1
|
Gasalla P, Thomas KL, Wilkinson L, Hall J, Dwyer DM. Reduced Cacna1c Expression Produces Anhedonic Reactions to Palatable Sucrose in Rats: No Interactions With Juvenile or Adult Stress. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70021. [PMID: 40263772 PMCID: PMC12014513 DOI: 10.1111/gbb.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/24/2025]
Abstract
Genetic variation in CACNA1C, which encodes the alpha-1 subunit of Cav1.2 L-type voltage-gated calcium channels, is strongly linked to risk for psychiatric disorders including schizophrenia, bipolar disorder, and major depression. Here we investigated the impact of mutations of one copy of Cacna1c (leading to low gene dosage of Cacna1c) on rats' hedonic responses to palatable sucrose (assessed using the analysis of consumption microstructure). In addition, we also investigated the effects of combining either juvenile or adult stress with the manipulation of Cacna1c. Across three experiments, Cacna1c+/- rats displayed attenuated hedonic reactions to sucrose compared to wild-type littermate controls, despite the Cacna1c+/- rats retaining sensitivity to sucrose concentration in terms of the amount of consumption. Unexpectedly, juvenile stress enhanced rather than reduced hedonic reactions to sucrose, while adult stress did not have clear hedonic effects. The effects of Cacna1c manipulation did not interact with either juvenile or adult stress. The fact that Cacna1c+/- rats display a clear analogue of anhedonia-a reduction in the positive hedonic reactions normally elicited by highly palatable sucrose-a symptom observed trans-diagnostically across psychiatric disorders linked to CACNA1C, suggests this model may play a valuable role in the translational investigation of anhedonia.
Collapse
Affiliation(s)
- Patricia Gasalla
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | - Lawrence Wilkinson
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | - Jeremy Hall
- Neuroscience & Mental Health Innovation Institute, School of MedicineCardiff UniversityCardiffUK
| | | |
Collapse
|
2
|
Numakawa T, Kajihara R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025; 30:848. [PMID: 40005159 PMCID: PMC11857940 DOI: 10.3390/molecules30040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Among neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4/5), BDNF has been extensively studied for its physiological role in cell survival and synaptic regulation in the central nervous system's (CNS's) neurons. BDNF binds to TrkB (a tyrosine kinase) with high affinity, and the resulting downstream intracellular signaling cascades play crucial roles in determining cell fate, including neuronal differentiation and maturation of the CNS neurons. It has been well demonstrated that the downregulation/dysregulation of the BDNF/TrkB system is implicated in the pathogenesis of neurologic and psychiatric disorders, such as Alzheimer's disease (AD) and depression. Interestingly, the effects of BDNF mimetic compounds including flavonoids, small molecules which can activate TrkB-mediated signaling, have been extensively investigated as potential therapeutic strategies for brain diseases, given that p75NTR, a common neurotrophin receptor, also contributes to cell death under a variety of pathological conditions such as neurodegeneration. Since the downregulation of the BDNF/TrkB system is associated with the pathophysiology of neurodegenerative diseases and psychiatric disorders, understanding how alterations in the BDNF/TrkB system contribute to disease progression could provide valuable insight for the prevention of these brain diseases. The present review shows recent advances in the molecular mechanisms underlying the BDNF/TrkB system in neuronal survival and plasticity, providing critical insights into the potential therapeutic impact of BDNF mimetics in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Hematology and Immunology, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
3
|
Cano-Ramírez H, Hoffman KL. The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics. Expert Opin Drug Discov 2025; 20:217-231. [PMID: 39874393 DOI: 10.1080/17460441.2025.2459807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic. AREAS COVERED The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation. These included acetylcholinesterase inhibitors, muscarinic and nicotinic acetylcholine (ACh) receptor agonists and positive allosteric modulators (PAMs), histamine H3 receptor antagonist/inverse, calcium channel modulators, trace amino acid receptor (TAAR) agonists, and phosphodiesterase 10A (PDE10A) inhibitors. The authors discuss the extent to which the results of preclinical studies of these drugs in rodent models have predicted clinical efficacy. EXPERT OPINION Although published preclinical studies of these drugs were largely positive, clinical results were often modest or negative. This lack of correspondence is likely due to many factors, including differences in experimental design, poor translation of effective dosing from preclinical to clinical studies, and large inter-individual variation of the human population as compared to laboratory rodents. Closing the gap between preclinical and clinical studies will require strategies aimed at reducing the impact of these factors.
