1
|
Chien YL, Hsieh MH, Gau SSF. Mismatch Negativity and P3a in Unaffected Siblings of Individuals with Autism Spectrum Disorder and the Exploration on the Neurocognitive Implications. J Autism Dev Disord 2024:10.1007/s10803-024-06520-1. [PMID: 39242471 DOI: 10.1007/s10803-024-06520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/09/2024]
Abstract
Evidence suggests different mismatch negativity (MMN) and P3a responses in individuals with autism spectrum disorder (ASD). Since unaffected siblings shared aberrant neurocognition and brain connectivity with ASD probands, this study investigated MMN and P3a responses in unaffected siblings and explored its neurocognitive implications and effects modifiers. We assessed 43 unaffected siblings of ASD probands and 64 non-autistic comparisons (NTC) using MMN and P3a on both frequency and duration oddball paradigms. The amplitude and latency of MMN and P3a were compared between unaffected siblings and NTC, and validated in 67 ASD probands. In addition, the neurocognitive correlates of MMN and P3a parameters were explored in attention performance, spatial working memory (SWM), and visual research via the tasks of the Conners' Continuous Performance Test and the Cambridge Neuropsychological Test Automated Battery. Compared to NTC, unaffected siblings and ASD probands presented a shorter MMN latency. The P3a amplitude of the duration paradigm (dP3a) was correlated with fewer commission errors, fewer SWM total errors, higher detectability, and more correct responses on visual search tasks. In addition, the dP3a amplitude significantly interacted with sibship, age, and full-scale IQ to predict attention performance, SWM total errors, and total correct response on visual search. Findings suggest that unaffected siblings of ASD may have earlier brain responses upon novelty discrimination. P3a amplitude may correlate with better neurocognitive performance, but the effect was moderated by sibship, age, and intelligence.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No.7, Chung-Shan South Road, Taipei, 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No.7, Chung-Shan South Road, Taipei, 10002, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No.7, Chung-Shan South Road, Taipei, 10002, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
López-Caballero F, Curtis M, Coffman BA, Salisbury DF. Is source-resolved magnetoencephalographic mismatch negativity a viable biomarker for early psychosis? Eur J Neurosci 2024; 59:1889-1906. [PMID: 37537883 PMCID: PMC10837325 DOI: 10.1111/ejn.16107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Mismatch negativity (MMN) is an auditory event-related response reflecting the pre-attentive detection of novel stimuli and is a biomarker of cortical dysfunction in schizophrenia (SZ). MMN to pitch (pMMN) and to duration (dMMN) deviant stimuli are impaired in chronic SZ, but it is less clear if MMN is reduced in first-episode SZ, with inconsistent findings in scalp-level EEG studies. Here, we investigated the neural generators of pMMN and dMMN with MEG recordings in 26 first-episode schizophrenia spectrum (FEsz) and 26 matched healthy controls (C). We projected MEG inverse solutions into precise functionally meaningful auditory cortex areas. MEG-derived MMN sources were in bilateral primary auditory cortex (A1) and belt areas. In A1, pMMN FEsz reduction showed a trend towards statistical significance (F(1,50) = 3.31; p = .07), and dMMN was reduced in FEsz (F(1,50) = 4.11; p = .04). Hypothesis-driven comparisons at each hemisphere revealed dMMN reduction in FEsz occurred in the left (t(56) = 2.23; p = .03; d = .61) but not right (t(56) = 1.02; p = .31; d = .28) hemisphere, with a moderate effect size. The added precision of MEG source solution with high-resolution MRI and parcellation of A1 may be requisite to detect the emerging pathophysiology and indicates a critical role for left hemisphere pathology at psychosis onset. However, the moderate effect size in left A1, albeit larger than reported in scalp MMN meta-analyses, casts doubt on the clinical utility of MMN for differential diagnosis, as a majority of patients will overlap with the healthy individual's distribution.
Collapse
Affiliation(s)
- Fran López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Javitt DC. Mismatch Negativity (MMN) as a Pharmacodynamic/Response Biomarker for NMDA Receptor and Excitatory/Inhibitory Imbalance-Targeted Treatments in Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:411-451. [PMID: 39562453 DOI: 10.1007/978-3-031-69491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Schizophrenia is a major mental disorder that affects approximately 0.5% of the population worldwide. Persistent negative symptoms and cognitive impairments associated with schizophrenia (CIAS) are key features of the disorder and primary predictors of long-term disability. At the neurochemical level, both CIAS and negative symptoms are potentially attributable to dysfunction or dysregulation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission within cortical and subcortical brain regions. At present, there are no approved treatments for either CIAS or persistent negative symptoms. Development of novel treatments, moreover, is limited by the lack of biomarkers that can be used translationally across preclinical and early-stage clinical investigation. The present chapter describes the use of mismatch negativity (MMN) as a pharmacodynamic/response (PD/R) biomarker for early-stage clinical investigation of NMDAR targeted therapies for schizophrenia. MMN indexes dysfunction of early auditory processing (EAP) in schizophrenia. In humans, deficits in MMN generation contribute hierarchically to impaired cognition and functional outcome. Across humans, rodents, and primates, MMN has been linked to impaired NMDAR function and resultant disturbances in excitatory/inhibitory (E/I) balance involving interactions between glutamatergic (excitatory) pyramidal and GABAeric (inhibitory) local circuit neurons. In early-stage clinical trials, MMN has shown sensitivity to the acute effects of novel pharmacological treatments. These findings support use of MMN as a pharmacodynamic/response biomarker to support preclinical drug discovery and early-stage proof-of-mechanisms studies in schizophrenia and other related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
4
|
Francisco AA, Foxe JJ, Molholm S. Event-related potential (ERP) markers of 22q11.2 deletion syndrome and associated psychosis. J Neurodev Disord 2023; 15:19. [PMID: 37328766 PMCID: PMC10273715 DOI: 10.1186/s11689-023-09487-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a multisystemic disorder characterized by a wide range of clinical features, ranging from life-threatening to less severe conditions. One-third of individuals with the deletion live with mild to moderate intellectual disability; approximately 60% meet criteria for at least one psychiatric condition.22q11.2DS has become an important model for several medical, developmental, and psychiatric disorders. We have been particularly interested in understanding the risk for psychosis in this population: Approximately 30% of the individuals with the deletion go on to develop schizophrenia. The characterization of cognitive and neural differences between those individuals who develop schizophrenia and those who do not, despite being at genetic risk, holds important promise in what pertains to the clarification of paths to disease and to the development of tools for early identification and intervention.Here, we review our previous event-related potential (ERP) findings as potential markers for 22q11.2DS and the associated risk for psychosis, while discussing others' work. We focus on auditory processing (auditory-evoked potentials, auditory adaptation, and auditory sensory memory), visual processing (visual-evoked potentials and visual adaptation), and inhibition and error monitoring.The findings discussed suggest basic mechanistic and disease process effects on neural processing in 22q11.2DS that are present in both early sensory and later cognitive processing, with possible implications for phenotype. In early sensory processes, both during auditory and visual processing, two mechanisms that impact neural responses in opposite ways seem to coexist-one related to the deletion, which increases brain responses; another linked to psychosis, decreasing neural activity. Later, higher-order cognitive processes may be equally relevant as markers for psychosis. More specifically, we argue that components related to error monitoring may hold particular promise in the study of risk for schizophrenia in the general population.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
5
|
Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:105. [PMID: 36433979 PMCID: PMC9700713 DOI: 10.1038/s41537-022-00302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like ideation to explain this experience. These results highlight the value of computational models for understanding the pathophysiological mechanisms of psychosis.
