1
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
2
|
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling. Cell Discov 2023; 9:19. [PMID: 36788214 PMCID: PMC9929086 DOI: 10.1038/s41421-022-00506-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023] Open
Abstract
The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Collapse
|
3
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
4
|
Wegrzyn D, Zokol J, Faissner A. Vav3-Deficient Astrocytes Enhance the Dendritic Development of Hippocampal Neurons in an Indirect Co-culture System. Front Cell Neurosci 2022; 15:817277. [PMID: 35237130 PMCID: PMC8882586 DOI: 10.3389/fncel.2021.817277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Vav proteins belong to the class of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) on their target proteins. Here, especially the members of the small GTPase family, Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) can be brought into an activated state by the catalytic activity of Vav-GEFs. In the central nervous system (CNS) of rodents Vav3 shows the strongest expression pattern in comparison to Vav2 and Vav1, which is restricted to the hematopoietic system. Several studies revealed an important role of Vav3 for the elongation and branching of neurites. However, little is known about the function of Vav3 for other cell types of the CNS, like astrocytes. Therefore, the following study analyzed the effects of a Vav3 knockout on several astrocytic parameters as well as the influence of Vav3-deficient astrocytes on the dendritic development of cultured neurons. For this purpose, an indirect co-culture system of native hippocampal neurons and Vav3-deficient cortical astrocytes was used. Interestingly, neurons cultured in an indirect contact with Vav3-deficient astrocytes showed a significant increase in the dendritic complexity and length after 12 and 17 days in vitro (DIV). Furthermore, Vav3-deficient astrocytes showed an enhanced regeneration in the scratch wound heal assay as well as an altered profile of released cytokines with a complete lack of CXCL11, reduced levels of IL-6 and an increased release of CCL5. Based on these observations, we suppose that Vav3 plays an important role for the development of dendrites by regulating the expression and the release of neurotrophic factors and cytokines in astrocytes.
Collapse
|
5
|
Wegrzyn D, Wegrzyn C, Tedford K, Fischer KD, Faissner A. Deletion of the Nucleotide Exchange Factor Vav3 Enhances Axonal Complexity and Synapse Formation but Tampers Activity of Hippocampal Neuronal Networks In Vitro. Int J Mol Sci 2020; 21:ijms21030856. [PMID: 32013053 PMCID: PMC7037001 DOI: 10.3390/ijms21030856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Vav proteins activate GTPases of the RhoA subfamily that regulate the cytoskeleton and are involved in adhesion, migration, differentiation, polarity and the cell cycle. While the importance of RhoA GTPases for neuronal morphology is undisputed, their regulation is less well understood. In this perspective, we studied the consequences of the deletion of Vav2, Vav3 and Vav2 and 3 (Vav2-/-, Vav3-/-, Vav2-/-/3-/-) for the development of embryonic hippocampal neurons in vitro. Using an indirect co-culture system of hippocampal neurons with primary wild-type (WT) cortical astrocytes, we analysed axonal and dendritic parameters, structural synapse numbers and the spontaneous network activity via immunocytochemistry and multielectrode array analysis (MEA). Here, we observed a higher process complexity in Vav3-/-, but not in Vav2-/- neurons after three and five days in vitro (DIV). Furthermore, an enhanced synapse formation was observed in Vav3-/- after 14 days in culture. Remarkably, Vav2-/-/3-/- double knockout neurons did not display synergistic effects. Interestingly, these differences were transient and compensated after a cultivation period of 21 days. Network analysis revealed a diminished number of spontaneously occurring action potentials in Vav3-/- neurons after 21 DIV. Based on these results, it appears that Vav3 participates in key events of neuronal differentiation.
Collapse
Affiliation(s)
- David Wegrzyn
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitaetsstr. 150, Ruhr-University, D-44801 Bochum, Germany; (D.W.); (C.W.)
| | - Christine Wegrzyn
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitaetsstr. 150, Ruhr-University, D-44801 Bochum, Germany; (D.W.); (C.W.)