Collapse
Affiliation(s)
- Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México
| | - Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México
| |
Collapse
|
4
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
5
|
Gasalla P, Manahan-Vaughan D, Dwyer DM, Hall J, Méndez-Couz M. Characterisation of the neural basis underlying appetitive extinction & renewal in Cacna1c rats. Neuropharmacology 2023; 227:109444. [PMID: 36724867 DOI: 10.1016/j.neuropharm.2023.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Recent studies have revealed impairments in Cacna1c ± heterozygous animals (a gene that encodes the Cav 1.2 L-type voltage-gated calcium channels and is implicated in risk for multiple neuropsychiatric disorders) in aversive forms of learning, such as latent inhibition, reversal learning or context discrimination. However, the role of Cav 1.2 L-type voltage-gated calcium channels in extinction of appetitive associations remains under-investigated. Here, we used an appetitive Pavlovian conditioning task and evaluated extinction learning (EL) with a change of context from that of training and test (ABA) and without such a change (AAA) in Cacna1c ± male rats versus their wild-type (WT) littermates. In addition, we used fluorescence in situ hybridization of somatic immediate early genes (IEGs) Arc and Homer1a expression to scrutinize associated changes in the medial prefrontal cortex and the amygdala. Cacna1c ± animals successfully adapt their responses by engaging in appetitive EL and renewal. However, the regional IEG expression profile changed. For the EL occurring in the same context, Cacna1c ± animals presented higher IEG expression in the infralimbic cortex and the central amygdala than controls. The prelimbic region presented a larger neural ensemble in Cacna1c ± than WT animals, co-labelled for the time window of EL in the original context and prolonged exposure to the unrewarded context. With a context change, the Cacna1c ± infralimbic region displayed higher IEG expression during renewal than controls. Taken together, our findings provide novel evidence of distinct brain activation patterns occurring in Cacna1c ± rats after appetitive extinction and renewal despite preserved behavioral responses. This article is part of the Special Issue on "L-type calcium channel mechanisms in neuropsychiatric disorders".
Collapse
Affiliation(s)
- Patricia Gasalla
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Denise Manahan-Vaughan
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany
| | - Dominic Michael Dwyer
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marta Méndez-Couz
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Novaes de Oliveira Roldan AC, Fernandes Júnior LCC, de Oliveira CEC, Nunes SOV. Impact of ZNF804A rs1344706 or CACNA1C rs1006737 polymorphisms on cognition in patients with severe mental disorders: A systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:195-208. [PMID: 35786202 DOI: 10.1080/15622975.2022.2097308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis focussed on insights into the relationship between CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms and cognitive performance in schizophrenia (SCZ) spectrum and bipolar disorder (BD) and provide some contributions for clinical practice. METHODS We searched the websites databases (PubMED, PsycINFO, Web of Science, EMBASE and Cochrane Library) using eligibility and exclusion criteria to capture all potential studies, based on PICO model and according to the PRISMA. RESULTS Eight articles were included in this systematic review (five referring to CACNA1C-rs1006737 and three related to ZNF804A-rs1344706 polymorphisms), with a total of 5759 participants (1751 SCZ patients, 348 BD patients, 3626 controls and 34 first-degree relatives). The results demonstrated that the pooled effect of CACNA1C-rs1006737 (risk difference RD = 0.08; 95% CI 0.02-0.15) was associated with altered cognitive function in patients with severe mental disorders, but not ZNF804A-rs1344706 polymorphism (RD = 0.19; 95% CI 0.09-0.48. CONCLUSION The present meta-analysis provides evidence regarding slight association between CACNA1C-rs1006737 polymorphisms and cognitive performance in severe mental disorders, indicating that cognitive impairment in severe mental disorders associated with the CACNA1C rs1006737 risk variants could only be expressed when interacting with environmental exposures. This study is registered with PROSPERO, number CRD42021246726.