Collapse
|
6
|
de Bustamante Simas ML, Dos Santos NRM, Lacerda AM. Auditory perceptual discomfort and low-hearing tolerance in the first episode psychosis. PSICOLOGIA, REFLEXAO E CRITICA : REVISTA SEMESTRAL DO DEPARTAMENTO DE PSICOLOGIA DA UFRGS 2022; 35:20. [PMID: 35819653 PMCID: PMC9276868 DOI: 10.1186/s41155-022-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Awareness of perceptual and sensory changes that might occur in visual, auditory, proprioception, and other senses, in the early stages towards the First Episode Psychosis (FEP), and their subsequent sensorial evolution as the disturb progresses deeper into an acute episode, might be a key element for interrupting the process. In the present study, we investigated hearing discomfort/tolerance to 16 given sound streams. Sixteen people diagnosed with FEP, participated in the experiment. Sixteen frequency sweeps varying in modulation envelopes (sawtooth, sine), order (ascending, descending), duration (4s, 8s), and range (50–8000 Hz, 2–8 kHz) were presented randomly, but always in the same sequence, to FEP and healthy controls (HC). The level of discomfort was estimated by the participant by making a mark across a continuous line whose extremes read “nothing bad” (left) and “too bad” (right). Results showed that ascending sine pure frequency sweeps (p < 0.01) and descending sine pure frequencies sweeps (p < 0.01) caused the maximum discomfort in FEP. Other variables also showed differences between FEP and HC, and FEP were always more intolerant to such pure frequency sweeps than HC. We conclude that this might be useful for very early assessment of people at risk, people with FEP, and people with schizophrenia.
Collapse
Affiliation(s)
- Maria Lúcia de Bustamante Simas
- Laboratório de Percepção Visual, Programa da Pós Graduação em Psicologia, Departamento de Psicologia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Av da Arquitetura s/n CFCH 9º Andar, Recife, PE, CEP.: 50740-550, Brasil.
| | - Naianna Ribeiro Mocelin Dos Santos
- Laboratório de Percepção Visual, Programa da Pós Graduação em Psicologia, Departamento de Psicologia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Av da Arquitetura s/n CFCH 9º Andar, Recife, PE, CEP.: 50740-550, Brasil
| | - Aline Mendes Lacerda
- Laboratório de Percepção Visual, Programa da Pós Graduação em Psicologia, Departamento de Psicologia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Av da Arquitetura s/n CFCH 9º Andar, Recife, PE, CEP.: 50740-550, Brasil
| |
Collapse
|
7
|
Mahmut Y, Michael M, Jaelin R, Gregor L, Dost Ö. Decreased mismatch negativity and elevated frontal-lateral connectivity in first-episode psychosis. J Psychiatr Res 2021; 144:37-44. [PMID: 34592510 PMCID: PMC8665084 DOI: 10.1016/j.jpsychires.2021.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022]
Abstract
Decreased mismatch negativity (MMN) is a proposed biomarker for psychotic disorders. However, the magnitude of the effect appears to be attenuated in first-episode populations. Furthermore, how mismatch negativity amplitudes are related to brain connectivity in this population is unclear. In this study, we used high-density EEG to record duration-deviant MMN from 22 patients with first-episode psychosis (FEP) and 23 age-matched controls (HC). Consistent with past work, we found decreased MMN amplitude in FEP over a large area of the frontal scalp. We also found decreased latency over the occipital scalp. MMN amplitude was negatively correlated with antipsychotic dose. We used Granger causality to investigate directional connectivity between frontal, midline, left, and right scalp during MMN and found reduced connectivity in FEP compared to HC and following deviant stimuli compared to standard stimuli. FEP participants with smaller decreases in connectivity from standard to deviant stimuli had worse disorganization symptoms. On the other hand, connectivity from the front of the scalp following deviant stimuli was relatively preserved in FEP compared to controls. Our results suggest that a relative imbalance of bottom-up and top-down perceptual processing is present in the early stages of psychotic disorders.
Collapse
Affiliation(s)
- Yüksel Mahmut
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Murphy Michael
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115,McLean Hospital, 115 Mill St Belmont, MA 02478
| | | | - Leicht Gregor
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Öngür Dost
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115,McLean Hospital, 115 Mill St Belmont, MA 02478
| |
Collapse
|
8
|
Nakajima S, Higuchi Y, Tateno T, Sasabayashi D, Mizukami Y, Nishiyama S, Takahashi T, Suzuki M. Duration Mismatch Negativity Predicts Remission in First-Episode Schizophrenia Patients. Front Psychiatry 2021; 12:777378. [PMID: 34899430 PMCID: PMC8656455 DOI: 10.3389/fpsyt.2021.777378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Remission in schizophrenia patients is associated with neurocognitive, social, and role functioning during both the early and chronic stages of schizophrenia. It is well-established that the amplitudes of duration mismatch negativity (dMMN) and frequency MMN (fMMN) are reduced in schizophrenia patients. However, the potential link between MMN and remission has not been established. In this study, we investigated the relationship between MMNs and remission in first-episode schizophrenia (FES) and their association with neurocognitive and social functioning. Method: dMMN and fMMN were measured in 30 patients with FES and 22 healthy controls at baseline and after a mean of 3 years. Clinical symptoms and cognitive and social functioning in the patients were assessed at the time of MMN measurements by using the Positive and Negative Syndrome Scale (PANSS), modified Global Assessment of Functioning (mGAF), Schizophrenia Cognition Rating Scale (SCoRS), and the Brief Assessment of Cognition in Schizophrenia (BACS). Remission of the patients was defined using the criteria by the Remission in Schizophrenia Working Group; of the 30 patients with FES, 14 achieved remission and 16 did not. Results: Baseline dMMN amplitude was reduced in FES compared to healthy controls. Further, baseline dMMN in the non-remitters had decreased amplitude and prolonged latency compared to the remitters. MMN did not change during follow-up period regardless of parameters, diagnosis, or remission status. Baseline dMMN amplitude in FES was correlated with future SCoRS and PANSS total scores. Logistic regression analysis revealed that dMMN amplitude at baseline was a significant predictor of remission. Conclusions: Our findings suggest that dMMN amplitude may be a useful biomarker for predicting symptomatic remission and improvement of cognitive and social functions in FES.