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, OVGU University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany; (K.T.); (K.-D.F.)
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, OVGU University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany; (K.T.); (K.-D.F.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitaetsstr. 150, Ruhr-University, D-44801 Bochum, Germany; (D.W.); (C.W.)
- Correspondence: ; Tel.: +49-234-3223851
| |
Collapse
|
6
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
7
|
Janouschek H, Eickhoff CR, Mühleisen TW, Eickhoff SB, Nickl-Jockschat T. Using coordinate-based meta-analyses to explore structural imaging genetics. Brain Struct Funct 2018; 223:3045-3061. [PMID: 29730826 DOI: 10.1007/s00429-018-1670-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
Abstract
Imaging genetics has become a highly popular approach in the field of schizophrenia research. A frequently reported finding is that effects from common genetic variation are associated with a schizophrenia-related structural endophenotype. Genetic contributions to a structural endophenotype may be easier to delineate, when referring to biological rather than diagnostic criteria. We used coordinate-based meta-analyses, namely the anatomical likelihood estimation (ALE) algorithm on 30 schizophrenia-related imaging genetics studies, representing 44 single-nucleotide polymorphisms at 26 gene loci investigated in 4682 subjects. To test whether analyses based on biological information would improve the convergence of results, gene ontology (GO) terms were used to group the findings from the published studies. We did not find any significant results for the main contrast. However, our analysis enrolling studies on genotype × diagnosis interaction yielded two clusters in the left temporal lobe and the medial orbitofrontal cortex. All other subanalyses did not yield any significant results. To gain insight into possible biological relationships between the genes implicated by these clusters, we mapped five of them to GO terms of the category "biological process" (AKT1, CNNM2, DISC1, DTNBP1, VAV3), then five to "cellular component" terms (AKT1, CNNM2, DISC1, DTNBP1, VAV3), and three to "molecular function" terms (AKT1, VAV3, ZNF804A). A subsequent cluster analysis identified representative, non-redundant subsets of semantically similar terms that aided a further interpretation. We regard this approach as a new option to systematically explore the richness of the literature in imaging genetics.
Collapse
Affiliation(s)
- Hildegard Janouschek
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Department of Psychiatry, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Claudia R Eickhoff
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (Functional Architecture of the Brain; INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas W Mühleisen
- Institute of Neuroscience und Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany. .,Jülich-Aachen Research Alliance Brain, Jülich/Aachen, Germany. .,Department of Psychiatry, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Kelaï S, Ramoz N, Moalic JM, Noble F, Mechawar N, Imbeaud S, Turecki G, Simonneau M, Gorwood P, Maussion G. Netrin G1: its downregulation in the nucleus accumbens of cocaine-conditioned mice and genetic association in human cocaine dependence. Addict Biol 2018; 23:448-460. [PMID: 28074533 DOI: 10.1111/adb.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Netrin G1 is a presynaptic ligand involved in axonal projection. Although molecular mechanisms underlying cocaine addiction are still poorly understood, Netrin G1 might have a role as a regulator of anxiety, fear and spatial memory, behavioural traits impaired in the context of cocaine exposure. In this study, the Netrin G1 (Ntng1) expression was investigated in the nucleus accumbens of mice primarily conditioned to cocaine using a place preference paradigm. A genetic association study was then conducted on 146 multiplex families of the Collaborative study on Genetics of Alcoholism, in which seven single nucleotide polymorphisms located in the NTNG1 gene were genotyped. NTNG1 expression levels were also quantified in BA10, BA46 and the cerebellum of healthy controls (with no Axis 1 psychopathology). Decreased Ntng1 expression was initially observed in the nucleus accumbens of mice conditioned to cocaine. Significant genetic family-based associations were detected between NTNG1 polymorphisms and cocaine dependence. NTNG1 expression in BA10, BA46 and the cerebellum, however, were not significantly associated with any allele or haplotype of this gene. These results confirm that Ntng1 expression is disturbed in the nucleus accumbens of mice, after cocaine conditioning. A haplotype of NTNG1 was found to constitute a vulnerability factor for cocaine use disorder in patients, although none of its single nucleotide polymorphisms were associated with a differential expression pattern in healthy controls. The data suggest that change in the Ntng1 expression is a consequence of cocaine exposure, and that some of its genetic markers are associated with a greater risk for cocaine use disorder.