Collapse
|
7
|
Bastos CR, Xavier J, Camerini L, Dewes SS, Moreira FP, Wiener CD, Jansen K, Kaster MP, de Mattos Souza LD, da Silva RA, Oses JP, Portela LV, Lara DR, Tovo-Rodrigues L, Ghisleni G. BDNF Levels According to Variations in the CACNA1C Gene: Sex-Based Disparity. Cell Mol Neurobiol 2023; 43:357-366. [PMID: 35128618 PMCID: PMC11415201 DOI: 10.1007/s10571-022-01189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
The CACNA1C gene encodes the pore-forming alpha-1c subunit of L-type voltage-gated calcium channels. The calcium influx through these channels regulates the transcription of the brain-derived neurotrophic factor (BDNF). Polymorphisms in this gene have been consistently associated with psychiatric disorders, and alterations in BDNF levels are a possible biological mechanism to explain such associations. Here, we sought to investigate the effect of the CACNA1C rs1006737 and rs4765913 polymorphisms and their haplotypes on serum BDNF concentration. We further aim to investigate the regulatory function of these SNPs and the ones linked to them. The study enrolled 641 young adults (362 women and 279 men) in a cross-sectional population-based survey. Linear regression was used to test the effects of polymorphisms and haplotypes on BDNF levels adjusted for potential confounders. Moreover, regulatory putative functional roles were assessed using in silico approach. BDNF levels were not associated with CACNA1C polymorphisms/haplotype in the total sample. When the sample was stratified by sex, checking the effect of polymorphisms on men and women separately, the A-allele of rs4765913 was associated with lower BDNF levels in women compared with the TT genotype (p = 0.010). The AA (rs1006737-rs4765913) haplotype was associated with BDNF levels in opposite directions regarding sex, with lower levels of BDNF in women (p = 0.040) compared to those without this haplotype, while with higher levels in men (p = 0.027). These findings were supported by the presence of regulatory marks only on the male fetal brain. Our results suggest that the BDNF levels regulation may be a potential mechanism underpinning the association between CACNA1C and psychiatric disorders, with a differential role in women and men.
Collapse
Affiliation(s)
- Clarissa Ribeiro Bastos
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaina Xavier
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Laísa Camerini
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Samantha Seibt Dewes
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Pedrotti Moreira
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carolina David Wiener
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karen Jansen
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Manuella Pinto Kaster
- Department of Biochemistry at the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luciano Dias de Mattos Souza
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Azevedo da Silva
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jean Pierre Oses
- Post Graduation Program of Physiological Science, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Luis Valmor Portela
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Rizzato Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Laboratory of Clinical Neuroscience, Post-Graduation Program of Health and Behavior, Center of Health Science, Catholic University of Pelotas, 373, 324C Gonçalves Chaves Street, Pelotas, Rio Grande do Sul, CEP 96015-560, Brazil.