Collapse
Affiliation(s)
- Suguru Nakajima
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Takahiro Tateno
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Health Administration Center, Faculty of Education and Research Promotion, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Koshiyama D, Thomas ML, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA. Hierarchical Pathways from Sensory Processing to Cognitive, Clinical, and Functional Impairments in Schizophrenia. Schizophr Bull 2021; 47:373-385. [PMID: 32856089 PMCID: PMC7965084 DOI: 10.1093/schbul/sbaa116] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cognitive impairment is a hallmark of schizophrenia and a robust predictor of functional outcomes. Impairments are found in all phases of the illness and are only moderately attenuated by currently approved therapeutics. Neurophysiological indices of sensory discrimination (ie, mismatch negativity (MMN) and P3a amplitudes) and gamma-band auditory steady-state response (ASSR; power and phase locking) are translational biomarkers widely used in the development of novel therapeutics for neuropsychiatric disorders. It is unclear whether laboratory-based EEG measures add explanatory power to well-established models that use only cognitive, clinical, and functional outcome measures. Moreover, it is unclear if measures of sensory discrimination and gamma-band ASSR uniquely contribute to putative causal pathways linking sensory discrimination, neurocognition, negative symptoms, and functional outcomes in schizophrenia. To answer these questions, hierarchical associations among sensory processing, neurocognition, clinical symptoms, and functional outcomes were assessed via structural equation modeling in a large sample of schizophrenia patients (n = 695) and healthy comparison subjects (n = 503). The results showed that the neurophysiologic indices of sensory discrimination and gamma-band ASSR both significantly contribute to and yield unique hierarchical, "bottom-up" effects on neurocognition, symptoms, and functioning. Measures of sensory discrimination showed direct effects on neurocognition and negative symptoms, while gamma-band ASSR had a direct effect on neurocognition in patients. Continued investigation of the neural mechanisms underlying abnormal networks of MMN/P3a and gamma-band ASSR is needed to clarify the pathophysiology of schizophrenia and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael L Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- Department of Psychology, Colorado State University, Fort Collins, CO
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California San Diego, La Jolla, CA
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Juan L Molina
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
10
|
Curtis MT, Coffman BA, Salisbury DF. Pitch and Duration Mismatch Negativity are Associated With Distinct Auditory Cortex and Inferior Frontal Cortex Volumes in the First-Episode Schizophrenia Spectrum. ACTA ACUST UNITED AC 2021; 2:sgab005. [PMID: 33738454 PMCID: PMC7953127 DOI: 10.1093/schizbullopen/sgab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Pitch and duration mismatch negativity (pMMN/dMMN) are related to left Heschl's gyrus gray matter volumes in first-episode schizophrenia (FESz). Previous methods were unable to delineate functional subregions within and outside Heschl's gyrus. The Human Connectome Project multimodal parcellation (HCP-MMP) atlas overcomes this limitation by parcellating these functional subregions. Further, MMN has generators in inferior frontal cortex, and therefore, may be associated with inferior frontal cortex pathology. With the novel use of the HCP-MMP to precisely parcellate auditory and inferior frontal cortex, we investigated relationships between gray matter and pMMN and dMMN in FESz. Methods pMMN and dMMN were measured at Fz from 27 FESz and 27 matched healthy controls. T1-weighted MRI scans were acquired. The HCP-MMP atlas was applied to individuals, and gray matter volumes were calculated for bilateral auditory and inferior frontal cortex parcels and correlated with MMN. FDR correction was used for multiple comparisons. Results In FESz only, pMMN was negatively correlated with left medial belt in auditory cortex and area 47L in inferior frontal cortex. Duration MMN negatively correlated with the following auditory parcels: left medial belt, lateral belt, parabelt, TA2, and right A5. Further, dMMN was associated with left area 47L, right area 44, and right area 47L in inferior frontal cortex. Conclusions The novel approach revealed overlapping and distinct gray matter associations for pMMN and dMMN in auditory and inferior frontal cortex in FESz. Thus, pMMN and dMMN may serve as biomarkers of underlying pathological deficits in both similar and slightly different cortical areas.
Collapse
Affiliation(s)
- Mark T Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| |
Collapse
|
11
|
Higgins A, Lewandowski KE, Liukasemsarn S, Hall MH. Longitudinal relationships between mismatch negativity, cognitive performance, and real-world functioning in early psychosis. Schizophr Res 2021; 228:385-393. [PMID: 33549980 PMCID: PMC7987838 DOI: 10.1016/j.schres.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Reduced mismatch negativity (MMN) is observed in early psychosis (EP) and correlated with cognition and functioning, but few studies have examined their longitudinal relationships and diagnostic specificity. We examined MMN, neuro- and social-cognition, and functional measures in EP patients with schizophrenia-spectrum (SZ) or bipolar disorder (BD) over a 1-year follow-up. METHODS 54 EP patients (SZ: n = 24; BD: n = 30) and 42 healthy controls completed baseline measures: MMN, neuro- and social-cognition, and functional assessments. 30 EP patients completed 12-month follow-up assessments. Patients and controls were compared on MMN at baseline and follow-up, and diagnostic subgroup analyses were performed. Associations amongst MMN, neuro- and social cognition, and clinical measures were examined and predictive models of follow-up outcomes were conducted. RESULTS EP patients showed significantly reduced MMN compared to controls at baseline (p = 0.023). MMN was impaired in SZ patients at baseline (p = 0.017) and follow-up (p = 0.003); BD patients did not differ from controls at either timepoint. MMN was associated with symptom severity and functioning at baseline, and with social cognition and functioning at follow up, but was not predictive of functional outcomes at follow-up. CONCLUSIONS MMN abnormalities were evident in EP SZ-spectrum disorders at both timepoints, but not in BD at either timepoint. MMN was associated with functioning cross-sectionally, but did not predict future functional outcomes. However, deficits in MMN were associated with social cognition, which may have downstream effects on community functioning. Implications for targeted interventions to improve social processing and community outcomes are discussed.
Collapse
Affiliation(s)
- Amy Higgins
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Kathryn Eve Lewandowski
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Saran Liukasemsarn
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Sources of the frontocentral mismatch negativity and P3a responses in schizophrenia patients and healthy comparison subjects. Int J Psychophysiol 2021; 161:76-85. [PMID: 33453303 DOI: 10.1016/j.ijpsycho.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) and P3a are event-related potential measures of early auditory information processing that are increasingly used as translational biomarkers in the development of treatments for neuropsychiatric disorders. These responses are reduced in schizophrenia patients over the frontocentral scalp electrodes and are associated with important domains of cognitive and psychosocial functioning. While MMN and P3a responses are generated by a dynamic network of cortical sources distributed across the temporal and frontal brain regions, it is not clear how these sources independently contribute to MMN and P3a at the primary frontocentral scalp electrode or to abnormalities observed in schizophrenia. This study aimed to determine the independent source contributions and characterize the magnitude of impairment in source-level MMN and P3a responses in schizophrenia patients. METHODS A novel method was applied to back-project the contributions of 11 independent cortical source components to Fz, the primary scalp sensor that is used in clinical studies, in n = 589 schizophrenia patients and n = 449 healthy comparison subjects. RESULTS The groups showed comparable individual source contributions underlying both MMN and P3a responses at Fz. Source-level responses revealed an increasing magnitude of impairment in schizophrenia patients from the temporal to more frontal sources. CONCLUSIONS Schizophrenia patients have a normal architecture of source contributions that are accompanied by widespread abnormalities in source resolved mismatch and P3a responses, with more prominent deficits detected from the frontal sources. Quantification of source contributions and source-level responses accelerates clarification of the neural networks underlying MMN reduction at Fz in schizophrenia patients.
Collapse
|
13
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:653642. [PMID: 34017273 PMCID: PMC8129021 DOI: 10.3389/fpsyt.2021.653642] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.
