. An updated overview of animal models in neuropsychiatry. Neuroscience 2013; 240:204-18. [PMID: 23473749 DOI: 10.1016/j.neuroscience.2013.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 12/20/2022]
Abstract
Animal models are vital tools to study the genetic, molecular, cellular, and environmental parameters involved in several neuropsychiatric disorders. Over the years, these models have expanded our understanding of the pathogenesis of many neuropsychiatric disorders and neurodegenerative diseases. Although animal models have been widely used in psychiatry, and despite several years of extensive research with these models, their validity is still being investigated and presents a challenge to both investigators and clinicians as well. In this concise review, we will describe the most common animal models utilized in neuropsychiatry, including animal models of depression, anxiety, and psychosis. In addition, we will also discuss the validity and reliability of these models and current challenges in this domain. Furthermore, this work will discuss the role of gene-environment interaction as an additional contributing factor that modulates neuropsychological outcome and its implication on animal models. This overview will give a succinct summary of animal models in psychiatry which will be useful both to the seasoned researcher, as well as novices in the field.
Collapse
Affiliation(s)
- M Razafsha
- Residency Program, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Urigüen L, Gil-Pisa I, Munarriz-Cuezva E, Berrocoso E, Pascau J, Soto-Montenegro ML, Gutiérrez-Adán A, Pintado B, Madrigal JLM, Castro E, Sánchez-Blázquez P, Ortega JE, Guerrero MJ, Ferrer-Alcon M, García-Sevilla JA, Micó JA, Desco M, Leza JC, Pazos Á, Garzón J, Meana JJ. Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: relevance to schizophrenia. Transl Psychiatry 2013; 3:e221. [PMID: 23340504 PMCID: PMC3566728 DOI: 10.1038/tp.2012.149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D(1) receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia. The animal could provide valuable insights into phenotypic aspects of this psychiatric disorder.
Collapse
Affiliation(s)
- L Urigüen
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, University of the Basque Country UPV/EHU Leioa, Bizkaia, Spain,BioCruces Health Research Institute, Bizkaia, Spain
| | - I Gil-Pisa
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, University of the Basque Country UPV/EHU Leioa, Bizkaia, Spain
| | - E Munarriz-Cuezva
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, University of the Basque Country UPV/EHU Leioa, Bizkaia, Spain
| | - E Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Neuroscience, University of Cádiz, Cádiz, Spain
| | - J Pascau
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Experimental Medicine and Surgery, General Hospital Gregorio Marañón, Madrid, Spain
| | - M L Soto-Montenegro
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Experimental Medicine and Surgery, General Hospital Gregorio Marañón, Madrid, Spain
| | | | - B Pintado
- Department of Animal Reproduction, INIA, Madrid, Spain
| | - J L M Madrigal
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - E Castro
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Physiology and Pharmacology, University of Cantabria, Institute of Biomedicine and Biotechnology of Cantabria IBBTEC), Santander, Spain
| | - P Sánchez-Blázquez
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Cajal Institute, CSIC, Madrid, Spain
| | - J E Ortega
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, University of the Basque Country UPV/EHU Leioa, Bizkaia, Spain,BioCruces Health Research Institute, Bizkaia, Spain
| | | | | | - J A García-Sevilla
- Neuropharmacology Laboratory, IUNICS, University of Balearic Islands, Palma de Mallorca and Redes Temáticas de Investigación Cooperativa en Salud, Red de Trastornos Adictivos (RETICS-RTA), Spain
| | - J A Micó
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Neuroscience, University of Cádiz, Cádiz, Spain
| | - M Desco
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Experimental Medicine and Surgery, General Hospital Gregorio Marañón, Madrid, Spain,Department of Bioengineering and Aerospace Engineering, Carlos III University, Madrid, Spain
| | - J C Leza
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Á Pazos
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Physiology and Pharmacology, University of Cantabria, Institute of Biomedicine and Biotechnology of Cantabria IBBTEC), Santander, Spain
| | - J Garzón
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Cajal Institute, CSIC, Madrid, Spain
| | - J J Meana
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain,Department of Pharmacology, University of the Basque Country UPV/EHU Leioa, Bizkaia, Spain,BioCruces Health Research Institute, Bizkaia, Spain,Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia 48940, Spain. E-mail:
| |
Collapse
|
38
|
Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast 2012; 2012:832757. [PMID: 23150836 PMCID: PMC3488410 DOI: 10.1155/2012/832757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder. Although a number of different hypotheses have been developed to explain its aetiopathogenesis, we are far from understanding it. There is clinical and experimental evidence indicating that neurodevelopmental factors play a major role. Disturbances in neurodevelopment might result in alterations of neuroanatomy and neurochemistry, leading to the typical symptoms observed in schizophrenia. The present paper will critically address the neurodevelopmental models underlying schizophrenia by discussing the effects of typical and atypical antipsychotics in animal models. We will specifically discuss the vitamin D deficiency model, the poly I:C model, the ketamine model, and the postnatal ventral hippocampal lesion model, all of which reflect core neurodevelopmental issues underlying schizophrenia onset.
