1
|
Chizari M, Navi K, Khosrowabadi R. TMS-EEG evidence links random exploration to inhibitory mechanisms in the dorsolateral prefrontal cortex. Sci Rep 2025; 15:15654. [PMID: 40325029 PMCID: PMC12053588 DOI: 10.1038/s41598-025-00034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Adaptive decision-making in uncertain environments requires balancing exploration and exploitation. Computational models distinguish between directed exploration, involving deliberate information-seeking, and random exploration, characterized by stochastic variability. The neural correlates of these strategies have been investigated in previous studies. However, while prior research implicates the dorsolateral prefrontal cortex (DLPFC) in random exploration, its underlying excitatory and inhibitory mechanisms remain unclear. Understanding these processes is essential for explaining how individuals adapt to a dynamic environment. To investigate this, we combined transcranial magnetic stimulation (TMS) with electroencephalography (EEG) to directly assess cortical excitatory and inhibitory functions. Twenty-five healthy participants completed the Horizon Task, a behavioral paradigm designed to dissociate directed and random exploration, and after the task, they received single-pulse TMS over the DLPFC. The TMS-evoked potentials (TEPs) N45, P60, and N100 were examined as neurophysiological markers of GABAA, GABAB, and glutamate activity. Results revealed a significant positive correlation between the N100 amplitude at the right DLPFC and random exploration, suggesting that GABAB-mediated inhibition plays a key role in stochastic decision-making. Additionally, a correlation between the decision noise parameter in the logistic model and the N100 amplitude further validated this association. These findings highlight the importance of prefrontal inhibition in exploratory behavior and underscore the utility of TMS-EEG in uncovering the neural mechanisms underlying adaptive decision-making.
Collapse
Affiliation(s)
- Mojtaba Chizari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Keivan Navi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Xie W, Li Y, Wang X, Blokhina E, Krupitsky E, Vetrova M, Hu J, Yuan T, Chen J, Wang H, Chen X. GABA B Receptor: Structure, Biological Functions, and Therapy for Diseases. MedComm (Beijing) 2025; 6:e70163. [PMID: 40242161 PMCID: PMC12000685 DOI: 10.1002/mco2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) B receptors (GABABRs) that acts slowly and maintains the inhibitory tone are versatile regulators in the complex nervous behaviors and their involvement in various neuropsychiatric disorders, such as anxiety, epilepsy, pain, drug addiction, and Alzheimer's disease. Additional study advances have implied the crucial roles of GABABRs in regulating feeding-related behaviors, yet their therapeutic potential in addressing the neuropsychiatric disorders, binge eating, and feeding-related disorders remains underutilized. This general review summarized the physiological structure and functions of GABABR, explored the regulation in various psychiatric disorders, feeding behaviors, binge eating, and metabolism disorders, and fully discussed the potential of targeting GABABRs and its regulator-binding sites for the treatment of different psychiatric disorders, binge eating and even obesity. While agonists that directly bind to GABABR1 have some negative side effects, positive allosteric modulators (PAMs) that bind to GABABR2 demonstrate excellent therapeutic efficacy and tolerability and have better safety and therapeutic indexes. Moreover, phosphorylation sites of downstream GABABRs regulators may be novel therapeutic targets for psychiatric disorders, binge eating, and obesity. Further studies, clinical trials in particular, will be essential for confirming the therapeutic value of PAMs and other agents targeting the GABABR pathways in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health CenterTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyue Wang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Elena Blokhina
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Evgeny Krupitsky
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
- Bekhterev National Medical Research Center for Psychiatry and NeurologySt. PetersburgRussia
| | - Marina Vetrova
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Ji Hu
- ShanghaiTech UniversityShanghaiChina
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Jue Chen
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Hua Wang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiangfang Chen
- Department of EndocrinologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Wu G, Zhu T, Ma C, Xu L, Qian Z, Kong G, Cui H, Zhang T, Wang J, Tang Y. Association of abnormal cortical inhibition and clinical outcomes in patients at clinical high risk for psychosis. Clin Neurophysiol 2025; 169:65-73. [PMID: 39626344 DOI: 10.1016/j.clinph.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Cortical inhibition (CI) can be in-vivo measured using transcranial magnetic stimulation (TMS), and patients with schizophrenia had abnormal CI. However, whether the abnormal CI occur early in patients with clinical high risk for psychosis (CHR) or could predict their clinical outcomes remains less known. METHODS We measured short-interval cortical inhibition (SICI), cortical silent period (CSP), and intra-cortical facilitation (ICF) over the motor cortex and neurocognitive performances in 55 CHR, 35 first-episode schizophrenia (FES), and 35 healthy controls (HC). We divided CHR patients into CHR converters (CHR-C) and CHR non-converters (CHR-NC) according to their clinical outcomes within the two-year follow-up. RESULTS CSP was longer in CHR-C (P = 0.033) and FES (P = 0.047) than in HC, while CSP was comparable between CHR-NC and HC. In CHR, CSP was negatively related to their performances in symbol coding and maze tasks. There was no significant between-group difference for either SICI or ICF. CONCLUSIONS Our findings suggested GABAB-mediated CSP was prolonged in CHR, who later converted into schizophrenia, and was associated with poor neurocognitive functions. SIGNIFICANCE CSP is prolonged before the onset of psychosis, particularly in CHR-C patients, suggesting that CSP could be a potential biomarker for predicting transition to schizophrenia.
Collapse
Affiliation(s)
- Guanfu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Ma
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Osborne KJ, Walther S, Mittal VA. Motor actions across psychiatric disorders: A research domain criteria (RDoC) perspective. Clin Psychol Rev 2024; 114:102511. [PMID: 39510028 DOI: 10.1016/j.cpr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The motor system is critical for understanding the pathophysiology and treatment of mental illness. Abnormalities in the processes that allow us to plan and execute movement in a goal-directed, context-appropriate manner (i.e., motor actions) are especially central to clinical motor research. Within this context, the NIMH Research Domain Criteria (RDoC) framework now includes a Motor Actions construct within the recently incorporated Sensorimotor Systems Domain, providing a useful framework for conducting research on motor action processes. However, there is limited available resources for understanding or implementing this framework. We address this gap by providing a comprehensive critical review and conceptual integration of the current clinical literature on the subconstructs comprising the Motor Actions construct. This includes a detailed discussion of each Motor Action subconstruct (e.g., action planning/execution) and its measurement across different units of analysis (e.g., molecules to behavior), the temporal and conceptual relationships among the Motor Action subconstructs (and other relevant RDoC domain constructs), and how abnormalities in these Motor Action subconstructs manifest in mental illness. Together, the review illustrates how motor system dysfunction is implicated in the pathophysiology of many psychiatric conditions and demonstrates shared and distinct mechanisms that may account for similar manifestations of motor abnormalities across disorders.
Collapse
Affiliation(s)
- K Juston Osborne
- Washington University in St. Louis, Department of Psychiatry, 4444 Forest Park Ave., St. Louis, MO, USA; Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA.
| | - Sebastian Walther
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA; Northwestern University, Department of Psychiatry, 676 N. St. Claire, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), 633 Clark St., Evanston, Chicago, IL, USA
| |
Collapse
|
5
|
Taniguchi K, Kaneko N, Wada M, Moriyama S, Nakajima S, Mimura M, Noda Y. Neurophysiological profiles of patients with bipolar disorders as probed with transcranial magnetic stimulation: A systematic review. Neuropsychopharmacol Rep 2024; 44:572-584. [PMID: 38932486 PMCID: PMC11544454 DOI: 10.1002/npr2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
AIM Bipolar disorder (BD) has a significant impact on global health, yet its neurophysiological basis remains poorly understood. Conventional treatments have limitations, highlighting the need for a better understanding of the neurophysiology of BD for early diagnosis and novel therapeutic strategies. DESIGN Employing a systematic review approach of the PRISMA guidelines, this study assessed the usefulness and validity of transcranial magnetic stimulation (TMS) neurophysiology in patients with BD. METHODS Databases searched included PubMed, MEDLINE, Embase, and PsycINFO, covering studies from January 1985 to January 2024. RESULTS Out of 6597 articles screened, nine studies met the inclusion criteria, providing neurophysiological insights into the pathophysiological basis of BD using TMS-electromyography and TMS-electroencephalography methods. Findings revealed significant neurophysiological impairments in patients with BD compared to healthy controls, specifically in cortical inhibition and excitability. In particular, short-interval cortical inhibition (SICI) was consistently diminished in BD across the studies, which suggests a fundamental impairment of cortical inhibitory function in BD. This systematic review corroborates the potential utility of TMS neurophysiology in elucidating the pathophysiological basis of BD. Specifically, the reduced cortical inhibition in the SICI paradigm observed in patients with BD suggests gamma-aminobutyric acid (GABA)-A receptor-mediated dysfunction, but results from other TMS paradigms have been inconsistent. Thus, complex neurophysiological processes may be involved in the pathological basis underlying BD. This study demonstrated that BD has a neural basis involving impaired GABAergic function, and it is highly expected that further research on TMS neurophysiology will further elucidate the pathophysiological basis of BD.