Collapse
Affiliation(s)
- Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Francesco Brando
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
14
|
Campanella S, Arikan K, Babiloni C, Balconi M, Bertollo M, Betti V, Bianchi L, Brunovsky M, Buttinelli C, Comani S, Di Lorenzo G, Dumalin D, Escera C, Fallgatter A, Fisher D, Giordano GM, Guntekin B, Imperatori C, Ishii R, Kajosch H, Kiang M, López-Caneda E, Missonnier P, Mucci A, Olbrich S, Otte G, Perrottelli A, Pizzuti A, Pinal D, Salisbury D, Tang Y, Tisei P, Wang J, Winkler I, Yuan J, Pogarell O. Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clin EEG Neurosci 2021; 52:3-28. [PMID: 32975150 PMCID: PMC8121213 DOI: 10.1177/1550059420954054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Salvatore Campanella
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Kemal Arikan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Italy.,San Raffaele Cassino, Cassino (FR), Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Maurizio Bertollo
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bianchi
- Dipartimento di Ingegneria Civile e Ingegneria Informatica (DICII), University of Rome Tor Vergata, Rome, Italy
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany Czech Republic.,Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Carla Buttinelli
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Silvia Comani
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Chair of Psychiatry, Department of Systems Medicine, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniel Dumalin
- AZ Sint-Jan Brugge-Oostende AV, Campus Henri Serruys, Lab of Neurophysiology, Department Neurology-Psychiatry, Ostend, Belgium
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Andreas Fallgatter
- Department of Psychiatry, University of Tübingen, Germany; LEAD Graduate School and Training Center, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, and Department of Psychiatry, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | | | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Ryouhei Ishii
- Department of Psychiatry Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hendrik Kajosch
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Michael Kiang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Pascal Missonnier
- Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, Marsens, Switzerland
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Olbrich
- Psychotherapy and Psychosomatics, Department for Psychiatry, University Hospital Zurich, Zurich, Switzerland
| | | | - Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Pizzuti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Diego Pinal
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Dean Salisbury
- Clinical Neurophysiology Research Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paolo Tisei
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Istvan Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Jiajin Yuan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Salisbury DF, Shafer AR, Murphy TK, Haigh SM, Coffman BA. Pitch and Duration Mismatch Negativity and Heschl's Gyrus Volume in First-Episode Schizophrenia-Spectrum Individuals. Clin EEG Neurosci 2020; 51:359-364. [PMID: 32241184 PMCID: PMC8118142 DOI: 10.1177/1550059420914214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. The mismatch negativity (MMN) brainwave indexes novelty detection. MMN to infrequent pitch (pMMN) and duration (dMMN) deviants is reduced in long-term schizophrenia. Although not reduced at first psychosis, pMMN is inversely associated with left hemisphere Heschl's gyrus (HG) gray matter volume within 1 year of first hospitalization for schizophrenia-spectrum psychosis, consistent with pathology of left primary auditory cortex early in disease course. We examined whether the relationship was present earlier, at first psychiatric contact for psychosis, and whether the same structural-functional association was apparent for dMMN. Method. Twenty-seven first-episode schizophrenia-spectrum (FESz) and 27 matched healthy comparison (HC) individuals were compared. EEG-derived pMMN and dMMN were measured by subtracting the standard tone waveform (80%) from the pitch- and duration-deviant waveforms (10% each). HG volumes were calculated from T1-weighted structural magnetic resonance imaging using Freesurfer. Results. In FESz, pMMN amplitudes at Fz were inversely associated with left HG (but not right) gray matter volumes, and dMMN amplitudes were associated significantly with left HG volumes and at trend-level with right HG. There were no structural-functional associations in HC. Conclusions. pMMN and dMMN index gray matter reduction in left hemisphere auditory cortex early in psychosis, with dMMN also marginally indexing right HG volumes. This suggest conjoint functional and structural pathology that affects the automatic detection of novelty with varying degrees of penetrance prior to psychosis. These brainwaves are sensitive biomarkers of pathology early in the psychotic disease course, and may serve as biomarkers of disease progression and as therapeutic outcome measures.
Collapse
Affiliation(s)
- Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Anna R Shafer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Timothy K Murphy
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Sarah M Haigh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Salisbury DF, Coffman BA, Haigh SM. Reductions in Complex Mismatch Negativity to Extra Tone Gestalt Pattern Deviance in First-Episode Schizophrenia. Front Psychiatry 2020; 11:505. [PMID: 32581879 PMCID: PMC7294965 DOI: 10.3389/fpsyt.2020.00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
Although "simple" mismatch negativity (sMMN) to stimulus parameter changes is robustly reduced in long-term schizophrenia (Sz), it is much less reduced in individuals at their first psychotic episode in the schizophrenia-spectrum (FESz). "Complex" MMN (cMMN) reflecting pre-attentive acoustic pattern analysis is also markedly reduced in Sz, but is little studied in FESz. The computational complexity of pattern analysis reflected in cMMN may more greatly stress auditory processing, providing a more sensitive measure of auditory processing deficits at first break. If so, cMMN would provide information about the underlying pathophysiology early in disease course, and may serve as a biomarker for pathology in the Sz prodrome. Twenty-two FESz individuals were compared to 22 volunteer healthy controls (HC) on sMMN and cMMN tasks. For sMMN, pitch- and duration-deviants were presented among standard repetitive tones. For cMMN, repeated groups of 3 identical tones were presented with occasional (14%) groups including an extra identical 4th tone deviant. FESz did not show reductions of pitch-deviant (Cohen's d = 0.08) or duration-deviant MMNs (d =-0.02), but showed large reduction in extra-tone cMMN (d = 0.83). Reduced cMMN was associated with poor social functioning. Reduction in cMMN but not in sMMNs in FESz suggests impairments in late perceptual pattern processing. cMMN is sensitive to subtle pathology and functioning early in disease course which may, in turn, impact social functioning. Future studies in clinical high risk individuals are needed to determine whether this putative biomarker of disease presence is sensitive to the prodromal stage of schizophrenia.
Collapse
Affiliation(s)
- Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | | |
Collapse
|
17
|
Murphy TK, Haigh SM, Coffman BA, Salisbury DF. Mismatch Negativity and Impaired Social Functioning in Long-Term and in First Episode Schizophrenia Spectrum Psychosis. Front Psychiatry 2020; 11:544. [PMID: 32612547 PMCID: PMC7308533 DOI: 10.3389/fpsyt.2020.00544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Mismatch negativity (MMN) is elicited by infrequent physical parameter sound changes. MMN to pitch-deviants (pMMN) and duration-deviants (dMMN) are severely reduced in long-term schizophrenia (Sz). Although symptom factors (positive, negative, cognitive) are inconsistently associated with MMN amplitude in Sz, several studies have shown smaller dMMN is associated with impaired social functioning in Sz. MMN is less reduced at the first psychotic episode in the schizophrenia spectrum (FESz). Meta-analyses demonstrate that pMMN is not reduced, while dMMN is moderately impaired. Correlations of pMMN and dMMN with symptom factors in FESz are also equivocal. Associations with social functioning have not been reported. FESz and matched controls (n = 40/group), and Sz and matched controls (n = 50/group) were assessed for baseline and current cognitive functioning, symptoms, and social functioning, and pMMN and dMMN were recorded. Sz showed reductions in pMMN (p = 0.001) and dMMN (p = 0.006) amplitude. By contrast, pMMN (p = 0.27) and dMMN (p = 0.84) were not reduced in FESz. However, FESz showed associations between both MMNs and negative symptoms and social functioning. More impaired MMNs in FESz were associated with increased negative symptoms and impaired social functioning, both current and in the year prior to the emergence of psychosis. These data suggest that the extent of pathological process occurring before first psychosis as reflected in compromised social behavior prior to first break and reduced interpersonal communication and increased alogia at first break is indexed by pMMN and dMMN, putative biomarkers of disease progression sensitive to functional impairment.