Collapse
Affiliation(s)
- Sabah Kelaï
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Nicolas Ramoz
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Jean-Marie Moalic
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Florence Noble
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche; France
- Institut national de la santé et de la recherche médicale; Paris France
- Université Paris Descartes, Laboratoire de Neuropsychopharmacologie des Addictions; France
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| | - Sandrine Imbeaud
- Centre de Génétique Moléculaire, FRE 3144, CNRS and Gif/Orsay DNA Microarray Platform (GODMAP); France
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| | - Michel Simonneau
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Philip Gorwood
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
- Hôpital Sainte-Anne (CMME); University Paris Descartes; France
| | - Gilles Maussion
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| |
Collapse
|
9
|
Ulc A, Gottschling C, Schäfer I, Wegrzyn D, van Leeuwen S, Luft V, Reinhard J, Faissner A. Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity. Biol Chem 2017; 398:663-675. [DOI: 10.1515/hsz-2016-0275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.
Collapse
|
10
|
Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors. Sci Rep 2017; 7:41875. [PMID: 28157227 PMCID: PMC5291103 DOI: 10.1038/srep41875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Hypertension, diabetes and obesity are cardiovascular risk factors closely associated to the development of renal and cardiovascular target organ damage. VAV2 and VAV3, members of the VAV family proto-oncogenes, are guanosine nucleotide exchange factors for the Rho and Rac GTPase family, which is related with cardiovascular homeostasis. We have analyzed the relationship between the presence of VAV2 rs602990 and VAV3 rs7528153 polymorphisms with cardiovascular risk factors and target organ damage (heart, vessels and kidney) in 411 subjects. Our results show that being carrier of the T allele in VAV2 rs602990 polymorphism is associated with an increased risk of obesity, reduced levels of ankle-brachial index and diastolic blood pressure and reduced retinal artery caliber. In addition, being carrier of T allele is associated with increased risk of target organ damage in males. On the other hand, being carrier of the T allele in VAV3 rs7528153 polymorphism is associated with a decreased susceptibility of developing a pathologic state composed by the presence of hypertension, diabetes, obesity or cardiovascular damage, and with an increased risk of developing altered basal glycaemia. This is the first report showing an association between VAV2 and VAV3 polymorphisms with cardiovascular risk factors and target organ damage.
Collapse
|
11
|
A Conserved GEF for Rho-Family GTPases Acts in an EGF Signaling Pathway to Promote Sleep-like Quiescence in Caenorhabditis elegans. Genetics 2016; 202:1153-66. [PMID: 26801183 DOI: 10.1534/genetics.115.183038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022] Open
Abstract
Sleep is evolutionarily conserved and required for organism homeostasis and survival. Despite this importance, the molecular and cellular mechanisms underlying sleep are not well understood. Caenorhabditis elegans exhibits sleep-like behavioral quiescence and thus provides a valuable, simple model system for the study of cellular and molecular regulators of this process. In C. elegans, epidermal growth factor receptor (EGFR) signaling is required in the neurosecretory neuron ALA to promote sleep-like behavioral quiescence after cellular stress. We describe a novel role for VAV-1, a conserved guanine nucleotide exchange factor (GEF) for Rho-family GTPases, in regulation of sleep-like behavioral quiescence. VAV-1, in a GEF-dependent manner, acts in ALA to suppress locomotion and feeding during sleep-like behavioral quiescence in response to cellular stress. Additionally, VAV-1 activity is required for EGF-induced sleep-like quiescence and normal levels of EGFR and secretory dense core vesicles in ALA. Importantly, the role of VAV-1 in promoting cellular stress-induced behavioral quiescence is vital for organism health because VAV-1 is required for normal survival after cellular stress.