Collapse
Affiliation(s)
- Keita Taniguchi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Naotsugu Kaneko
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Masataka Wada
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Sotaro Moriyama
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | | | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Noda
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Jiao X, Hu Q, Tang Y, Zhang T, Zhang J, Wang X, Sun J, Wang J. Abnormal Global Cortical Responses in Drug-Naïve Patients With Schizophrenia Following Orbitofrontal Cortex Stimulation: A Concurrent Transcranial Magnetic Stimulation-Electroencephalography Study. Biol Psychiatry 2024; 96:342-351. [PMID: 38852897 DOI: 10.1016/j.biopsych.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Abnormalities in cortical excitability and plasticity have been considered to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) can provide a direct evaluation of cortical responses to TMS. Here, we employed TMS-EEG to investigate cortical responses to orbitofrontal cortex (OFC) stimulation in schizophrenia. METHODS In total, we recruited 92 drug-naïve patients with first-episode schizophrenia and 51 age- and sex-matched healthy individuals. For each participant, one session of 1-Hz repetitive TMS (rTMS) was delivered to the right OFC, and TMS-EEG data were obtained to explore the change in cortical-evoked activities before and immediately after rTMS during the eyes-closed state. The MATRICS Consensus Cognitive Battery was used to assess neurocognitive performance. RESULTS The cortical responses indexed by global mean field amplitudes (i.e., P30, N45, and P60) were larger in patients with schizophrenia than in healthy control participants at baseline. Furthermore, after one session of 1-Hz rTMS over the right OFC, the N100 amplitude was significantly reduced in the healthy control group but not in the schizophrenia group. In the healthy control participants, there was a significant correlation between modulation of P60 amplitude by rTMS and working memory; however, this correlation was absent in patients with schizophrenia. CONCLUSIONS Aberrant global cortical responses following right OFC stimulation were found in patients with drug-naïve first-episode schizophrenia, supporting its significance in the primary pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Xiong Jiao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Zhenjiang Mental Health Center, Jiangsu, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Junfeng Sun
- Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Lányi O, Koleszár B, Schulze Wenning A, Balogh D, Engh MA, Horváth AA, Fehérvari P, Hegyi P, Molnár Z, Unoka Z, Csukly G. Excitation/inhibition imbalance in schizophrenia: a meta-analysis of inhibitory and excitatory TMS-EMG paradigms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:56. [PMID: 38879590 PMCID: PMC11180212 DOI: 10.1038/s41537-024-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/19/2024]
Abstract
Cortical excitation-inhibition (E/I) imbalance is a potential model for the pathophysiology of schizophrenia. Previous research using transcranial magnetic stimulation (TMS) and electromyography (EMG) has suggested inhibitory deficits in schizophrenia. In this meta-analysis we assessed the reliability and clinical potential of TMS-EMG paradigms in schizophrenia following the methodological recommendations of the PRISMA guideline and the Cochrane Handbook. The search was conducted in three databases in November 2022. Included articles reported Short-Interval Intracortical Inhibition (SICI), Intracortical Facilitation (ICF), Long-Interval Intracortical Inhibition (LICI) and Cortical Silent Period (CSP) in patients with schizophrenia and healthy controls. Meta-analyses were conducted using a random-effects model. Subgroup analysis and meta-regressions were used to assess heterogeneity. Results of 36 studies revealed a robust inhibitory deficit in schizophrenia with a significant decrease in SICI (Cohen's d: 0.62). A trend-level association was found between SICI and antipsychotic medication. Our findings support the E/I imbalance hypothesis in schizophrenia and suggest that SICI may be a potential pathophysiological characteristic of the disorder.
Collapse
Affiliation(s)
- Orsolya Lányi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Boróka Koleszár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | | | - David Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - András Attila Horváth
- Neurocognitive Research Center, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| | - Péter Fehérvari
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Zsolt Unoka
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Santoro V, Hou MD, Premoli I, Belardinelli P, Biondi A, Carobin A, Puledda F, Michalopoulou PG, Richardson MP, Rocchi L, Shergill SS. Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study. Brain Res Bull 2024; 212:110972. [PMID: 38710310 DOI: 10.1016/j.brainresbull.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls. MATERIALS AND METHODS TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons. RESULTS Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50-160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220-560 ms; 190-420 ms). Patients showed a reduction of both early (50-110 ms) gamma increase and later (180-230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms. CONCLUSION Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.
Collapse
Affiliation(s)
- V Santoro
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - M D Hou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - I Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P Belardinelli
- Cimec, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - A Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - A Carobin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - F Puledda
- Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - L Rocchi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - S S Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Kent and Medway Medical School, Canterbury CT2 7FS, United Kingdom; Kent and Medway NHS and Social Care Partnership Trust, Maidstone, ME7 4JL, United Kingdom
| |
Collapse
|
9
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Torrens WA, Pablo JN, Berryhill ME, Haigh SM. Pattern glare sensitivity distinguishes subclinical autism and schizotypy. Cogn Neuropsychiatry 2024; 29:155-172. [PMID: 38551240 PMCID: PMC11296901 DOI: 10.1080/13546805.2024.2335103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Schizophrenia and autism spectrum disorder are distinct neurodevelopmental disorders sharing clinically relevant behaviours. However, early sensory responses show divergent responses. Individuals with schizophrenia typically exhibit cortical hypo-excitability whereas individuals with autism show cortical hyperexcitability. Identifying reliable neurobiological differences between the disorders can diminish misdiagnosis and optimise treatments. METHODS The pattern glare test (PGT) is a simple measure of behavioural hyperexcitability. It measures the number of illusions seen in a static horizontal grating. We collected PGT data from non-clinical adults varying in traits of autism and schizophrenia (schizotypy). 576 undergraduate students completed an online survey consisting of the Schizotypal Personality Questionnaire - Brief Revised, the Autism Spectrum Quotient, and the PGT. RESULTS Subclinical autism and schizotypy traits were highly positively correlated. However, only schizotypy scores were significantly predictive of reporting more pattern glare (PG) illusions. When assessing the subcomponents of the schizotypy and autism scores, positive and disorganised schizotypy traits were predictive of reporting more PG illusions. Whereas, subclinical autism factors were not predictive of PG illusions. CONCLUSIONS High schizotypy performed the PGT in a manner consistent with behavioural hyperexcitability. The PGT distinguished subclinical autistic traits from schizotypy, suggesting potential clinical application.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Jenna N Pablo
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Marian E Berryhill
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Sarah M Haigh
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| |
Collapse
|
11
|
Lefebvre S, Gehrig G, Nadesalingam N, Nuoffer MG, Kyrou A, Wüthrich F, Walther S. The pathobiology of psychomotor slowing in psychosis: altered cortical excitability and connectivity. Brain 2024; 147:1423-1435. [PMID: 38537253 PMCID: PMC10994557 DOI: 10.1093/brain/awad395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 04/06/2024] Open
Abstract
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Gwendolyn Gehrig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3000 Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| |
Collapse
|
12
|
Thompson SM. Modulators of GABA A receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 2024; 49:83-95. [PMID: 37709943 PMCID: PMC10700661 DOI: 10.1038/s41386-023-01728-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
The predominant inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), acts at ionotropic GABAA receptors to counterbalance excitation and regulate neuronal firing. GABAA receptors are heteropentameric channels comprised from subunits derived from 19 different genes. GABAA receptors have one of the richest and well-developed pharmacologies of any therapeutic drug target, including agonists, antagonists, and positive and negative allosteric modulators (PAMs, NAMs). Currently used PAMs include benzodiazepine sedatives and anxiolytics, barbiturates, endogenous and synthetic neurosteroids, and general anesthetics. In this article, I will review evidence that these drugs act at several distinct binding sites and how they can be used to alter the balance between excitation and inhibition. I will also summarize existing literature regarding (1) evidence that changes in GABAergic inhibition play a causative role in major depression, anxiety, postpartum depression, premenstrual dysphoric disorder, and schizophrenia and (2) whether and how GABAergic drugs exert beneficial effects in these conditions, focusing on human studies where possible. Where these classical therapeutics have failed to exert benefits, I will describe recent advances in clinical and preclinical drug development. I will also highlight opportunities to advance a generation of GABAergic therapeutics, such as development of subunit-selective PAMs and NAMs, that are engendering hope for novel tools to treat these devastating conditions.
Collapse
Affiliation(s)
- Scott M Thompson
- Center for Novel Therapeutics, Department of Psychiatry, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Zhang J, Yang Y, Liu T, Shi Z, Pei G, Wang L, Wu J, Funahashi S, Suo D, Wang C, Yan T. Functional connectivity in people at clinical and familial high risk for schizophrenia. Psychiatry Res 2023; 328:115464. [PMID: 37690192 DOI: 10.1016/j.psychres.2023.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Patients diagnosed with schizophrenia (SZ) exhibit compromised functional connectivity within extensive brain networks. However, the precise development of this impairment during disease progression in the clinical high-risk (CHR) population and their relatives remains unclear. Our study leveraged data from 128 resting electroencephalography (EEG) channels acquired from 30 SZ patients, 21 CHR individuals, 17 unaffected healthy relatives (RSs; those at heightened SZ risk due to family history), and 31 healthy controls (HCs). These data were harnessed to establish functional connectivity patterns. By calculating the geometric distance between EEG sequences, we unveiled local and global nonlinear relationships within the entire brain. The process of dimensionality reduction led to low-dimensional representations, providing insights into high-dimensional EEG data. Our findings indicated that CHR participants exhibited aberrant functional connectivity across hemispheres, whereas RS individuals showcased anomalies primarily concentrated within hemispheres. In the realm of low-dimensional analysis, RS participants' third-dimensional occipital lobe values lay between those of the CHR individuals and HCs, significantly correlating with scale scores. This low-dimensional approach facilitated the visualization of brain states, potentially offering enhanced comprehension of brain structure, function, and early-stage functional impairment, such as occipital visual deficits, in RS individuals before cognitive decline onset.