| |
Collapse
|
8
|
Appetitive 50 kHz calls in a pavlovian conditioned approach task in Cacna1c haploinsufficient rats. Physiol Behav 2022; 250:113795. [PMID: 35351494 DOI: 10.1016/j.physbeh.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that rats emit high-frequency 50 kHz ultrasonic vocalizations (USV) during sign- and goal-tracking in a common Pavlovian conditioned approach task. Such 50 kHz calls are probably related to positive affect and are associated with meso-limbic dopamine function. In humans, the CACNA1C gene, encoding for the α1C subunit of the L-type voltage-gated calcium channel CaV1.2, is implicated in several mental disorders, including mood disorders associated with altered dopamine signaling. In the present study, we investigated sign- and goal-tracking behavior and the emission of 50 kHz USV in Cacna1c haploinsufficent rats in a task where food pellet delivery is signaled by an appearance of an otherwise inoperable lever. Over the course of this Pavlovian training, these rats not only increased their approach to the reward site, but also their rates of pressing the inoperable lever. During subsequent extinction tests, where reward delivery was omitted, extinction patterns differed between reward site (i.e. magazine entries) and lever, since magazine entries quickly declined whereas behavior towards the lever transiently increased. Based on established criteria to define sign- or goal-tracking individuals, no CACNA1C rat met a sign-tracking criterion, since around 42% of rats tested where goal-trackers and the other 58% fell into an intermediate range. Regarding USV, we found that the CACNA1C rats emitted 50 kHz calls with a clear subject-dependent pattern; also, most of them were of a flat subtype and occurred mainly during initial habituation phases without cues or rewards. Compared, to previously published wildtype controls, Cacna1c haploinsufficent rats displayed reduced numbers of appetitive 50 kHz calls. Moreover, similar to wildtype littermate controls, 50 kHz call emission in Cacna1c haploinsufficent rats was intra-individually stable over training days and was negatively associated with goal-tracking. Together, these findings provide evidence in support of 50 kHz calls as trait marker. The finding that Cacna1c haploinsufficent rats show reductions of 50 kHz calls accompanied with more goal-tracking, is consistent with the assumption of altered dopamine signaling in these rats, a finding which supports their applicability in models of mental disorders.
Collapse
|
9
|
Ceccarini MR, Precone V, Manara E, Paolacci S, Maltese PE, Benfatti V, Dhuli K, Donato K, Guerri G, Marceddu G, Chiurazzi P, Dalla Ragione L, Beccari T, Bertelli M. A next generation sequencing gene panel for use in the diagnosis of anorexia nervosa. Eat Weight Disord 2022; 27:1869-1880. [PMID: 34822136 DOI: 10.1007/s40519-021-01331-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study was to increase knowledge of genes associated with anorexia nervosa (AN) and their diagnostic offer, using a next generation sequencing (NGS) panel for the identification of genetic variants. The rationale underlying this test is that we first analyze the genes associated with syndromic forms of AN, then genes that were found to carry rare variants in AN patients who had undergone segregation analysis, and finally candidate genes intervening in the same molecular pathways or identified by GWAS or in mouse models. METHODS We developed an NGS gene panel and used it to screen 68 Italian AN patients (63 females, 5 males). The panel included 162 genes. Family segregation study was conducted on available relatives of probands who reported significant genetic variants. RESULTS In our analysis, we found potentially deleterious variants in 2 genes (PDE11A and SLC25A13) associated with syndromic forms of anorexia and predicted deleterious variants in the following 12 genes: CD36, CACNA1C, DRD4, EPHX2, ESR1, GRIN2A, GRIN3B, LRP2, NPY4R, PTGS2, PTPN22 and SGPP2. Furthermore, by Sanger sequencing of the promoter region of NNAT, we confirmed the involvement of this gene in the pathogenesis of AN. Family segregation studies further strengthened the possible causative role of CACNA1C, DRD4, GRIN2A, PTGS2, SGPP2, SLC25A13 and NNAT genes in AN etiology. CONCLUSION The major finding of our study is the confirmation of the involvement of the NNAT gene in the pathogenesis of AN; furthermore, this study suggests that NGS-based testing can play an important role in the diagnostic evaluation of AN, excluding syndromic forms and increasing knowledge of the genetic etiology of AN. LEVEL OF EVIDENCE Level I, experimental study.
Collapse
Affiliation(s)
- Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, Trieste, Italy.