Collapse
|
39
|
Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes. Int J Neuropsychopharmacol 2012; 15:1331-42. [PMID: 22074909 DOI: 10.1017/s1461145711001581] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) is an important enzyme in the metabolism of dopamine and disturbance in dopamine function is proposed to be central to the pathogenesis of schizophrenia. Clinical epidemiological studies have indicated cannabis use to confer a 2-fold increase in risk for subsequent onset of psychosis, with adolescent-onset use conveying even higher risk. There is evidence that a high activity COMT polymorphism moderates the effects of adolescent exposure to cannabis on risk for adult psychosis. In this paper we compared the effect of chronic adolescent exposure to the cannabinoid WIN 55212 on sensorimotor gating, behaviours related to the negative symptoms of schizophrenia, anxiety- and stress-related behaviours, as well as ex-vivo brain dopamine and serotonin levels, in COMT KO vs. wild-type (WT) mice. Additionally, we examined the effect of pretreatment with the COMT inhibitor tolcapone on acute effects of this cannabinoid on sensorimotor gating in C57BL/6 mice. COMT KO mice were shown to be more vulnerable than WT to the disruptive effects of adolescent cannabinoid treatment on prepulse inhibition (PPI). Acute pharmacological inhibition of COMT in C57BL/6 mice also modified acute cannabinoid effects on startle reactivity, as well as PPI, indicating that chronic and acute loss of COMT can produce dissociable effects on the behavioural effects of cannabinoids. COMT KO mice also demonstrated differential effects of adolescent cannabinoid administration on sociability and anxiety-related behaviour, both confirming and extending earlier reports of COMT×cannabinoid effects on the expression of schizophrenia-related endophenotypes.
Collapse
|
40
|
Waltereit R, Leimer U, von Bohlen Und Halbach O, Panke J, Hölter SM, Garrett L, Wittig K, Schneider M, Schmitt C, Calzada-Wack J, Neff F, Becker L, Prehn C, Kutscherjawy S, Endris V, Bacon C, Fuchs H, Gailus-Durner V, Berger S, Schönig K, Adamski J, Klopstock T, Esposito I, Wurst W, de Angelis MH, Rappold G, Wieland T, Bartsch D. Srgap3⁻/⁻ mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J 2012; 26:4418-28. [PMID: 22820399 DOI: 10.1096/fj.11-202317] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the SRGAP3 gene residing on chromosome 3p25 have previously been associated with intellectual disability. Genome-wide association studies have also revealed SRGAP3, together with genes from the same cellular network, as risk genes for schizophrenia. SRGAP3 regulates cytoskeletal dynamics through the RHO protein RAC1. RHO proteins are known to be involved in cytoskeletal reorganization during brain development to control processes such as synaptic plasticity. To elucidate the importance of SRGAP3 in brain development, we generated Srgap3-knockout mice. Ten percent of these mice developed a hydrocephalus and died before adulthood. Surviving mice showed various neuroanatomical changes, including enlarged lateral ventricles, white matter tracts, and dendritic spines together with molecular changes, including an increased basal activity of RAC1. Srgap3(-/-) mice additionally exhibited a complex behavioral phenotype. Behavioral studies revealed an impaired spontaneous alternation and social behavior, while long-term memory was unchanged. The animals also had tics. Lower locomotor activity was observed in male Srgap3(-/-) only. Srgap3(-/-) mice showed increased methylphenidate stimulation in males and an impaired prepulse inhibition in females. Together, the results show neurodevelopmental aberration in Srgap3(-/-) mice, with many of the observed phenotypes matching several schizophrenia-related intermediate phenotypes. Mutations of SRGAP3 may thus contribute to various neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robert Waltereit
- Department of Molecular Biology, Central Institute of Mental Health and Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Walsh J, Desbonnet L, Clarke N, Waddington JL, O'Tuathaigh CMP. Disruption of exploratory and habituation behavior in mice with mutation of DISC1: an ethologically based analysis. J Neurosci Res 2012; 90:1445-53. [PMID: 22388794 DOI: 10.1002/jnr.23024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is a gene that has been functionally linked with neurodevelopmental processes and structural plasticity in the brain. Clinical genetic investigations have implicated DISC1 as a genetic risk factor for schizophrenia and related psychoses. Studies using mutant mouse models of DISC1 gene function have demonstrated schizophrenia-related anatomical and behavioral endophenotypes. In the present study, ethologically based assessment of exploratory and habituation behavior in the open field was conducted in DISC1 (L100P), wild-type (WT), heterozygous (HET), and homozygous (HOM) mutant mice of both sexes. Ethological assessment was conducted in an open-field environment to explore specific topographies of murine exploratory behavior across the extended course of interaction from initial exploration through subsequent habituation (the ethogram). During initial exploration, HET and HOM DISC1 mutants evidenced increased levels of locomotion and rearing to wall compared with WT. A HOM-specific increase in total rearing and a HET-specific increase in sifting behavior and reduction in rearing seated were also observed. Over subsequent habituation, locomotion, sniffing, total rearing, rearing to wall, rearing free, and rearing seated were increased in HET and HOM mutants vs. WT. Overall, grooming was increased in HOM relative to other genotypes. HET mice displayed a selective decrease in habituation of sifting behavior. These data demonstrate impairment in both initial exploratory and habituation of exploration in a novel environment in mice with mutation of DISC1. This is discussed in the context of the functional role of the gene vis à vis a schizophrenia phenotype as well as the value of ethologically based approaches to behavioral phenotyping.