Collapse
Affiliation(s)
- Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Yaxin Yang
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Zhongyan Shi
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China.
| |
Collapse
|
14
|
Thakkar B, Peterson CL, Acevedo EO. Prolonged continuous theta burst stimulation increases motor corticospinal excitability and intracortical inhibition in patients with neuropathic pain: An exploratory, single-blinded, randomized controlled trial. Neurophysiol Clin 2023; 53:102894. [PMID: 37659135 PMCID: PMC10592401 DOI: 10.1016/j.neucli.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/04/2023] Open
Abstract
OBJECTIVES A new paradigm for Transcranial Magnetic Stimulation (TMS), referred to as prolonged continuous theta burst stimulation (pcTBS), has recently received attention in the literature because of its advantages over high frequency repetitive TMS (HF-rTMS). Clinical advantages include less time per intervention session and the effects appear to be more robust and reproducible than HF-rTMS to modulate cortical excitability. HF-rTMS targeted at the primary motor cortex (M1) has demonstrated analgesic effects in patients with neuropathic pain but their mechanisms of action are unclear and pcTBS has been studied in healthy subjects only. This study examined the neural mechanisms that have been proposed to play a role in explaining the effects of pcTBS targeted at the M1 and DLPFC brain regions in neuropathic pain (NP) patients with Type 2 diabetes. METHODS Forty-two patients with painful diabetic neuropathy were randomized to receive a single session of pcTBS targeted at the left M1 or left DLPFC. pcTBS stimulation consisted of 1,200 pulses delivered in 1 min and 44 s with a 35-45 min gap between sham and active pcTBS stimulation. Both the activity of the descending pain system which was examined using conditioned pain modulation and the activity of the ascending pain system which was assessed using temporal summation of pain were recorded using a handheld pressure algometer by measuring pressure pain thresholds. The amplitude of the motor evoked potential (MEP) was used to measure motor corticospinal excitability and GABA activity was assessed using short (SICI) and long intracortical inhibition (LICI). All these measurements were performed at baseline and post-pcTBS stimulation. RESULTS Following a single session of pcTBS targeted at M1 and DLPFC, there was no change in BPI-DN scores and on the activity of the descending (measured using conditioned pain modulation) and ascending pain systems (measured using temporal summation of pain) compared to baseline but there was a significant improvement of >13% in perception of acute pain intensity, increased motor corticospinal excitability (measured using MEP amplitude) and intracortical inhibition (measured using SICI and LICI). CONCLUSION In patients with NP, a single session of pcTBS targeted at the M1 and DLPFC modulated the neurophysiological mechanisms related to motor corticospinal excitability and neurochemical mechanisms linked to GABA activity, but it did not modulate the activity of the ascending and descending endogenous modulatory systems. In addition, although BPI-DN scores did not change, there was a 13% improvement in self-reported perception of acute pain intensity.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States.
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
15
|
Barnes SA, Dillon DG, Young JW, Thomas ML, Faget L, Yoo JH, Der-Avakian A, Hnasko TS, Geyer MA, Ramanathan DS. Modulation of ventromedial orbitofrontal cortical glutamatergic activity affects the explore-exploit balance and influences value-based decision-making. Cereb Cortex 2023; 33:5783-5796. [PMID: 36472411 PMCID: PMC10183731 DOI: 10.1093/cercor/bhac459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022] Open
Abstract
The balance between exploration and exploitation is essential for decision-making. The present study investigated the role of ventromedial orbitofrontal cortex (vmOFC) glutamate neurons in mediating value-based decision-making by first using optogenetics to manipulate vmOFC glutamate activity in rats during a probabilistic reversal learning (PRL) task. Rats that received vmOFC activation during informative feedback completed fewer reversals and exhibited reduced reward sensitivity relative to rats. Analysis with a Q-learning computational model revealed that increased vmOFC activity did not affect the learning rate but instead promoted maladaptive exploration. By contrast, vmOFC inhibition increased the number of completed reversals and increased exploitative behavior. In a separate group of animals, calcium activity of vmOFC glutamate neurons was recorded using fiber photometry. Complementing our results above, we found that suppression of vmOFC activity during the latter part of rewarded trials was associated with improved PRL performance, greater win-stay responding and selecting the correct choice on the next trial. These data demonstrate that excessive vmOFC activity during reward feedback disrupted value-based decision-making by increasing the maladaptive exploration of lower-valued options. Our findings support the premise that pharmacological interventions that normalize aberrant vmOFC glutamate activity during reward feedback processing may attenuate deficits in value-based decision-making.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill St, Belmont, MA 02478, United States
- Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA 02115, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| | - Michael L Thomas
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Psychology, 1876 Campus Delivery, Colorado State University, Fort Collins, CO 80523, United States
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Ji Hoon Yoo
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| | - Dhakshin S Ramanathan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| |
Collapse
|
16
|
Ren L, Zhai Z, Xiang Q, Zhuo K, Zhang S, Zhang Y, Jiao X, Tong S, Liu D, Sun J. Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. J Neural Eng 2023; 20. [PMID: 36669203 DOI: 10.1088/1741-2552/acb50d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Background. Low-intensity transcranial ultrasound stimulation (TUS) could induce both immediate and long-lasting neuromodulatory effects in human brains. Interhemispheric imbalance at prefrontal or motor cortices generally associates with various cognitive decline in aging and mental disorders. However, whether TUS could modulate the interhemispheric balance of excitability in human brain remains unknown.Objective. This study aims to explore whether repetitive TUS (rTUS) intervention can modulate the interhemispheric balance of excitability between bilateral motor cortex (M1) in healthy subjects.Approach. Motor evoked potentials (MEPs) at bilateral M1 were measured at 15 min and 0 min before a 15 min active or sham rTUS intervention on left M1 and at 0 min, 15 min and 30 min after the intervention, and the Chinese version of brief neurocognitive test battery (C-BCT) was conducted before and after the intervention respectively. Cortical excitability was quantified by MEPs, and the long-lasting changes of MEP amplitude was used as an index of plasticity.Results. In the active rTUS group (n= 20), the ipsilateral MEP amplitude increased significantly compared with baselines and lasted for up to 30 min after intervention, while the contralateral MEP amplitude decreased lasting for 15 min, yielding increased laterality between bilateral MEPs. Furthermore, rTUS intervention induced changes in some C-BCT scores, and the changes of scores correlated with the changes of MEP amplitudes induced by rTUS intervention. The sham rTUS group (n= 20) showed no significant changes in MEPs and C-BCT scores. In addition, no participants reported any adverse effects during and after the rTUS intervention, and no obvious temperature increase appeared in skull or brain tissues in simulation.Significance. rTUS intervention modulated the plasticity of ipsilateral M1 and the interhemispheric balance of M1 excitability in human brain, and improved cognitive performance, suggesting a considerable potential of rTUS in clinical interventions.
Collapse
Affiliation(s)
- Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Zhaolin Zhai
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Suzhen Zhang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Institute of Mental Health, Fudan University, Shanghai 200030, People's Republic of China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| |
Collapse
|
17
|
Causal connectivity from right DLPFC to IPL in schizophrenia patients: a pilot study. SCHIZOPHRENIA 2022; 8:16. [PMID: 35256618 PMCID: PMC8901827 DOI: 10.1038/s41537-022-00216-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/01/2022] [Indexed: 12/05/2022]
Abstract
Abnormal function and connectivity of the fronto-parietal network (FPN) have been documented in patients with schizophrenia, but studies are correlational. We applied repetitive transcranial magnetic stimulation (rTMS) to the dorso-lateral prefrontal cortex (DLPFC) and observed causal connectivity to the inferior parietal lobe (IPL). We hypothesized that patients with schizophrenia would have lower activation and slower reaction in the IPL following DLPFC stimulation. Thirteen patients with schizophrenia (SZ) and fourteen healthy controls subjects (HC) underwent rTMS at 10 Hz to the right DLPFC. Simultaneously, we measured brain activation in the IPL, represented as oxygenized hemoglobin (HbO) levels, using functional near-infrared spectroscopy (fNIRS). rTMS consisted of 20 trains of impulses at 10 Hz for 3 seconds, and 60 seconds waiting time. Using NIRSLab software, GLM was applied to estimate both hemodynamic response function (HRF) and its derivative. Following TMS to the DLPFC, SZ showed a smaller decrease in HbO levels in the bilateral IPL than HC (p = 0.05). Timecourse analysis revealed an immediate decrease in parietal HbO levels in HC, but not in SZ. This difference was significant (at a threshold level of p ≤ 0.05, with Bonferroni correction) for several time segments and channels in both rights and left IPL. Our findings suggest abnormal fronto-temporal connectivity in patients with schizophrenia, beyond a mere decrease or slowing of information processing. This is in line with the hypothesis of reduced fronto-parietal inhibition in schizophrenia.
Collapse
|
18
|
Kim E, Kum J, Lee SH, Kim H. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. Front Neurosci 2022; 16:1011699. [PMID: 36213731 PMCID: PMC9539445 DOI: 10.3389/fnins.2022.1011699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateral brain stimulation is an important modality used to investigate brain circuits and treat neurological conditions. Recently, low-intensity pulsed ultrasound (LIPUS) received significant attention as a novel non-invasive neurostimulation technique with high spatial specificity. Despite the growing interest, the typical ultrasound brain stimulation study, especially for small animals, is limited to a single target of sonication. The constraint is associated with the complexity and the cost of the hardware system required to achieve multi-regional sonication. This work presented the development of a low-cost LIPUS system with a pair of single-element ultrasound transducers to address the above problem. The system was built with a multicore processor with an RF amplifier circuit. In addition, LIPUS device was incorporated with a wireless module (bluetooth low energy) and powered by a single 3.7 V battery. As a result, we achieved an ultrasound transmission with a central frequency of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound transducer. The developed system was further applied to anesthetized rats to investigate the difference between uni- and bilateral stimulation. A significant difference in cortical power density extracted from electroencephalogram signals was observed between uni- and bilateral LIPUS stimulation. The developed device provides an affordable solution to investigate the effects of LIPUS on functional interhemispheric connection.