Collapse
Affiliation(s)
- Timothy K Murphy
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah M Haigh
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Bartolomeo LA, Wright AM, Ma RE, Hummer TA, Francis MM, Visco AC, Mehdiyoun NF, Bolbecker AR, Hetrick WP, Dydak U, Barnard J, O'Donnell BF, Breier A. Relationship of auditory electrophysiological responses to magnetic resonance spectroscopy metabolites in Early Phase Psychosis. Int J Psychophysiol 2019; 145:15-22. [PMID: 31129143 DOI: 10.1016/j.ijpsycho.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Both auditory evoked responses and metabolites measured by magnetic resonance spectroscopy (MRS) are altered in schizophrenia and other psychotic disorders, but the relationship between electrophysiological and metabolic changes are not well characterized. We examined the relation of MRS metabolites to cognitive and electrophysiological measures in individuals during the early phase of psychosis (EPP) and in healthy control subjects. The mismatch negativity (MMN) of the auditory event-related potential to duration deviant tones and the auditory steady response (ASSR) to 40 Hz stimulation were assessed. MRS was used to quantify glutamate+glutamine (Glx), N-Acetylasparate (NAA), creatine (Cre), myo-inositol (Ins) and choline (Cho) at a voxel placed medially in the frontal cortex. MMN amplitude and ASSR power did not differ between groups. The MRS metabolites Glx, Cre and Cho were elevated in the psychosis group. Partial least squares analysis in the patient group indicated that elevated levels of MRS metabolites were associated with reduced MMN amplitude and increased 40 Hz ASSR power. There were no correlations between the neurobiological measures and clinical measures. These data suggest that elevated neurometabolites early in psychosis are accompanied by altered auditory neurotransmission, possibly indicative of a neuroinflammatory or excitotoxic disturbance which disrupts a wide range of metabolic processes in the cortex.
Collapse
Affiliation(s)
- Lisa A Bartolomeo
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - Andrew M Wright
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America
| | - Ruoyun E Ma
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Tom A Hummer
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michael M Francis
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Andrew C Visco
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Nicole F Mehdiyoun
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - William P Hetrick
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - John Barnard
- Section of Biostatistics, Cleveland Clinic, Cleveland, OH, United States of America
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America.
| | - Alan Breier
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
19
|
Randau M, Oranje B, Miyakoshi M, Makeig S, Fagerlund B, Glenthøj B, Bak N. Attenuated mismatch negativity in patients with first-episode antipsychotic-naive schizophrenia using a source-resolved method. Neuroimage Clin 2019; 22:101760. [PMID: 30927608 PMCID: PMC6444292 DOI: 10.1016/j.nicl.2019.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/06/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) is a measure of pre-attentive auditory information processing related to change detection. Traditional scalp-level EEG methods consistently find attenuated MMN in patients with chronic but not first-episode schizophrenia. In the current paper, we use a source-resolved method to assess MMN and hypothesize that more subtle changes can be identified with this analysis method. METHOD Fifty-six first-episode antipsychotic-naïve schizophrenia (FEANS) patients (31 males, 25 females, mean age 24.6) and 64 matched controls (37 males, 27 females, mean age 24.8) were assessed for duration-, frequency- and combined-type MMN and P3a as well as 4 clinical, 3 cognitive and 3 psychopathological measures. To evaluate and correlate MMN at source-level, independent component analysis (ICA) was applied to the continuous EEG data to derive equivalent current dipoles which were clustered into 19 clusters based on cortical location. RESULTS No scalp channel group MMN or P3a amplitude differences were found. Of the localized clusters, several were in or near brain areas previously suggested to be involved in the MMN response, including frontal and anterior cingulate cortices and superior temporal and inferior frontal gyri. For duration deviants, MMN was attenuated at the right superior temporal gyrus in patients compared to healthy controls (p = 0.01), as was P3a at the superior frontal cortex (p = 0.01). No individual patient correlations with clinical, cognitive, or psychopathological measures survived correction for multiple comparisons. CONCLUSION Attenuated source-localized MMN and P3a peak contributions can be identified in FEANS patients using a method based on independent component analysis (ICA). This indicates that deficits in pre-attentive auditory information processing are present at this early stage of schizophrenia and are not the result of disease chronicity or medication. This is to our knowledge the first study on FEANS patients using this more detailed method.
Collapse
Affiliation(s)
- M Randau
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark
| | - B Oranje
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - M Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - S Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - B Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - B Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - N Bak
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark
| |
Collapse
|
20
|
Xiong YB, Bo QJ, Wang CM, Tian Q, Liu Y, Wang CY. Differential of Frequency and Duration Mismatch Negativity and Theta Power Deficits in First-Episode and Chronic Schizophrenia. Front Behav Neurosci 2019; 13:37. [PMID: 30894804 PMCID: PMC6414796 DOI: 10.3389/fnbeh.2019.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Due to its impairment in patients with schizophrenia, mismatch negativity (MMN) generation has been identified as a potential biomarker for identifying primary impairments in auditory sensory processing. This study aimed to investigate the dysfunctional differences in different MMN deviants and evoked theta power in patients with first-episode schizophrenia (FES) and chronic schizophrenia (CS). Methods: We measured frequency and duration MMN from 40 FES, 40 CS, and 40 healthy controls (HC). Evoked theta power was analyzed by event-related spectral perturbation (ERSP) approaches. Results: Deficits in duration MMN were observed in both FES (p = 0.048, Bonferroni-adjusted) and CS (p < 0.001, Bonferroni-adjusted). However, deficits in frequency MMN were restricted to the CS (p < 0.001, Bonferroni-adjusted). Evoked theta power deficits were observed in both patient groups when compared with the HC (p FES = 0.001, p CS < 0.001, Bonferroni-adjusted), yet no significant differences were found between FES and CS. Frequency MMN was correlated with the MATRICS consensus cognitive battery (MCCB) combined score (r = -0.327, p < 0.05) and MCCB verbal learning (r = -0.328, p < 0.05) in FES. Evoked theta power was correlated with MCCB working memory in both FES (r = 0.347, p < 0.05) and CS (r = 0.408, p < 0.01). Conclusion: These findings suggest that duration MMN and evoked theta power deficits may be more sensitive for detection of schizophrenia during its early stages. Moreover, frequency MMN and theta power could potentially linked to poor cognitive functioning in schizophrenic patients. The findings mentioned above indicated that the neural mechanisms of the three indexes may vary between people.