Collapse
|
12
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
13
|
Basmanav FB, Forstner AJ, Fier H, Herms S, Meier S, Degenhardt F, Hoffmann P, Barth S, Fricker N, Strohmaier J, Witt SH, Ludwig M, Schmael C, Moebus S, Maier W, Mössner R, Rujescu D, Rietschel M, Lange C, Nöthen MM, Cichon S. Investigation of the role of TCF4 rare sequence variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:354-62. [PMID: 26010163 DOI: 10.1002/ajmg.b.32318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations.
Collapse
Affiliation(s)
- F Buket Basmanav
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Heide Fier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandra Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| | - Sandra Barth
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Christine Schmael
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Susanne Moebus
- Centre of Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Essen, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Psychiatry, University of Tübingen
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Christoph Lange
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| |
Collapse
|
14
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|
15
|
VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nat Commun 2014; 5:5579. [PMID: 25412913 PMCID: PMC4241504 DOI: 10.1038/ncomms6579] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.
Collapse
|
16
|
Tian Y, Voineagu I, Paşca SP, Won H, Chandran V, Horvath S, Dolmetsch RE, Geschwind DH. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med 2014; 6:75. [PMID: 25360157 PMCID: PMC4213483 DOI: 10.1186/s13073-014-0075-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Common genetic variation and rare mutations in genes encoding calcium channel subunits have pleiotropic effects on risk for multiple neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. To gain further mechanistic insights by extending previous gene expression data, we constructed co-expression networks in Timothy syndrome (TS), a monogenic condition with high penetrance for ASD, caused by mutations in the L-type calcium channel, Cav1.2. METHODS To identify patient-specific alterations in transcriptome organization, we conducted a genome-wide weighted co-expression network analysis (WGCNA) on neural progenitors and neurons from multiple lines of induced pluripotent stem cells (iPSC) derived from normal and TS (G406R in CACNA1C) individuals. We employed transcription factor binding site enrichment analysis to assess whether TS associated co-expression changes reflect calcium-dependent co-regulation. RESULTS We identified reproducible developmental and activity-dependent gene co-expression modules conserved in patient and control cell lines. By comparing cell lines from case and control subjects, we also identified co-expression modules reflecting distinct aspects of TS, including intellectual disability and ASD-related phenotypes. Moreover, by integrating co-expression with transcription factor binding analysis, we showed the TS-associated transcriptional changes were predicted to be co-regulated by calcium-dependent transcriptional regulators, including NFAT, MEF2, CREB, and FOXO, thus providing a mechanism by which altered Ca(2+) signaling in TS patients leads to the observed molecular dysregulation. CONCLUSIONS We applied WGCNA to construct co-expression networks related to neural development and depolarization in iPSC-derived neural cells from TS and control individuals for the first time. These analyses illustrate how a systems biology approach based on gene networks can yield insights into the molecular mechanisms of neural development and function, and provide clues as to the functional impact of the downstream effects of Ca(2+) signaling dysregulation on transcription.
Collapse
Affiliation(s)
- Yuan Tian
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- />Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, CA 90095 USA
| | - Irina Voineagu
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Sergiu P Paşca
- />Department of Psychiatry & Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Hyejung Won
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Vijayendran Chandran
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Steve Horvath
- />Department of Human Genetics, David Geffen Sch. of Medicine, UCLA, Los Angeles, CA USA
| | - Ricardo E Dolmetsch
- />Department of Neurobiology, Stanford University, Stanford, CA 94305-5345 USA
- />Novartis Institutes for Biomedical Research, Cambridge, MA 02139 USA
| | - Daniel H Geschwind
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- />Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, CA 90095 USA
- />Department of Human Genetics, David Geffen Sch. of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|