Collapse
Affiliation(s)
- Evgenii Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jeungeun Kum
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Seung Hyun Lee
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyungmin Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Hyungmin Kim,
| |
Collapse
|
19
|
Ross JM, Sarkar M, Keller CJ. Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials. Hum Brain Mapp 2022; 43:5141-5153. [PMID: 35770956 PMCID: PMC9812254 DOI: 10.1002/hbm.25990] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
The sensory experience of transcranial magnetic stimulation (TMS) evokes cortical responses measured in electroencephalography (EEG) that confound interpretation of TMS-evoked potentials (TEPs). Methods for sensory masking have been proposed to minimize sensory contributions to the TEP, but the most effective combination for suprathreshold TMS to dorsolateral prefrontal cortex (dlPFC) is unknown. We applied sensory suppression techniques and quantified electrophysiology and perception from suprathreshold dlPFC TMS to identify the best combination to minimize the sensory TEP. In 21 healthy adults, we applied single pulse TMS at 120% resting motor threshold (rMT) to the left dlPFC and compared EEG vertex N100-P200 and perception. Conditions included three protocols: No masking (no auditory masking, no foam, and jittered interstimulus interval [ISI]), Standard masking (auditory noise, foam, and jittered ISI), and our ATTENUATE protocol (auditory noise, foam, over-the-ear protection, and unjittered ISI). ATTENUATE reduced vertex N100-P200 by 56%, "click" loudness perception by 50%, and scalp sensation by 36%. We show that sensory prediction, induced with predictable ISI, has a suppressive effect on vertex N100-P200, and that combining standard suppression protocols with sensory prediction provides the best N100-P200 suppression. ATTENUATE was more effective than Standard masking, which only reduced vertex N100-P200 by 22%, loudness by 27%, and scalp sensation by 24%. We introduce a sensory suppression protocol superior to Standard masking and demonstrate that using an unjittered ISI can contribute to minimizing sensory confounds. ATTENUATE provides superior sensory suppression to increase TEP signal-to-noise and contributes to a growing understanding of TMS-EEG sensory neuroscience.
Collapse
Affiliation(s)
- Jessica M. Ross
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental IllnessResearch, Education, and Clinical Center (MIRECC)Palo AltoCaliforniaUSA,Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| | - Corey J. Keller
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental IllnessResearch, Education, and Clinical Center (MIRECC)Palo AltoCaliforniaUSA,Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| |
Collapse
|
20
|
Pabst A, Proksch S, Médé B, Comstock DC, Ross JM, Balasubramaniam R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci Biobehav Rev 2022; 135:104587. [PMID: 35202646 DOI: 10.1016/j.neubiorev.2022.104587] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Intermittent theta-burst stimulation (iTBS) has been used to focally regulate excitability of neural cortex over the past decade - however there is little consensus on the generalizability of effects reported in individual studies. Many studies use small sample sizes (N < 30), and there is a considerable amount of methodological heterogeneity in application of the stimulation itself. This systematic meta-analysis aims to consolidate the extant literature and determine if up-regulatory theta-burst stimulation reliably enhances cognition through measurable behavior. Results show that iTBS - when compared to suitable control conditions - may enhance cognition when outlier studies are removed, but also that there is a significant amount of heterogeneity across studies. Significant contributors to between-study heterogeneity include location of stimulation and method of navigation to the stimulation site. Surprisingly, the type of cognitive domain investigated was not a significant contributor of heterogeneity. The findings of this meta-analysis demonstrate that standardization of iTBS is urgent and necessary to determine if neuroenhancement of particular cognitive faculties are reliable and robust, and measurable through observable behavior.
Collapse
Affiliation(s)
- Alexandria Pabst
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Accenture Labs, 415 Mission Street, San Francisco, CA 94105, USA.
| | - Shannon Proksch
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Butovens Médé
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Daniel C Comstock
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Jessica Marie Ross
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA; Veterans Affairs Palo Alto Healthcare System, Stanford University, 3801 Miranda Ave, Palo Alto, CA 94304, USA.
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
21
|
Ross JM, Ozdemir RA, Lian SJ, Fried PJ, Schmitt EM, Inouye SK, Pascual-Leone A, Shafi MM. A structured ICA-based process for removing auditory evoked potentials. Sci Rep 2022; 12:1391. [PMID: 35082350 PMCID: PMC8791940 DOI: 10.1038/s41598-022-05397-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (EEG), reflect a combination of TMS-induced cortical activity and multi-sensory responses to TMS. The auditory evoked potential (AEP) is a high-amplitude sensory potential-evoked by the "click" sound produced by every TMS pulse-that can dominate the TEP and obscure observation of other neural components. The AEP is peripherally evoked and therefore should not be stimulation site specific. We address the problem of disentangling the peripherally evoked AEP of the TEP from components evoked by cortical stimulation and ask whether removal of AEP enables more accurate isolation of TEP. We hypothesized that isolation of the AEP using Independent Components Analysis (ICA) would reveal features that are stimulation site specific and unique individual features. In order to improve the effectiveness of ICA for removal of AEP from the TEP, and thus more clearly separate the transcranial-evoked and non-specific TMS-modulated potentials, we merged sham and active TMS datasets representing multiple stimulation conditions, removed the resulting AEP component, and evaluated performance across different sham protocols and clinical populations using reduction in Global and Local Mean Field Power (GMFP/LMFP) and cosine similarity analysis. We show that removing AEPs significantly reduced GMFP and LMFP in the post-stimulation TEP (14 to 400 ms), driven by time windows consistent with the N100 and P200 temporal characteristics of AEPs. Cosine similarity analysis supports that removing AEPs reduces TEP similarity between subjects and reduces TEP similarity between stimulation conditions. Similarity is reduced most in a mid-latency window consistent with the N100 time-course, but nevertheless remains high in this time window. Residual TEP in this window has a time-course and topography unique from AEPs, which follow-up exploratory analyses suggest could be a modulation in the alpha band that is not stimulation site specific but is unique to individual subject. We show, using two datasets and two implementations of sham, evidence in cortical topography, TEP time-course, GMFP/LMFP and cosine similarity analyses that this procedure is effective and conservative in removing the AEP from TEP, and may thus better isolate TMS-evoked activity. We show TEP remaining in early, mid and late latencies. The early response is site and subject specific. Later response may be consistent with TMS-modulated alpha activity that is not site specific but is unique to the individual. TEP remaining after removal of AEP is unique and can provide insight into TMS-evoked potentials and other modulated oscillatory dynamics.
Collapse
Affiliation(s)
- Jessica M Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Recep A Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shu Jing Lian
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eva M Schmitt
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Sharon K Inouye
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
di Hou M, Santoro V, Biondi A, Shergill SS, Premoli I. A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia. J Psychiatry Neurosci 2021; 46:E675-E701. [PMID: 34933940 PMCID: PMC8695525 DOI: 10.1503/jpn.210006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation can be combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) to evaluate the excitatory and inhibitory functions of the cerebral cortex in a standardized manner. It has been postulated that schizophrenia is a disorder of functional neural connectivity underpinned by a relative imbalance of excitation and inhibition. The aim of this review was to provide a comprehensive overview of TMS-EMG and TMS-EEG research in schizophrenia, focused on excitation or inhibition, connectivity, motor cortical plasticity and the effect of antipsychotic medications, symptom severity and illness duration on TMS-EMG and TMS-EEG indices. METHODS We searched PsycINFO, Embase and Medline, from database inception to April 2020, for studies that included TMS outcomes in patients with schizophrenia. We used the following combination of search terms: transcranial magnetic stimulation OR tms AND interneurons OR glutamic acid OR gamma aminobutyric acid OR neural inhibition OR pyramidal neurons OR excita* OR inhibit* OR GABA* OR glutam* OR E-I balance OR excitation-inhibition balance AND schizoaffective disorder* OR Schizophrenia OR schizophreni*. RESULTS TMS-EMG and TMS-EEG measurements revealed deficits in excitation or inhibition, functional connectivity and motor cortical plasticity in patients with schizophrenia. Increased duration of the cortical silent period (a TMS-EMG marker of γ-aminobutyric acid B receptor activity) with clozapine was a relatively consistent finding. LIMITATIONS Most of the studies used patients with chronic schizophrenia and medicated patients, employed cross-sectional group comparisons and had small sample sizes. CONCLUSION TMS-EMG and TMS-EEG offer an opportunity to develop a novel and improved understanding of the physiologic processes that underlie schizophrenia and to assess the therapeutic effect of antipsychotic medications. In the future, these techniques may also help predict disease progression and further our understanding of the excitatory/inhibitory balance and its implications for mechanisms that underlie treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Meng di Hou
- From the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Hou, Shergill); the Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Santoro, Biondi, Premoli); and the Kent and Medway Medical School, Canterbury, UK (Shergill)
| | | | | | | | | |
Collapse
|
23
|
Donati FL, Kaskie R, Reis CC, D'Agostino A, Casali AG, Ferrarelli F. Reduced TMS-evoked fast oscillations in the motor cortex predict the severity of positive symptoms in first-episode psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110387. [PMID: 34129889 PMCID: PMC8380703 DOI: 10.1016/j.pnpbp.2021.110387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Accumulating evidence points to neurophysiological abnormalities of the motor cortex in Schizophrenia (SCZ). However, whether these abnormalities represent a core biological feature of psychosis rather than a superimposed neurodegenerative process is yet to be defined, as it is their putative relationship with clinical symptoms. in this study, we used Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) to probe the intrinsic oscillatory properties of motor (Brodmann Area 4, BA4) and non-motor (posterior parietal, BA7) cortical areas in twenty-three first-episode psychosis (FEP) patients and thirteen age and gender-matched healthy comparison (HC) subjects. Patients underwent clinical evaluation at baseline and six-months after the TMS-EEG session. We found that FEP patients had reduced EEG activity evoked by TMS of the motor cortex in the beta-2 (25-34 Hz) frequency band in a cluster of electrodes overlying BA4, relative to HC participants. Beta-2 deficits in the TMS-evoked EEG response correlated with worse positive psychotic symptoms at baseline and also predicted positive symptoms severity at six-month follow-up assessments. Altogether, these findings indicate that reduced TMS-evoked fast oscillatory activity in the motor cortex is an early neural abnormality that: 1) is present at illness onset; 2) may represent a state marker of psychosis; and 3) could play a role in the development of new tools of outcome prediction in psychotic patients.