| | | | | | | | | | - Valentina Benfatti
- Department of Eating Disorder, Palazzo Francisci Todi, USL 1 Umbria, Todi, PG, Italy
| | | | | | | | | | - Pietro Chiurazzi
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC Genetica Medica, 00168, Roma, Italy
| | - Laura Dalla Ragione
- Department of Eating Disorder, Palazzo Francisci Todi, USL 1 Umbria, Todi, PG, Italy
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, Rome, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, Trieste, Italy
| | | |
Collapse
|
10
|
Woodbury-Smith M, Lamoureux S, Begum G, Nassir N, Akter H, O’Rielly DD, Rahman P, Wintle RF, Scherer SW, Uddin M. Mutational Landscape of Autism Spectrum Disorder Brain Tissue. Genes (Basel) 2022; 13:genes13020207. [PMID: 35205252 PMCID: PMC8871846 DOI: 10.3390/genes13020207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rare post-zygotic mutations in the brain are now known to contribute to several neurodevelopmental disorders, including autism spectrum disorder (ASD). However, due to the limited availability of brain tissue, most studies rely on estimates of mosaicism from peripheral samples. In this study, we undertook whole exome sequencing on brain tissue from 26 ASD brain donors from the Harvard Brain Tissue Resource Center (HBTRC) and ascertained the presence of post-zygotic and germline mutations categorized as pathological, including those impacting known ASD-implicated genes. Although quantification did not reveal enrichment for post-zygotic mutations compared with the controls (n = 15), a small number of pathogenic, potentially ASD-implicated mutations were identified, notably in TRAK1 and CLSTN3. Furthermore, germline mutations were identified in the same tissue samples in several key ASD genes, including PTEN, SC1A, CDH13, and CACNA1C. The establishment of tissue resources that are available to the scientific community will facilitate the discovery of new mutations for ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Sylvia Lamoureux
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.L.); (R.F.W.); (S.W.S.)
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (G.B.); (N.N.)
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (G.B.); (N.N.)
| | - Hosneara Akter
- Genetics and Genomics Medicine Centre, NeuroGen Healthcare, Dhaka 1205, Bangladesh;
| | - Darren D. O’Rielly
- Faculty of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada; (D.D.O.); (P.R.)
| | - Proton Rahman
- Faculty of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada; (D.D.O.); (P.R.)
| | - Richard F. Wintle
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.L.); (R.F.W.); (S.W.S.)
| | - Stephen W. Scherer
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.L.); (R.F.W.); (S.W.S.)
- Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (G.B.); (N.N.)
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON M5G 0A4, Canada
- Correspondence:
| |
Collapse
|
11
|
|
12
|
Flintoff J, Kesby JP, Siskind D, Burne TH. Treating cognitive impairment in schizophrenia with GLP-1RAs: an overview of their therapeutic potential. Expert Opin Investig Drugs 2021; 30:877-891. [PMID: 34213981 DOI: 10.1080/13543784.2021.1951702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Schizophrenia is a neuropsychiatric disorder that affects approximately 1% of individuals worldwide. There are no available medications to treat cognitive impairment in this patient population currently. Preclinical evidence suggests that glucagon-like peptide-1 receptor agonists (GLP-1 RAs) improve cognitive function. There is a need to evaluate how GLP-1 RAs alter specific domains of cognition and whether they will be of therapeutic benefit in individuals with schizophrenia. AREAS COVERED This paper summarizes the effects of GLP-1 RAs on metabolic processes in the brain and how these mechanisms relate to improved cognitive function. We provide an overview of preclinical studies that demonstrate GLP-1 RAs improve cognition and comment on their potential therapeutic benefit in individuals with schizophrenia. EXPERT OPINION To understand the benefits of GLP-1 RAs in individuals with schizophrenia, further preclinical research with rodent models relevant to schizophrenia symptomology are needed. Moreover, preclinical studies must focus on using a wider range of behavioral assays to understand whether important aspects of cognition such as executive function, attention, and goal-directed behavior are improved using GLP-1 RAs. Further research into the specific mechanisms of how GLP-1 RAs affect cognitive function and their interactions with antipsychotic medication commonly prescribed is necessary.