Collapse
Affiliation(s)
- Yan-Bing Xiong
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Qi-Jing Bo
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Chang-Ming Wang
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Qing Tian
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Yi Liu
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| | - Chuan-Yue Wang
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing, China.,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing, China.,The National Clinical Research Center for Mental Disorders, Beijing, China
| |
Collapse
|
21
|
Hsieh MH, Lin YT, Chien YL, Hwang TJ, Hwu HG, Liu CM, Liu CC. Auditory Event-Related Potentials in Antipsychotic-Free Subjects With Ultra-High-Risk State and First-Episode Psychosis. Front Psychiatry 2019; 10:223. [PMID: 31037058 PMCID: PMC6476279 DOI: 10.3389/fpsyt.2019.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Auditory event-related potentials (ERPs) have been utilized to study defective information processing of patients with schizophrenia. To delineate the pathophysiological processes from pre-psychotic state to first-episode psychosis, a study on subjects from ultra-high-risk (UHR) state to first-episode psychosis, ideally in an antipsychotic-free condition, can add important information to our understanding. Methods: Patients with UHR state or at their first-episode psychosis (FEP) who were drug-naive or only have been temporarily treated with antipsychotics were assessed by auditory ERPs measurement, including P50/N100 (sensory gating) and duration mismatch negativity (MMN; deviance detection). A group of age-matched healthy subjects served as their controls. Results: A total of 42 patients (23 UHR and 19 FEP) and 120 control subjects were recruited, including 21 pure drug-naive and 21 with very short exposure to antipsychotics. Collapsing FEP and UHR as a patient group, they exhibited significant sensory deficits manifested as larger P50 S2 amplitude, larger N100 ratio, and smaller N100 difference, and significantly less deviance detection response revealed by MMN. Such differences were less significant when treating FEP and UHR separately for comparisons. Comparisons of ERP results between drug-naive subjects and antipsychotic-short-exposure subjects revealed no significant difference in any P50/N100 and MMN parameter. Conclusion: Our study is one of the few studies focused on drug-naive or minimally treated patients at pre- or early-psychotic states. Our results exhibited impaired performance in sensory gating and deviance detection shown by certain parameters. A longitudinal study with larger sample sizes will be helpful to provide more evidence to elucidate the role of antipsychotics on an individual's neurophysiological performance at different stages of psychosis.
Collapse
Affiliation(s)
- Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Haigh SM, Coffman BA, Murphy TK, Butera CD, Leiter-McBeth JR, Salisbury DF. Reduced late mismatch negativity and auditory sustained potential to rule-based patterns in schizophrenia. Eur J Neurosci 2018; 49:275-289. [PMID: 30471147 DOI: 10.1111/ejn.14274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Complex rule-based auditory processing is abnormal in individuals with long-term schizophrenia (SZ), as demonstrated by reduced mismatch negativity (MMN) to deviants in rule-based patterns and reduced auditory sustained potential (ASP) that appears when grouping tones together. Together, this suggests deficits later in the auditory processing hierarchy in Sz. Here, MMN and ASP were elicited by deviations from a complex zig-zag pitch pattern that cannot be predicted by simple linear rules. Twenty-seven SZ and 26 matched healthy controls (HC) participated. Frequent groups of patterns contained eight tones that zig-zagged in a two-up one-down pitch-based paradigm. There were two deviant patterns: the final tone was either higher in pitch than expected (creating a jump in pitch) or was repeated. Simple MMN to pitch-deviants among repetitive tones was measured for comparison. Sz exhibited a smaller pitch MMN compared to HC as expected. HC produced a late MMN in response to the repeat and jump-deviant and a larger ASP to the standard group of tones, all of which were significantly blunted in SZ. In Sz, the amplitude of the late complex MMN was related to neuropsychological functioning, whereas ASP was not. ASP and late MMN did not significantly correlate in HC or in Sz, suggesting that they are not dependent on one another and may originate within distinct processing streams. Together, this suggests multiple deficits later in the auditory sensory-perceptual hierarchy in Sz, with impairments evident in both segmentation and deviance detection abilities.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Psychology and Integrative Neuroscience, University of Nevada, Reno, Reno, Nevada
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy K Murphy
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christiana D Butera
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Justin R Leiter-McBeth
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Kim M, Lee TH, Yoon YB, Lee TY, Kwon JS. Predicting Remission in Subjects at Clinical High Risk for Psychosis Using Mismatch Negativity. Schizophr Bull 2018; 44:575-583. [PMID: 29036493 PMCID: PMC5890455 DOI: 10.1093/schbul/sbx102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The declining transition rate to psychotic disorder and the increasing rate of nonpsychotic poor outcomes among subjects at clinical high risk (CHR) for psychosis have increased the need for biomarkers to predict remission regardless of transition. This study investigated whether mismatch negativity (MMN) predicts the prognosis of CHR individuals during a 6-year follow-up period. METHODS A total of 47 healthy control (HC) subjects and 48 subjects at CHR for psychosis participated in the MMN assessment. The clinical statuses of the CHR subjects were examined at baseline and regularly for up to 6 years. The CHR subjects were divided into remitter and nonremitter groups, and the baseline MMN amplitudes and latencies were compared across the remitter, nonremitter, and HC groups. Regression analyses were performed to identify the predictive factors of remission, the improvement of attenuated positive symptoms, and functional recovery. RESULTS CHR nonremitters showed reduced MMN amplitudes at baseline compared to CHR remitters and HC subjects. A logistic regression analysis revealed that the baseline MMN amplitude at the frontal electrode site was the only significant predictor of remission. In a multiple regression analysis, the MMN amplitude, antipsychotic use, and years of education predicted an improvement in attenuated positive symptoms. The MMN amplitude at baseline predicted functional recovery. CONCLUSIONS These results suggest that MMN is a putative predictor of prognosis regardless of the transition to psychotic disorder in subjects at CHR. Early prognosis prediction and the provision of appropriate interventions based on the initial CHR status might be aided using MMN.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea,To whom correspondence should be addressed; Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul 03080, Republic of Korea; tel: +82-2-2072-2972, fax: +82-2-747-9063, e-mail:
| |
Collapse
|
24
|
Hamilton HK, Perez VB, Ford JM, Roach BJ, Jaeger J, Mathalon DH. Mismatch Negativity But Not P300 Is Associated With Functional Disability in Schizophrenia. Schizophr Bull 2018; 44:492-504. [PMID: 29036701 PMCID: PMC5890465 DOI: 10.1093/schbul/sbx104] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mismatch negativity (MMN) and P300 event-related potential (ERP) reductions in schizophrenia (SZ) reflect preattentive and attention-mediated auditory processing deficits, respectively. Although both have been linked to cognitive deficits in SZ, their relative contributions to real-world functioning are unclear. We sought to determine the functional significance of disrupted auditory processing in SZ by examining MMN and P300 in typically disabled low-functioning patients and in patients with high levels of independent role functioning. MMN to auditory deviants and P300 to infrequent auditory target and nontarget novel stimuli were assessed in 20 high-functioning SZ patients (HF-SZ), 17 low-functioning patients (LF-SZ), and 35 healthy comparison (HC) subjects. There was a group effect on MMN and P300 amplitudes across stimulus types. MMN was significantly diminished in LF-SZ compared to HF-SZ and HC, and HF-SZ demonstrated comparable MMN to HC. In contrast, P300 was significantly reduced in both LF-SZ and HF-SZ compared to HC. Logistic regression suggested independent sensitivity of MMN to functioning in SZ over and above P300 measures. Neither MMN nor P300 were associated with positive or negative symptom severity. Results replicate MMN and P300 abnormalities in SZ, and also suggest that the neural mechanisms associated with the preattentive detection of auditory deviance are most compromised in patients with functional disability. MMN may index pathophysiological processes that are critical for optimal functioning in SZ.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco VA Health Care System, San Francisco, CA,University of California, San Francisco, San Francisco, CA