Collapse
Affiliation(s)
- Francesco Luciano Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Health Sciences, University of Milan, Milan, Italy
| | - Rachel Kaskie
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Catarina Cardoso Reis
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | | | - Adenauer Girardi Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
24
|
Sultana R, Brooks CB, Shrestha A, Ogundele OM, Lee CC. Perineuronal Nets in the Prefrontal Cortex of a Schizophrenia Mouse Model: Assessment of Neuroanatomical, Electrophysiological, and Behavioral Contributions. Int J Mol Sci 2021; 22:11140. [PMID: 34681799 PMCID: PMC8538055 DOI: 10.3390/ijms222011140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder whose etiopathogenesis includes changes in cellular as well as extracellular structures. Perineuronal nets (PNNs) associated with parvalbumin-positive interneurons (PVs) in the prefrontal cortex (PFC) are dysregulated in schizophrenia. However, the postnatal development of these structures along with their associated neurons in the PFC is unexplored, as is their effects on behavior and neural activity. Therefore, in this study, we employed a DISC1 (Disruption in Schizophrenia) mutation mouse model of schizophrenia to assess these developmental changes and tested whether enzymatic digestion of PNNs in the PFC affected schizophrenia-like behaviors and neural activity. Developmentally, we found that the normal formation of PNNs, PVs, and colocalization of these two in the PFC, peaked around PND 22 (postnatal day 22). However, in DISC1, mutation animals from PND 0 to PND 60, both PNNs and PVs were significantly reduced. After enzymatic digestion of PNNs with chondroitinase in adult animals, the behavioral pattern of control animals mimicked that of DISC1 mutation animals, exhibiting reduced sociability, novelty and increased ultrasonic vocalizations, while there was very little change in other behaviors, such as working memory (Y-maze task involving medial temporal lobe) or depression-like behavior (tail-suspension test involving processing via the hypothalamic pituitary adrenal (HPA) axis). Moreover, following chondroitinase treatment, electrophysiological recordings from the PFC exhibited a reduced proportion of spontaneous, high-frequency firing neurons, and an increased proportion of irregularly firing neurons, with increased spike count and reduced inter-spike intervals in control animals. These results support the proposition that the aberrant development of PNNs and PVs affects normal neural operations in the PFC and contributes to the emergence of some of the behavioral phenotypes observed in the DISC1 mutation model of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (C.B.B.); (A.S.); (O.M.O.)
| | | | | | | | - Charles Chulsoo Lee
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (C.B.B.); (A.S.); (O.M.O.)
| |
Collapse
|
25
|
Benussi A, Dell'Era V, Cantoni V, Cotelli MS, Cosseddu M, Spallazzi M, Alberici A, Padovani A, Borroni B. Neurophysiological Correlates of Positive and Negative Symptoms in Frontotemporal Dementia. J Alzheimers Dis 2021; 73:1133-1142. [PMID: 31884481 DOI: 10.3233/jad-190986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The neural correlates of behavioral symptoms in frontotemporal dementia (FTD) are still to be elucidated. Neurotransmitter abnormalities could be correlated to the pathophysiology of negative and positive symptoms in FTD. OBJECTIVE To evaluate if the imbalance between inhibitory and excitatory cortical circuits, evaluated with transcranial magnetic stimulation (TMS), correlate with the magnitude of negative and positive symptoms, as measured by Frontal Behavioral Inventory (FBI) scores, in patients with FTD. METHODS Paired-pulse TMS was used to investigate the activity of different intracortical circuits in 186 FTD patients (130 bvFTD, 35 avPPA, 21 svPPA). We applied short interval intracortical inhibition (SICI - GABAAergic transmission), intracortical facilitation (ICF - glutamatergic transmission), long interval intracortical inhibition (LICI - GABABergic transmission), and short latency afferent inhibition (SAI - cholinergic transmission). Linear and stepwise multiple regression analysis were used to determine the contribution of each neurophysiological measures to the total variance of FBI scores. RESULTS At the stepwise multivariate analysis, we observed a significant negative correlation between FBI-A scores (negative symptoms) and ICF (β = -0.57, p < 0.001, adjusted R2 = 0.32). For FBI-B scores (positive symptoms), we observed a significant positive correlation for SICI (β = 0.84, p < 0.001, adjusted R2 = 0.56). Significant correlations were observed for single items of the FBI-A score with ICF and FBI-B scores with SICI, with a medium-large size effect for several items. CONCLUSIONS The present study shows that the imbalance between inhibitory and excitatory intracortical circuits, evaluated with TMS, correlated with the magnitude of negative and positive symptoms in FTD, respectively.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Dell'Era
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | | | - Maura Cosseddu
- Neurology Unit, Spedali Civili di Brescia, Brescia, Italy
| | - Marco Spallazzi
- Department of Medicine and Surgery, Section of Neurology, Azienda Ospedaliero-Universitaria, Parma, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
27
|
Ferrarelli F, Phillips M. Examining and Modulating Neural Circuits in Psychiatric Disorders With Transcranial Magnetic Stimulation and Electroencephalography: Present Practices and Future Developments. Am J Psychiatry 2021; 178:400-413. [PMID: 33653120 PMCID: PMC8119323 DOI: 10.1176/appi.ajp.2020.20071050] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique uniquely equipped to both examine and modulate neural systems and related cognitive and behavioral functions in humans. As an examination tool, TMS can be used in combination with EEG (TMS-EEG) to elucidate directly, objectively, and noninvasively the intrinsic properties of a specific cortical region, including excitation, inhibition, reactivity, and oscillatory activity, irrespective of the individual's conscious effort. Additionally, when applied in repetitive patterns, TMS has been shown to modulate brain networks in healthy individuals, as well as ameliorate symptoms in individuals with psychiatric disorders. The key role of TMS in assessing and modulating neural dysfunctions and associated clinical and cognitive deficits in psychiatric populations is therefore becoming increasingly evident. In this article, the authors review TMS-EEG studies in schizophrenia and mood disorders, as most TMS-EEG studies to date have focused on individuals with these disorders. The authors present the evidence on the efficacy of repetitive TMS (rTMS) and theta burst stimulation (TBS), when targeting specific cortical areas, in modulating neural circuits and ameliorating symptoms and abnormal behaviors in individuals with psychiatric disorders, especially when informed by resting-state and task-related neuroimaging measures. Examples of how the combination of TMS-EEG assessments and rTMS and TBS paradigms can be utilized to both characterize and modulate neural circuit alterations in individuals with psychiatric disorders are also provided. This approach, along with the evaluation of the behavioral effects of TMS-related neuromodulation, has the potential to lead to the development of more effective and personalized interventions for individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
28
|
Hare SM, Du X, Adhikari BM, Chen S, Mo C, Summerfelt A, Kvarta MD, Garcia L, Kochunov P, Elliot Hong L. Mapping local and long-distance resting connectivity markers of TMS-related inhibition reduction in schizophrenia. NEUROIMAGE-CLINICAL 2021; 31:102688. [PMID: 33991855 PMCID: PMC8135038 DOI: 10.1016/j.nicl.2021.102688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/07/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Short interval intracortical inhibition (SICI) is a biomarker for altered motor inhibition in schizophrenia, but the manner in which distant sites influence the inhibitory cortical-effector response remains elusive. Our study investigated local and long-distance resting state functional connectivity (rsFC) markers of SICI in a sample of N = 23 patients with schizophrenia and N = 29 controls. Local functional connectivity was quantified using regional homogeneity (ReHo) analysis and long-range connectivity was estimated using seed-based rsFC analysis. Direct and indirect effects of connectivity measures on SICI were modeled using mediation analysis. Higher SICI ratios (indicating reduced inhibition) in patients were associated with lower ReHo in the right insula. Follow-up rsFC analyses showed that higher SICI scores (indicating reduced inhibition) were associated with reduced connectivity between right insula and hubs of the corticospinal pathway: sensorimotor cortex and basal ganglia. Mediation analysis supported a model in which the direct effect of local insular connectivity strength on SICI is mediated by the interhemispheric connectivity between insula and left sensorimotor cortex. The broader clinical implications of these findings are discussed with emphasis on how these preliminary findings might inform novel interventions designed to restore or improve SICI in schizophrenia and deepen our understanding of motor inhibitory control and impact of abnormal signaling in motor-inhibitory pathways in schizophrenia.