Collapse
Affiliation(s)
- J Walsh
- School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
43
|
Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 2012; 100:665-677. [PMID: 21463651 DOI: 10.1016/j.pbb.2011.03.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/14/2011] [Accepted: 03/28/2011] [Indexed: 11/26/2022]
Abstract
Glutamatergic neurotransmission, particularly through the N-methyl-d-aspartate (NMDA) receptor, has drawn attention for its role in the pathophysiology of schizophrenia. This paper reviews the neurodevelopmental origin and genetic susceptibility of schizophrenia relevant to NMDA neurotransmission, and discusses the relationship between NMDA hypofunction and different domains of symptom in schizophrenia as well as putative treatment modality for the disorder. A series of clinical trials and a meta-analysis which compared currently available NMDA-enhancing agents suggests that glycine, d-serine, and sarcosine are more efficacious than d-cycloserine in improving the overall psychopathology of schizophrenia without side effect or safety concern. In addition, enhancing glutamatergic neurotransmission via activating the AMPA receptor, metabotropic glutamate receptor or inhibition of d-amino acid oxidase (DAO) is also reviewed. More studies are needed to determine the NMDA vulnerability in schizophrenia and to confirm the long-term efficacy, functional outcome, and safety of these NMDA-enhancing agents in schizophrenic patients, particularly those with refractory negative and cognitive symptoms, or serious adverse effects while taking the existing antipsychotic agents.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
44
|
Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol 2011; 164:1162-94. [PMID: 21449915 PMCID: PMC3229756 DOI: 10.1111/j.1476-5381.2011.01386.x] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/12/2011] [Indexed: 12/27/2022] Open
Abstract
Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed.
Collapse
Affiliation(s)
- C A Jones
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
45
|
Kas MJ, Kahn RS, Collier DA, Waddington JL, Ekelund J, Porteous DJ, Schughart K, Hovatta I. Translational Neuroscience of Schizophrenia: Seeking a Meeting of Minds Between Mouse and Man. Sci Transl Med 2011; 3:102mr3. [DOI: 10.1126/scitranslmed.3002917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Increased expression of receptor phosphotyrosine phosphatase-β/ζ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes. Transl Psychiatry 2011; 1:e8. [PMID: 22832403 PMCID: PMC3309478 DOI: 10.1038/tp.2011.8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a serious and chronic mental disorder, in which both genetic and environmental factors have a role in the development of the disease. Neuregulin-1 (NRG1) is one of the most established genetic risk factors for schizophrenia, and disruption of NRG1 signaling has been reported in this disorder. We reported previously that NRG1/ErbB4 signaling is inhibited by receptor phosphotyrosine phosphatase-β/ζ (RPTP β/ζ) and that the gene encoding RPTPβ/ζ (PTPRZ1) is genetically associated with schizophrenia. In this study, we examined the expression of RPTPβ/ζ in the brains of patients with schizophrenia and observed increased expression of this gene. We developed mice overexpressing RPTPβ/ζ (PTPRZ1-transgenic mice), which showed reduced NRG1 signaling, and molecular and cellular changes implicated in the pathogenesis of schizophrenia, including altered glutamatergic, GABAergic and dopaminergic activity, as well as delayed oligodendrocyte development. Behavioral analyses also demonstrated schizophrenia-like changes in the PTPRZ1-transgenic mice, including reduced sensory motor gating, hyperactivity and working memory deficits. Our results indicate that enhanced RPTPβ/ζ signaling can contribute to schizophrenia phenotypes, and support both construct and face validity for PTPRZ1-transgenic mice as a model for multiple schizophrenia phenotypes. Furthermore, our results implicate RPTPβ/ζ as a therapeutic target in schizophrenia.