| | - Veronica B Perez
- California School of Professional Psychology, San Diego, CA,University of California, San Diego, San Diego, CA
| | - Judith M Ford
- San Francisco VA Health Care System, San Francisco, CA,University of California, San Francisco, San Francisco, CA
| | - Brian J Roach
- Northern California Institute for Research and Education, San Francisco, CA
| | - Judith Jaeger
- Albert Einstein College of Medicine, New York, NY,CognitionMetrics, LLC, Wilmington, DE
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA,University of California, San Francisco, San Francisco, CA,To whom correspondence should be addressed; San Francisco VA Health Care System, 4150 Clement Street, 116D, San Francisco, CA 94121; tel: 415-221-4810-x23860; e-mail:
| |
Collapse
|
25
|
Bravermanová A, Viktorinová M, Tylš F, Novák T, Androvičová R, Korčák J, Horáček J, Balíková M, Griškova-Bulanova I, Danielová D, Vlček P, Mohr P, Brunovský M, Koudelka V, Páleníček T. Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing-study on P300 and mismatch negativity in healthy volunteers. Psychopharmacology (Berl) 2018; 235:491-503. [PMID: 29302713 DOI: 10.1007/s00213-017-4807-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
RATIONALE Disruption of auditory event-related evoked potentials (ERPs) P300 and mismatch negativity (MMN), electrophysiological markers of attentive and pre-attentive cognitive processing, is repeatedly described in psychosis and schizophrenia. Similar findings were observed in a glutamatergic model of psychosis, but the role of serotonergic 5-HT2A receptors in information processing is less clear. OBJECTIVES We studied ERPs in a serotonergic model of psychosis, induced by psilocybin, a psychedelic with 5-HT2A/C agonistic properties, in healthy volunteers. METHODS Twenty subjects (10M/10F) were given 0.26 mg/kg of psilocybin orally in a placebo-controlled, double-blind, cross-over design. ERPs (P300, MMN) were registered during the peak of intoxication. Correlations between measured electrophysiological variables and psilocin serum levels and neuropsychological effects were also analyzed. RESULTS Psilocybin induced robust psychedelic effects and psychotic-like symptoms, decreased P300 amplitude (p = 0.009) but did not affect the MMN. Psilocybin's disruptive effect on P300 correlated with the intensity of the psychedelic state, which was dependent on the psilocin serum levels. We also observed a decrease in N100 amplitude (p = 0.039) in the P300 paradigm and a negative correlation between P300 and MMN amplitude (p = 0.014). CONCLUSIONS Even though pre-attentive cognition (MMN) was not affected, processing at the early perceptual level (N100) and in higher-order cognition (P300) was significantly disrupted by psilocybin. Our results have implications for the role of 5-HT2A receptors in altered information processing in psychosis and schizophrenia.
Collapse
Affiliation(s)
- Anna Bravermanová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,First Faculty of Medicine, Charles University Prague, Kateřinská 32, 121 08, Prague 2, Czech Republic
| | - Michaela Viktorinová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Filip Tylš
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Tomáš Novák
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Renáta Androvičová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Jakub Korčák
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Marie Balíková
- First Faculty of Medicine, Charles University Prague, Kateřinská 32, 121 08, Prague 2, Czech Republic
| | - Inga Griškova-Bulanova
- Institute of Biosciences, Vilnius University, Sauletekio ave 7, 102 57, Vilnius, Lithuania
| | - Dominika Danielová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Přemysl Vlček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Pavel Mohr
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Vlastimil Koudelka
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic. .,Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00, Praha 10, Czech Republic.
| |
Collapse
|
26
|
Randeniya R, Oestreich LKL, Garrido MI. Sensory prediction errors in the continuum of psychosis. Schizophr Res 2018; 191:109-122. [PMID: 28457774 DOI: 10.1016/j.schres.2017.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
Abstract
Sensory prediction errors are fundamental brain responses that signal a violation of expectation in either the internal or external sensory environment, and are therefore crucial for survival and adaptive behaviour. Patients with schizophrenia show deficits in these internal and external sensory prediction errors, which can be measured using electroencephalography (EEG) components such as N1 and mismatch negativity (MMN), respectively. New evidence suggests that these deficits in sensory prediction errors are more widely distributed on a continuum of psychosis, whereas psychotic experiences exist to varying degrees throughout the general population. In this paper, we review recent findings in sensory prediction errors in the auditory domain across the continuum of psychosis, and discuss these in light of the predictive coding hypothesis.
Collapse
Affiliation(s)
- R Randeniya
- Queensland Brain Institute, The University of Queensland, Australia
| | - L K L Oestreich
- Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia
| | - M I Garrido
- Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; School of Mathematics and Physics, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia.
| |
Collapse
|
27
|
Lee M, Sehatpour P, Dias EC, Silipo GS, Kantrowitz JT, Martinez AM, Javitt DC. A tale of two sites: Differential impairment of frequency and duration mismatch negativity across a primarily inpatient versus a primarily outpatient site in schizophrenia. Schizophr Res 2018; 191:10-17. [PMID: 28779851 DOI: 10.1016/j.schres.2017.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Deficits in mismatch negativity (MMN) generation are among the best replicated neurophysiological deficits in schizophrenia, with reduced amplitude reflecting impaired information processing at the level of supratemporal auditory cortex. Differential patterns of MMN dysfunction according to deviant types have been reported across studies, with some research groups showing impairment in duration MMN but not frequency MMN, and other research groups reporting both findings. We evaluate the hypothesis that recruitment setting, reflecting current functional status, might be an important determinant of the pattern of MMN dysfunction. Here, we evaluated patterns of MMN dysfunction, along with tone matching and neuropsychological performance in subjects drawn from 1) a predominant inpatient/residential care setting (Nathan Kline Institute) and 2) a predominant outpatient setting (Columbia University). As predicted, compared to healthy controls, deficits in duration MMN were observed across sites, whereas deficits in frequency MMN/tone matching were confined to the chronic inpatient setting. Within patients, the frequency MMN deficit was highly correlated with impairments in tone matching ability across sites (r=-0.52, p<0.0001), as well as impairments in verbal learning (r=-0.54, p<0.0001). Responses to standard stimuli in the MMN paradigm were assessed using measures of alpha evoked power and inter-trial coherence (ITC). While deficits in alpha ITC were observed across sites (both p<0.05), deficits in alpha power were observed at the inpatient (p=0.001) but not outpatient (p=0.2) site. Overall, these finding indicate that impairments of frequency MMN generation and response power to standard stimuli could be particularly linked to forms of schizophrenia that are associated with poor functional outcome.