Collapse
Affiliation(s)
- Stephanie M Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mark D Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laura Garcia
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Carment L, Dupin L, Guedj L, Térémetz M, Cuenca M, Krebs MO, Amado I, Maier MA, Lindberg PG. Neural noise and cortical inhibition in schizophrenia. Brain Stimul 2020; 13:1298-1304. [PMID: 32585356 DOI: 10.1016/j.brs.2020.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands. HYPOTHESIS In this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia. METHODS We measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS). RESULTS During force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition. CONCLUSION The findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France.
| | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| | - Laura Guedj
- Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| | - Macarena Cuenca
- Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Université de Paris, CNRS UMR, 8002, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| |
Collapse
|
30
|
Vittala A, Murphy N, Maheshwari A, Krishnan V. Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Front Neurosci 2020; 14:554. [PMID: 32547362 PMCID: PMC7270174 DOI: 10.3389/fnins.2020.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
In schizophrenia and related disorders, a deeper mechanistic understanding of neocortical dysfunction will be essential to developing new diagnostic and therapeutic techniques. To this end, combined transcranial magnetic stimulation and electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously perturb and measure neurophysiological correlates of cortical function, including oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review, we summarize the findings from a variety of studies that apply TMS/EEG to understand the fundamental features of cortical dysfunction in schizophrenia. These results lend to future applications of TMS/EEG in understanding the pathophysiological mechanisms underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Aadith Vittala
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Nicholas Murphy
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
31
|
Freche D, Naim-Feil J, Hess S, Peled A, Grinshpoon A, Moses E, Levit-Binnun N. Phase-Amplitude Markers of Synchrony and Noise: A Resting-State and TMS-EEG Study of Schizophrenia. Cereb Cortex Commun 2020; 1:tgaa013. [PMID: 34296092 PMCID: PMC8152916 DOI: 10.1093/texcom/tgaa013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
The electroencephalogram (EEG) of schizophrenia patients is known to exhibit a reduction of signal-to-noise ratio and of phase locking, as well as a facilitation of excitability, in response to a variety of external stimuli. Here, we demonstrate these effects in transcranial magnetic stimulation (TMS)-evoked potentials and in the resting-state EEG. To ensure veracity, we used 3 weekly sessions and analyzed both resting-state and TMS-EEG data. For the TMS responses, our analysis verifies known results. For the resting state, we introduce the methodology of mean-normalized variation to the EEG analysis (quartile-based coefficient of variation), which allows for a comparison of narrow-band EEG amplitude fluctuations to narrow-band Gaussian noise. This reveals that amplitude fluctuations in the delta, alpha, and beta bands of healthy controls are different from those in schizophrenia patients, on time scales of tens of seconds. We conclude that the EEG-measured cortical activity patterns of schizophrenia patients are more similar to noise, both in alpha- and beta-resting state and in TMS responses. Our results suggest that the ability of neuronal populations to form stable, locally, and temporally correlated activity is reduced in schizophrenia, a conclusion, that is, in accord with previous experiments on TMS-EEG and on resting-state EEG.
Collapse
Affiliation(s)
- Dominik Freche
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jodie Naim-Feil
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton 3800, Australia
| | - Shmuel Hess
- Geha Mental Health Center, Petah Tikvah 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avraham Peled
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel
- Institute for Psychiatric Studies, Shaar Menashe Mental Health Center, Menashe 38814, Pardes Hanna-Karkur, Israel
| | - Alexander Grinshpoon
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel
- Institute for Psychiatric Studies, Shaar Menashe Mental Health Center, Menashe 38814, Pardes Hanna-Karkur, Israel
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nava Levit-Binnun
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
| |
Collapse
|
32
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
33
|
|
34
|
Selective distant electrostimulation by synchronized bipolar nanosecond pulses. Sci Rep 2019; 9:13116. [PMID: 31511591 PMCID: PMC6739416 DOI: 10.1038/s41598-019-49664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
A unique aspect of electrostimulation (ES) with nanosecond electric pulses (nsEP) is the inhibition of effects when the polarity is reversed. This bipolar cancellation feature makes bipolar nsEP less efficient at biostimulation than unipolar nsEP. We propose to minimize stimulation near pulse-delivering electrodes by applying bipolar nsEP, whereas the superposition of two phase-shifted bipolar nsEP from two independent sources yields a biologically-effective unipolar pulse remotely. This is accomplished by electrical compensation of all nsEP phases except the first one, resulting in the restoration of stimulation efficiency due to cancellation of bipolar cancellation (CANCAN-ES). We experimentally proved the CANCAN-ES paradigm by measuring YO-PRO-1 dye uptake in CHO-K1 cells which were permeabilized by multiphasic nsEP (600 ns per phase) from two generators; these nsEP were synchronized either to overlap into a unipolar pulse remotely from electrodes (CANCAN), or not to overlap (control). Enhancement of YO-PRO-1 entry due to CANCAN was observed in all sets of experiments and reached ~3-fold in the center of the gap between electrodes, exactly where the unipolar pulse was formed, and equaled the degree of bipolar cancellation. CANCAN-ES is promising for non-invasive deep tissue stimulation, either alone or combined with other remote stimulation techniques to improve targeting.
Collapse
|
35
|
Mason J, Frazer AK, Pearce AJ, Goodwill AM, Howatson G, Jaberzadeh S, Kidgell DJ. Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis. Rev Neurosci 2019; 30:463-476. [DOI: 10.1515/revneuro-2018-0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Several studies have used transcranial magnetic stimulation to probe the corticospinal-motoneuronal responses to a single session of strength training; however, the findings are inconsistent. This systematic review and meta-analysis examined whether a single bout of strength training affects the excitability and inhibition of intracortical circuits of the primary motor cortex (M1) and the corticospinal-motoneuronal pathway. A systematic review was completed, tracking studies between January 1990 and May 2018. The methodological quality of studies was determined using the Downs and Black quality index. Data were synthesised and interpreted from meta-analysis. Nine studies (n=107) investigating the acute corticospinal-motoneuronal responses to strength training met the inclusion criteria. Meta-analyses detected that after strength training compared to control, corticospinal excitability [standardised mean difference (SMD), 1.26; 95% confidence interval (CI), 0.88, 1.63; p<0.0001] and intracortical facilitation (ICF) (SMD, 1.60; 95% CI, 0.18, 3.02; p=0.003) were increased. The duration of the corticospinal silent period was reduced (SMD, −17.57; 95% CI, −21.12, −14.01; p=0.00001), but strength training had no effect on the excitability of the intracortical inhibitory circuits [short-interval intracortical inhibition (SICI) SMD, 1.01; 95% CI, −1.67, 3.69; p=0.46; long-interval intracortical inhibition (LICI) SMD, 0.50; 95% CI, −1.13, 2.13; p=0.55]. Strength training increased the excitability of corticospinal axons (SMD, 4.47; 95% CI, 3.45, 5.49; p<0.0001). This systematic review and meta-analyses revealed that the acute neural changes to strength training involve subtle changes along the entire neuroaxis from the M1 to the spinal cord. These findings suggest that strength training is a clinically useful tool to modulate intracortical circuits involved in motor control.
Collapse
|
36
|
Hanzlíková Z, Kofler M, Slovák M, Věchetová G, Fečíková A, Kemlink D, Sieger T, Růžička E, Valls‐Solé J, Edwards MJ, Serranová T. Prepulse inhibition of the blink reflex is abnormal in functional movement disorders. Mov Disord 2019; 34:1022-1030. [DOI: 10.1002/mds.27706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Zuzana Hanzlíková
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| | - Markus Kofler
- Department of NeurologyHochzirl Hospital Hochzirl Austria
| | - Matěj Slovák
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| | - Gabriela Věchetová
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| | - Anna Fečíková
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| | - David Kemlink
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| | - Tomáš Sieger
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
- Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in Prague Prague Czech Republic
| | - Evžen Růžička
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| | - Josep Valls‐Solé
- Neurology Service, Hospital Clíınic, Facultad de MedicinaUniversitat de Barcelona Barcelona Spain
| | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical SciencesSt George's University of London London United Kingdom
| | - Tereza Serranová
- Department of Neurology and Center of Clinical NeuroscienceCharles University in Prague, 1st Faculty of Medicine and General University Hospital Prague Czech Republic
| |
Collapse
|
37
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
38
|
Cornblath EJ, Lydon-Staley DM, Bassett DS. Harnessing networks and machine learning in neuropsychiatric care. Curr Opin Neurobiol 2019; 55:32-39. [PMID: 30641443 PMCID: PMC6839408 DOI: 10.1016/j.conb.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
The development of next-generation therapies for neuropsychiatric illness will likely rely on a precise and accurate understanding of human brain dynamics. Toward this end, researchers have focused on collecting large quantities of neuroimaging data. For simplicity, we will refer to large cross-sectional neuroimaging studies as broad studies and to intensive longitudinal studies as deep studies. Recent progress in identifying illness subtypes and predicting treatment response in neuropsychiatry has been supported by these study designs, along with methods bridging machine learning and network science. Such methods combine analytic power, interpretability, and direct connection to underlying theory in cognitive neuroscience. Ultimately, we propose a general framework for the treatment of neuropsychiatric illness relying on the findings from broad and deep studies combined with basic cognitive and physiologic measurements.