Collapse
|
47
|
Ward RD, Simpson EH, Kandel ER, Balsam PD. Modeling motivational deficits in mouse models of schizophrenia: behavior analysis as a guide for neuroscience. Behav Processes 2011; 87:149-56. [PMID: 21338658 PMCID: PMC3085964 DOI: 10.1016/j.beproc.2011.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/03/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023]
Abstract
In recent years it has become possible to develop animal models of psychiatric disease in genetically modified mice. While great strides have been made in the development of genetic and neurobiological tools with which to model psychiatric disease, elucidation of neural and molecular mechanisms thought to underlie behavioral phenotypes has been hindered by an inadequate analysis of behavior. This is unfortunate given the fact that the experimental analysis of behavior has created powerful methods for isolating and describing the functional properties of behavioral mechanisms that are capable of providing deep understanding of behavioral phenotypes. A better understanding of the biological basis of normal behavior and its disturbance in psychiatric disease will require the application of these rigorous behavior analytic tools to animal models. In this review we provide an example of a merging of genetic and behavioral methods and illustrate its utility in the analysis of a mouse model of the motivational deficits in schizophrenia. The synergy between basic behavior analysis, neuroscience, and animal models of psychiatric disease has great potential for achieving a deeper understanding of behavior and its neurobiological mechanisms as well as for leading to improvements in diagnosis and treatment in clinical settings.
Collapse
Affiliation(s)
- Ryan D Ward
- Department of Psychiatry, Columbia University, NewYork, NY 10032, United States.
| | | | | | | |
Collapse
|
48
|
Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-β gene knockout mice. PLoS One 2011; 6:e18004. [PMID: 21437241 PMCID: PMC3060876 DOI: 10.1371/journal.pone.0018004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022] Open
Abstract
Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients.
Collapse
|
49
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Waddington JL. Susceptibility genes for schizophrenia: mutant models, endophenotypes and psychobiology. Curr Top Behav Neurosci 2011; 12:209-50. [PMID: 22367925 DOI: 10.1007/7854_2011_194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Schizophrenia is characterised by a multifactorial aetiology that involves genetic liability interacting with epigenetic and environmental factors to increase risk for developing the disorder. A consensus view is that the genetic component involves several common risk alleles of small effect and/or rare but penetrant copy number variations. Furthermore, there is increasing evidence for broader, overlapping genetic-phenotypic relationships in psychosis; for example, the same susceptibility genes also confer risk for bipolar disorder. Phenotypic characterisation of genetic models of candidate risk genes and/or putative pathophysiological processes implicated in schizophrenia, as well as examination of epidemiologically relevant gene × environment interactions in these models, can illuminate molecular and pathobiological mechanisms involved in schizophrenia. The present chapter outlines both the evidence from phenotypic studies in mutant mouse models related to schizophrenia and recently described mutant models addressing such gene × environment interactions. Emphasis is placed on evaluating the extent to which mutant phenotypes recapitulate the totality of the disease phenotype or model selective endophenotypes. We also discuss new developments and trends in relation to the functional genomics of psychosis which might help to inform on the construct validity of mutant models of schizophrenia and highlight methodological challenges in phenotypic evaluation that relate to such models.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland,
| | | | | | | |
Collapse
|
50
|
Moore H. The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy. Schizophr Bull 2010; 36:1066-72. [PMID: 20870929 PMCID: PMC2963052 DOI: 10.1093/schbul/sbq106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The strategies used in preclinical research in schizophrenia have evolved from experiments focused on the pharmacology of existing antipsychotic or psychotomimetic drugs to the broader study of pharmacological modulation of the neurobehavioral systems affected in schizophrenia. As an additional approach, neurodevelopmental, including genetic, manipulations have become increasingly used to model disease risk factors or to induce schizophrenia-relevant neuropathology. In the vast majority of these models, behavioral testing paradigms are used to test the effects of the drugs or developmental manipulations on psychomotor, cognitive and affective processes hypothesized to be affected in schizophrenia. The term "animal model of schizophrenia" is now applied to any combination of these strategies. The expansion in animal modeling strategies has led to significant innovation in identifying novel neural mechanisms that may contribute not only to psychosis but also to the cognitive and negative symptoms of schizophrenia. Yet one cost of innovation in the discovery of truly novel treatment targets is a higher risk for false positives--drugs that have shown promise in animal models but not in clinical trials. The goals of this commentary are to first provide a brief history and conceptualization of rodent models in preclinical research and then examine the issues to be addressed in order to increase the predictive power of animal models in the identification of new treatment targets and, ultimately, new effective treatments for schizophrenia.
Collapse
Affiliation(s)
- Holly Moore
- Department of Integrative Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, Mail Unit 14, New York, NY 10032, USA.
| |
Collapse
|