Collapse
Affiliation(s)
- Migyung Lee
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States.
| | - Pejman Sehatpour
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Gail S Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Joshua T Kantrowitz
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Antigona M Martinez
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| |
Collapse
|
28
|
Salisbury DF, McCathern AG, Coffman BA, Murphy TK, Haigh SM. Complex mismatch negativity to tone pair deviants in long-term schizophrenia and in the first-episode schizophrenia spectrum. Schizophr Res 2018; 191:18-24. [PMID: 28506707 PMCID: PMC5768305 DOI: 10.1016/j.schres.2017.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Mismatch negativity (MMN) is an event-related potential to stimulus change. MMN to infrequent deviant tones that differs in a simple physical parameter from repetitive standard tones is reduced in patients with long-term schizophrenia (Sz; d=~1). However, this simple MMN is not uniformly reduced at the first-episode of schizophrenia-spectrum psychosis (FESz; d<0.1 for pitch; <0.4 for duration). Deviant stimuli that violate pattern rules also evoke MMN. This complex MMN is evoked by deviations in the relation of sounds to each other. The simplest pattern involves tone pairs. Although the pitch of first tone in the pair varies, the second tone's pitch always follows a rule (e.g., always 3 semitones higher). We measured complex MMN to deviant tone pairs that descended in pitch among standard tone pairs that ascended in pitch, never before examined in Sz or in FESz. Experiment 1 showed significant reductions in complex MMN in 20 Sz compared to 22 matched controls. Experiment 2 replicated smaller complex MMN in a shorter protocol in 24 Sz compared to 21 matched controls, but showed no significant complex MMN reduction in 21 FESz compared to 21 matched controls. Although reduced in Sz, indicating deficits in generation of a simple acoustic pattern rule, the tone pair complex MMN was within normal limits in FESz. This suggests that more complex perceptual pattern analysis processes are, at least partially, still intact at the first break. Future work will determine at what point of pattern complexity subtle auditory perception pathophysiology will be revealed in FESz.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
29
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
30
|
Single-Dose Memantine Improves Cortical Oscillatory Response Dynamics in Patients with Schizophrenia. Neuropsychopharmacology 2017; 42:2633-2639. [PMID: 28425497 PMCID: PMC5686499 DOI: 10.1038/npp.2017.81] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/25/2023]
Abstract
Aberrant gamma-band (30-80 Hz) oscillations may underlie cognitive deficits in schizophrenia (SZ). Gamma oscillations and their regulation by NMDA receptors can be studied via their evoked power (γEP) and phase locking (γPL) in response to auditory steady-state stimulation; these auditory steady-state responses (ASSRs) may be biomarkers for target engagement and early therapeutic effects. We previously reported that memantine, an NMDA receptor antagonist, enhanced two biomarkers of early auditory information processing: prepulse inhibition and mismatch negativity (MMN) in SZ patients and healthy subjects (HS). Here, we describe memantine effects on γEP and γPL in those subjects. SZ patients (n=18) and HS (n=14) received memantine 20 mg (p.o.) and placebo over 2 test days in a double-blind, randomized, counterbalanced, cross-over design. The ASSR paradigm (1 ms, 85 dB clicks in 250-0.5 s trains at a frequency of 40 Hz; 0.5 s inter-train interval) was used to assess γEP and γPL. SZ patients had reduced γEP and γPL; memantine enhanced γEP and γPL (p<0.025 and 0.002, respectively) in both SZ and HS. In patients, significant correlations between age and memantine effects were detected for γEP and γPL: greater memantine sensitivity on γEP and γPL were present in younger SZ patients, similar to our reported findings with MMN. Memantine acutely normalized cortical oscillatory dynamics associated with NMDA receptor dysfunction in SZ patients. Ongoing studies will clarify whether these acute changes predict beneficial clinical, neurocognitive and functional outcomes. These data support the use of gamma-band ASSR as a translational end point in pro-cognitive drug discovery and early-phase clinical trials.
Collapse
|
31
|
Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 2017; 22:1585-1593. [PMID: 28167837 PMCID: PMC5547016 DOI: 10.1038/mp.2017.3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4-7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8-12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.
Collapse
|
32
|
Erickson MA, Albrecht M, Ruffle A, Fleming L, Corlett P, Gold J. No association between symptom severity and MMN impairment in schizophrenia: A meta-analytic approach. SCHIZOPHRENIA RESEARCH-COGNITION 2017; 9:13-17. [PMID: 28740829 PMCID: PMC5514390 DOI: 10.1016/j.scog.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022]
Abstract
The mismatch negativity (MMN) is an event-related potential that is consistently attenuated in people with schizophrenia. Within the predictive coding model of psychosis, MMN impairment is thought to reflect the same prediction failures that are also thought to underlie the development and crystallization of delusions and hallucinations. However, the true relationship between symptom severity and MMN impairment across studies has not yet been established. The present meta-analysis used meta-regressions to examine the relationship between MMN impairment (quantified as Hedges' g) and PANSS positive and negative symptom totals across 62 and 68 samples, respectively. Furthermore, we examined the relationship between MMN impairment and group differences in educational achievement (n = 47 samples), cognitive ability (n = 36 samples), and age (n = 86 samples). Overall, we found no significant associations between MMN impairment and symptom severity (p's > 0.50); however, we did observe a trend-level association between MMN impairment and lower education (p = 0.07) and a significant association with older age (p < 0.01) in the schizophrenia patient group. Taken together, these results challenge a simple predictive coding model of psychosis, and suggest that MMN impairment may be more closely associated with premorbid functioning than with the expression of psychotic symptoms.
Collapse
Affiliation(s)
- Molly A Erickson
- University Behavioral Healthcare, Rutgers University, 671 Hoes Lane West, Piscataway, NJ 08854, United States
| | - Matthew Albrecht
- Maryland Psychiatric Research Center, University of Maryland, 55 Wade Avenue, Catonsville, MD 21228, United States.,School of Public Health, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Abigail Ruffle
- Maryland Psychiatric Research Center, University of Maryland, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Leah Fleming
- Interdepartmental Neuroscience Program, Yale University, 34 Park Street, New Haven, CT, 06519, United States
| | - Philip Corlett
- Department of Psychiatry, Yale University; 34 Park Street, New Haven, CT, 06519, United States
| | - James Gold
- Maryland Psychiatric Research Center, University of Maryland, 55 Wade Avenue, Catonsville, MD 21228, United States
| |
Collapse
|
33
|
Salisbury DF, McCathern AG. Abnormal Complex Auditory Pattern Analysis in Schizophrenia Reflected in an Absent Missing Stimulus Mismatch Negativity. Brain Topogr 2016; 29:867-874. [PMID: 27519536 PMCID: PMC5768310 DOI: 10.1007/s10548-016-0514-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Abstract
The simple mismatch negativity (MMN) to tones deviating physically (in pitch, loudness, duration, etc.) from repeated standard tones is robustly reduced in schizophrenia. Although generally interpreted to reflect memory or cognitive processes, simple MMN likely contains some activity from non-adapted sensory cells, clouding what process is affected in schizophrenia. Research in healthy participants has demonstrated that MMN can be elicited by deviations from abstract auditory patterns and complex rules that do not cause sensory adaptation. Whether persons with schizophrenia show abnormalities in the complex MMN is unknown. Fourteen schizophrenia participants and 16 matched healthy underwent EEG recording while listening to 400 groups of 6 tones 330 ms apart, separated by 800 ms. Occasional deviant groups were missing the 4th or 6th tone (50 groups each). Healthy participants generated a robust response to a missing but expected tone. The schizophrenia group was significantly impaired in activating the missing stimulus MMN, generating no significant activity at all. Schizophrenia affects the ability of "primitive sensory intelligence" and pre-attentive perceptual mechanisms to form implicit groups in the auditory environment. Importantly, this deficit must relate to abnormalities in abstract complex pattern analysis rather than sensory problems in the disorder. The results indicate a deficit in parsing of the complex auditory scene which likely impacts negatively on successful social navigation in schizophrenia. Knowledge of the location and circuit architecture underlying the true novelty-related MMN and its pathophysiology in schizophrenia will help target future interventions.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, 15213, PA, USA.
| | - Alexis G McCathern
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, 15213, PA, USA
| |
Collapse
|