Collapse
Affiliation(s)
- Eli J Cornblath
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Lydon-Staley
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Cui M, Ge H, Zeng H, Yan H, Zhang L, Feng H, Chen Y. Repetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation and Differentiation after Intracerebral Hemorrhage in Mice. Cell Transplant 2019; 28:568-584. [PMID: 30832493 PMCID: PMC7103604 DOI: 10.1177/0963689719834870] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a physical treatment applied
during recovery after intracerebral hemorrhage (ICH). With in vivo and in vitro assays,
the present study sought to investigate how rTMS influences neural stem cells (NSCs) after
ICH and the possible mechanism. Following a collagenase-induced ICH, adult male C57BL/6 J
mice were subjected to rTMS treatment every 24 h for 5 days using the following
parameters: frequency, 10 Hz; duration, 2 s; wait time, 5.5 s; 960 trains (500 µV/div, 5
ms/div, default setting). Brain water content and neurobehavioral score were assessed at
days 1, 3, and 5 after ICH. The proliferation and differentiation of NSCs were observed
using immunofluorescence staining for Nestin, Ki-67, DCX, and GFAP on day 3 after ICH, and
rTMS treatment with the same parameters was applied to NSCs in vitro. We found that rTMS
significantly reduced brain edema and alleviated neural functional deficits. The mice that
underwent ICH recovered faster after rTMS treatment, with apparent proliferation and
neuronal differentiation of NSCs and attenuation of glial differentiation and GFAP
aggregation. Accordingly, proliferation and neuronal differentiation of isolated NSCs were
promoted, while glial differentiation was reduced. In addition, microarray analysis,
western blotting assays, and calcium imaging were applied to initially investigate the
potential mechanism. Bioinformatics showed that the positive effect of rTMS on NSCs after
ICH was largely related to the MAPK signaling pathway, which might be a potential hub
signaling pathway under the complex effect exerted by rTMS. The results of the microarray
data analysis also revealed that Ca2+ might be the connection between physical
treatment and the MAPK signaling pathway. These predictions were further identified by
western blotting analysis and calcium imaging. Taken together, our findings showed that
rTMS after ICH exhibited a restorative effect by enhancing the proliferation and neuronal
differentiation of NSCs, potentially through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengchu Cui
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Hongfei Ge
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Han Zeng
- 2 College of Computer and Information Science, Southwest University, Chongqing, P. R. China
| | - Hongxiang Yan
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Le Zhang
- 3 College of Computer Science, Sichuan University, Chengdu, P. R. China
| | - Hua Feng
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yujie Chen
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
40
|
Humpston CS, Adams RA, Benrimoh D, Broome MR, Corlett PR, Gerrans P, Horga G, Parr T, Pienkos E, Powers AR, Raballo A, Rosen C, Linden DEJ. From Computation to the First-Person: Auditory-Verbal Hallucinations and Delusions of Thought Interference in Schizophrenia-Spectrum Psychoses. Schizophr Bull 2019; 45:S56-S66. [PMID: 30715542 PMCID: PMC6357975 DOI: 10.1093/schbul/sby073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Schizophrenia-spectrum psychoses are highly complex and heterogeneous disorders that necessitate multiple lines of scientific inquiry and levels of explanation. In recent years, both computational and phenomenological approaches to the understanding of mental illness have received much interest, and significant progress has been made in both fields. However, there has been relatively little progress bridging investigations in these seemingly disparate fields. In this conceptual review and collaborative project from the 4th Meeting of the International Consortium on Hallucination Research, we aim to facilitate the beginning of such dialogue between fields and put forward the argument that computational psychiatry and phenomenology can in fact inform each other, rather than being viewed as isolated or even incompatible approaches. We begin with an overview of phenomenological observations on the interrelationships between auditory-verbal hallucinations (AVH) and delusional thoughts in general, before moving on to review several theoretical frameworks and empirical findings in the computational modeling of AVH. We then relate the computational models to the phenomenological accounts, with a special focus on AVH and delusions that involve the senses of agency and ownership of thought (delusions of thought interference). Finally, we offer some tentative directions for future research, emphasizing the importance of a mutual understanding between separate lines of inquiry.
Collapse
Affiliation(s)
- Clara S Humpston
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,School of Psychology, Cardiff University, Cardiff, United Kingdom,To whom correspondence should be addressed;Department of Psychological Medicine (PO72), Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, LondonSE5 8AF, United Kingdom; tel: +44 (0) 20 7848 0088, fax: +44 (0) 20 7848 0298, e-mail:
| | - Rick A Adams
- Division of Psychiatry, University College London, London, United Kingdom
| | - David Benrimoh
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Matthew R Broome
- Institute for Mental Health, School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom,Department of Psychiatry,Medical Sciences Division, University of Oxford, Oxford, United Kingdom,Faculty of Philosophy, Humanities Division, University of Oxford, Oxford, United Kingdom
| | | | - Philip Gerrans
- Department of Philosophy, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Thomas Parr
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Elizabeth Pienkos
- Graduate Institute of ProfessionalPsychology, University of Hartford, West Hartford, CT
| | | | - Andrea Raballo
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy
| | - Cherise Rosen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - David E J Linden
- School of Psychology, Cardiff University, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
41
|
Du X, Choa FS, Chiappelli J, Wisner KM, Wittenberg G, Adhikari B, Bruce H, Rowland LM, Kochunov P, Hong LE. Aberrant Middle Prefrontal-Motor Cortex Connectivity Mediates Motor Inhibitory Biomarker in Schizophrenia. Biol Psychiatry 2019; 85:49-59. [PMID: 30126607 PMCID: PMC6289820 DOI: 10.1016/j.biopsych.2018.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/29/2018] [Accepted: 06/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inhibitory deficits in motor cortex in schizophrenia have been well demonstrated using short-interval intracortical inhibition (SICI) by transcranial magnetic stimulation. However, it remains unknown whether these deficits originate from dysfunction of motor cortex itself or reflect abnormal modulations of motor cortex by other schizophrenia-related brain areas. METHODS The study was completed by 24 patients with schizophrenia spectrum disorders and 30 healthy control subjects. SICI was obtained by delivering transcranial magnetic stimulation over the left motor cortex. Resting-state functional magnetic resonance imaging and diffusion tensor imaging fractional anisotropy were used to measure functional connectivity (FC) and white matter microstructures, respectively. Stimulation sites for SICI at motor cortex were used as the seeds to obtain whole-brain FC maps. Clinical symptoms were assessed with the Brief Psychiatric Rating Scale. RESULTS In schizophrenia, left prefrontal cortex-motor cortex FC was inversely associated with SICI but positively associated with the underlying white matter microstructure at the left corona radiata and also associated with overall symptoms (all corrected p < .05). Mediation analysis showed that the prefrontal-motor cortex FC significantly mediated the corona radiata white matter effects on SICI (p = .007). CONCLUSIONS Higher resting-state left prefrontal-motor cortex FC, accompanied by a higher fractional anisotropy of left corona radiata, predicted fewer inhibitory deficits, suggesting that the inhibitory deficits in motor cortex in schizophrenia may in part be mediated by a top-down prefrontal influence. SICI may serve as a robust biomarker indexing inhibitory dysfunction at anatomic as well as circuitry levels in schizophrenia.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland, Baltimore, Maryland
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Krista M Wisner
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - George Wittenberg
- Department of Psychiatry, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bhim Adhikari
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather Bruce
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laura M Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Test-retest reliability of short-interval intracortical inhibition and intracortical facilitation in patients with schizophrenia. Psychiatry Res 2018; 267:575-581. [PMID: 30032068 PMCID: PMC6131061 DOI: 10.1016/j.psychres.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Impaired short-interval intracortical inhibition (SICI) elicited by paired-pulse TMS (ppTMS) has emerged as one of the most consistent TMS findings in patients with schizophrenia. Reduction of SICI has been reproducibly found, suggesting that SICI may be a new biomarker indexing the inhibitory dysfunction in schizophrenia. This study evaluated whether SICI has the test-retest reliability suitable for clinical trial and research applications. SICIs, intracortical facilitation (ICF), and other ppTMS effects were obtained using inter-stimulus intervals (ISIs) from 1 to 500 ms, on 2 occasions about 3-4 weeks apart in patients with schizophrenia and healthy individuals. Acceptable test-retest reliabilities were found for SICI (at 1 and 3 ms ISIs) in both patients and controls (all intraclass correlation coefficients r > 0.6). However, test-retest reliability in longer ISIs and in ICF were modest or poor. To our knowledge, this is the first study demonstrated the acceptable reliability of SICI measure in patients with schizophrenia. The data support SICI as a reliable biomarker for schizophrenia.
Collapse
|
43
|
Noda Y, Barr MS, Zomorrodi R, Cash RFH, Farzan F, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Sci Rep 2017; 7:17106. [PMID: 29213090 PMCID: PMC5719013 DOI: 10.1038/s41598-017-17052-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023] Open
Abstract
GABAergic and glutamatergic dysfunction in the dorsolateral prefrontal cortex (DLPFC) are thought to be the core pathophysiological mechanisms of schizophrenia. Recently, we have established a method to index these functions from the DLPFC using the paired transcranial magnetic stimulation (TMS) paradigms of short interval intracortical inhibition (SICI) and facilitation (ICF) combined with electroencephalography (EEG). In this study, we aimed to evaluate neurophysiological indicators related to GABAA and glutamate receptor-mediated functions respectively from the DLPFC in patients with schizophrenia using these paradigms, compared to healthy controls. Given that these activities contribute to cognitive functions, the relationship between the TMS-evoked potential (TEP) modulations by SICI/ICF and cognitive/clinical measures were explored. Compared to controls, patients showed reduced inhibition in P60 (t22 = −4.961, p < 0.0001) by SICI and reduced facilitation in P60 (t22 = 5.174, p < 0.0001) and N100 (t22 = 3.273, p = 0.003) by ICF. In patients, the modulation of P60 by SICI was correlated with the longest span of the Letter-Number Span Test (r = −0.775, p = 0.003), while the modulation of N100 by ICF was correlated with the total score of the Positive and Negative. Syndrome Scale (r = 0.817, p = 0.002). These findings may represent the pathophysiology, which may be associated with prefrontal GABAA and glutamatergic dysfunctions, in the expression of symptoms of schizophrenia.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada
| | - Robin F H Cash
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, M5T 2S8, Ontario, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, M5T 2S8, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
44
|
Adorjan I, Ahmed B, Feher V, Torso M, Krug K, Esiri M, Chance SA, Szele FG. Calretinin interneuron density in the caudate nucleus is lower in autism spectrum disorder. Brain 2017; 140:2028-2040. [PMID: 29177493 DOI: 10.1093/brain/awx131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/18/2017] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder is a debilitating condition with possible neurodevelopmental origins but unknown neuroanatomical correlates. Whereas investigators have paid much attention to the cerebral cortex, few studies have detailed the basal ganglia in autism. The caudate nucleus may be involved in the repetitive movements and limbic changes of autism. We used immunohistochemistry for calretinin and neuropeptide Y in 24 age- and gender-matched patients with autism spectrum disorder and control subjects ranging in age from 13 to 69 years. Patients with autism had a 35% lower density of calretinin+ interneurons in the caudate that was driven by loss of small calretinin+ neurons. This was not caused by altered size of the caudate, as its cross-sectional surface areas were similar between diagnostic groups. Controls exhibited an age-dependent increase in the density of medium and large calretinin+ neurons, whereas subjects with autism did not. Diagnostic groups did not differ regarding ionized calcium-binding adapter molecule 1+ immunoreactivity for microglia, suggesting chronic inflammation did not cause the decreased calretinin+ density. There was no statistically significant difference in the density of neuropeptide Y+ neurons between subjects with autism and controls. The decreased calretinin+ density may disrupt the excitation/inhibition balance in the caudate leading to dysfunctional corticostriatal circuits. The description of such changes in autism spectrum disorder may clarify pathomechanisms and thereby help identify targets for drug intervention and novel therapeutic strategies.
Collapse
Affiliation(s)
- Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bashir Ahmed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Virginia Feher
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Mario Torso
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret Esiri
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Steven A Chance
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Ferri F, Nikolova YS, Perrucci MG, Costantini M, Ferretti A, Gatta V, Huang Z, Edden RAE, Yue Q, D’Aurora M, Sibille E, Stuppia L, Romani GL, Northoff G. A Neural "Tuning Curve" for Multisensory Experience and Cognitive-Perceptual Schizotypy. Schizophr Bull 2017; 43:801-813. [PMID: 28168302 PMCID: PMC5472158 DOI: 10.1093/schbul/sbw174] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our coherent perception of external events is enabled by the integration of inputs from different senses occurring within a range of temporal offsets known as the temporal binding window (TBW), which varies from person to person. A relatively wide TBW may increase the likelihood that stimuli originating from different environmental events are erroneously integrated and abnormally large TBW has been found in psychiatric disorders characterized by unusual perceptual experiences. Despite strong evidence of inter-individual differences in TBW, both within clinical and nonclinical populations, the neurobiological underpinnings of this variability remain unclear. We adopted an integrated strategy linking TBW to temporal dynamics in functional magnetic resonance imaging (fMRI)-resting-state activity and cortical excitation/inhibition (E/I) balance. E/I balance was indexed by glutamate/Gamma-AminoButyric Acid (GABA) concentrations and common variation in glutamate and GABA genes in a healthy sample. Stronger resting-state long-range temporal correlations, indicated by larger power law exponent (PLE), in the auditory cortex, robustly predicted narrower audio-tactile TBW, which was in turn associated with lower cognitive-perceptual schizotypy. Furthermore, PLE was highest and TBW narrowest for individuals with intermediate levels of E/I balance, with shifts towards either extreme resulting in reduced multisensory temporal precision and increased schizotypy, effectively forming a neural "tuning curve" for multisensory experience and schizophrenia risk. Our findings shed light on the neurobiological underpinnings of multisensory integration and its potentially clinically relevant inter-individual variability.
Collapse
Affiliation(s)
- Francesca Ferri
- Department of Psychology, University of Essex, Colchester, UK;,Institute of Mental Health Research, Brain and Mind Research Centre, University of Ottawa, Ottawa, ON, Canada;,These authors contributed equally to the article
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada;,These authors contributed equally to the article
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Marcello Costantini
- Department of Psychology, University of Essex, Colchester, UK;,Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological, Humanities and Territorial Sciences, “G.d’Annunzio” University of Chieti, Chieti, Italy
| | - Zirui Huang
- Institute of Mental Health Research, Brain and Mind Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Richard A. E. Edden
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD;,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Marco D’Aurora
- Department of Psychological, Humanities and Territorial Sciences, “G.d’Annunzio” University of Chieti, Chieti, Italy
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada;,Departments of Psychiatry and of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Liborio Stuppia
- Department of Psychological, Humanities and Territorial Sciences, “G.d’Annunzio” University of Chieti, Chieti, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Georg Northoff
- Institute of Mental Health Research, Brain and Mind Research Centre, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
46
|
Ameis SH, Daskalakis ZJ, Blumberger DM, Desarkar P, Drmic I, Mabbott DJ, Lai MC, Croarkin PE, Szatmari P. Repetitive Transcranial Magnetic Stimulation for the Treatment of Executive Function Deficits in Autism Spectrum Disorder: Clinical Trial Approach. J Child Adolesc Psychopharmacol 2017; 27:413-421. [PMID: 28346865 PMCID: PMC5510034 DOI: 10.1089/cap.2016.0146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Executive function (EF) deficits in patients with autism spectrum disorder (ASD) are ubiquitous and understudied. Further, there are no effective, neuroscience-based treatments to address this impairing feature of ASD. Repetitive transcranial magnetic stimulation (rTMS) has demonstrated promise in addressing EF deficits in adult neuropsychiatric disorders. This article will outline the design of a novel randomized-controlled trial of bilateral, 20 Hz, rTMS applied to the dorsolateral prefrontal cortex (DLPFC) for treatment of EF deficits in ASD that is currently ongoing. We describe prior therapeutic rTMS research for ASD and prior rTMS trials targeting EFs in adult neuropsychiatric disorders. A neurophysiological rationale for rTMS treatment of EF deficits in ASD is presented. METHODS An ongoing protocol will enroll participants aged 16-35 with ASD and no intellectual disability. Psychotropic medications will be continued during the 4-week trial of active 20 Hz versus sham rTMS applied to the DLPFC. Twenty, active treatment sessions consisting of 25 stimulation trains at a 90% motor threshold will be administered. The primary outcome measure is the Cambridge Neuropsychological Test Automated Battery (CANTAB) spatial working memory task. At present, recruitment, enrollment, and treatment within the described clinical trial are ongoing. CONCLUSIONS EF deficits are common and impairing symptoms of ASD. There are no evidence-based treatments for EF deficits in ASD. The protocol described here will provide important preliminary data on the feasibility and efficacy of 20 Hz rTMS to DLPFC for EF deficits in ASD.
Collapse
Affiliation(s)
- Stephanie H. Ameis
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pushpal Desarkar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Irene Drmic
- Genetics and Genome Biology and Autism Research Unit, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Donald J. Mabbott
- Program in Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, Faculty of Graduate Studies, University of Toronto, Toronto, Canada
| | - Meng-Chuan Lai
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Paul E. Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Peter Szatmari
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Ustohal L, Mayerova M, Hublova V, Prikrylova Kucerova H, Ceskova E, Kasparek T. Risperidone increases the cortical silent period in drug-naive patients with first-episode schizophrenia: A transcranial magnetic stimulation study. J Psychopharmacol 2017; 31:500-504. [PMID: 27527735 DOI: 10.1177/0269881116662650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Schizophrenia is accompanied by impaired cortical inhibition, as measured by several markers including the cortical silent period (CSP). It is thought that CSP measures gamma-aminobutyric acid receptors B (GABAB) mediated inhibitory activity. But the mutual roles of schizophrenia as a disease and the drugs used for the treatment of psychosis on GABA mediated neurotransmission are not clear. METHODS We recruited 13 drug-naive patients with first-episode schizophrenia. We used transcranial magnetic stimulation to assess CSP prior to initiating risperidone monotherapy and again four weeks later. At the same time, we rated the severity of psychopathology using the Positive and Negative Syndrome Scale (PANSS). RESULTS We obtained data from 12 patients who showed a significant increase in CSP, from 134.20±41.81 ms to 162.95±61.98 ms ( p=0.041; Cohen's d=0.544). After the treatment, the PANSS total score was significantly lower, as were the individual subscores ( p<0.05). However, no correlation was found between ΔCSP and ΔPANSS. CONCLUSION Our study in patients with first-episode schizophrenia demonstrated an association between risperidone monotherapy and an increase in GABAB mediated inhibitory neurotransmission.
Collapse
Affiliation(s)
- Libor Ustohal
- 1 Department of Psychiatry, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic.,2 Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michaela Mayerova
- 1 Department of Psychiatry, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic.,2 Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Veronika Hublova
- 1 Department of Psychiatry, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Hana Prikrylova Kucerova
- 1 Department of Psychiatry, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Eva Ceskova
- 1 Department of Psychiatry, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic.,2 Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Kasparek
- 1 Department of Psychiatry, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic.,2 Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
48
|
Duque J, Greenhouse I, Labruna L, Ivry RB. Physiological Markers of Motor Inhibition during Human Behavior. Trends Neurosci 2017; 40:219-236. [PMID: 28341235 DOI: 10.1016/j.tins.2017.02.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023]
Abstract
Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another.
Collapse
Affiliation(s)
- Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Ian Greenhouse
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Ludovica Labruna
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
49
|
Shafi MM, Santarnecchi E, Fong TG, Jones RN, Marcantonio ER, Pascual-Leone A, Inouye SK. Advancing the Neurophysiological Understanding of Delirium. J Am Geriatr Soc 2017; 65:1114-1118. [PMID: 28165616 DOI: 10.1111/jgs.14748] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Delirium is a common problem associated with substantial morbidity and increased mortality. However, the brain dysfunction that leads some individuals to develop delirium in response to stressors is unclear. In this article, we briefly review the neurophysiologic literature characterizing the changes in brain function that occur in delirium, and in other cognitive disorders such as Alzheimer's disease. Based on this literature, we propose a conceptual model for delirium. We propose that delirium results from a breakdown of brain function in individuals with impairments in brain connectivity and brain plasticity exposed to a stressor. The validity of this conceptual model can be tested using Transcranial Magnetic Stimulation in combination with Electroencephalography, and, if accurate, could lead to the development of biomarkers for delirium risk in individual patients. This model could also be used to guide interventions to decrease the risk of cerebral dysfunction in patients preoperatively, and facilitate recovery in patients during or after an episode of delirium.
Collapse
Affiliation(s)
- Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tamara G Fong
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
| | - Richard N Jones
- Department of Psychiatry and Human Behavior, Brown University Warren Alpert Medical School, Providence, Rhode Island.,Department of Neurology, Brown University Warren Alpert Medical School, Providence, Rhode Island
| | - Edward R Marcantonio
- Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sharon K Inouye
- Harvard Medical School, Boston, Massachusetts.,Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
50
|
Ferrarelli F. A TMS/high-density-EEG paradigm for genetic generalized epilepsy: A new diagnostic and prognostic tool? Clin Neurophysiol 2017; 128:365-366. [PMID: 28043771 DOI: 10.1016/j.clinph.2016.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|