Collapse
Affiliation(s)
- Jonathan Flintoff
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia
| | - James P Kesby
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia.,Metro South Addiction and Mental Health Service, Woolloongabba, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
13
|
Benítez-Burraco A, Fernández-Urquiza M, Jiménez-Romero S. Language impairment with a microduplication in 1q42.3q43. CLINICAL LINGUISTICS & PHONETICS 2021; 35:610-635. [PMID: 32856472 DOI: 10.1080/02699206.2020.1812119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Deletions and duplications of the distal region of the long arm of chromosome 1 are associated with brain abnormalities and developmental delay. Because duplications are less frequent than deletions, no detailed account of the cognitive profile of the affected people is available, particularly, regarding their language (dis)abilities. In this paper we report on the cognitive and language capacities of a girl with one of the smallest interstitial duplications ever described in this region, affecting to 1q42.3q43 (arr[hg19] 1q42.3q43(235,963,632-236,972,276)x3), and advance potential candidate genes for the observed deficits. The proband's speech is severely impaired, exhibiting dysarthric-like features, with speech problems also resulting from a phonological deficit boiling down to a verbal auditory memory deficit. Lexical and grammatical knowledge are also impaired, impacting negatively on both expressive and receptive abilities, seemingly as a consequence of the phonological deficit. Still, her pragmatic abilities seem to be significantly spared, granting her a good command on the principles governing conversational exchanges. Genetic analyses point to several genes of interest. These include one gene within the duplicated region (LYST), one predicted functional partner (CMIP), and three genes outside the 1q42.3q43 region, which are all highly expressed in the cerebellum: DDIT4 and SLC29A1, found strongly downregulated in the proband compared to her healthy parents, and CNTNAP3, found strongly upregulated. The genes highlighted in the paper emerge as potential candidates for the phonological and speech deficits exhibited by the proband and ultimately, for her problems with language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain
| | | | | |
Collapse
|
14
|
Wöhr M, Kisko TM, Schwarting RK. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021; 11:brainsci11060724. [PMID: 34072335 PMCID: PMC8229447 DOI: 10.3390/brainsci11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
The top-ranked cross-disorder risk gene CACNA1C is strongly associated with multiple neuropsychiatric dysfunctions. In a recent series of studies, we applied a genomically informed approach and contributed extensively to the behavioral characterization of a genetic rat model haploinsufficient for the cross-disorder risk gene Cacna1c. Because deficits in processing social signals are associated with reduced social functioning as commonly seen in neuropsychiatric disorders, we focused on socio-affective communication through 22-kHz and 50-kHz ultrasonic vocalizations (USV). Specifically, we applied a reciprocal approach for studying socio-affective communication in sender and receiver by including rough-and-tumble play and playback of 22-kHz and 50-kHz USV. Here, we review the findings obtained in this recent series of studies and link them to the key features of 50-kHz USV emission during rough-and-tumble play and social approach behavior evoked by playback of 22-kHz and 50-kHz USV. We conclude that Cacna1c haploinsufficiency in rats leads to robust deficits in socio-affective communication through 22-kHz and 50-kHz USV and associated alterations in social behavior, such as rough-and-tumble play behavior.
Collapse
Affiliation(s)
- Markus Wöhr
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
- Correspondence: ; Tel.: +32-16-19-45-57
| | - Theresa M. Kisko
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| | - Rainer K.W. Schwarting
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
15
|
Fu G, Chen W, Li H, Wang Y, Liu L, Qian Q. A potential association of RNF219-AS1 with ADHD: Evidence from categorical analysis of clinical phenotypes and from quantitative exploration of executive function and white matter microstructure endophenotypes. CNS Neurosci Ther 2021; 27:603-616. [PMID: 33644999 PMCID: PMC8025624 DOI: 10.1111/cns.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS Attention-deficit/hyperactivity disorder (ADHD) is a neuropsychiatric disorder of substantial heritability, yet emerging evidence suggests that key risk variants might reside in the noncoding regions of the genome. Our study explored the association of lncRNAs (long noncoding RNAs) with ADHD as represented at three different phenotypic levels guided by the Research Domain Criteria (RDoC) framework: (i) ADHD caseness and symptom dimension, (ii) executive functions as functional endophenotype, and (iii) potential genetic influence on white matter architecture as brain structural endophenotype. METHODS Genotype data of 107 tag single nucleotide polymorphisms (SNP) from 10 candidate lncRNAs were analyzed in 1040 children with ADHD and 630 controls of Chinese Han descent. Executive functions including inhibition and set-shifting were assessed by STROOP and trail making tests, respectively. Imaging genetic analyses were performed in a subgroup of 33 children with ADHD and 55 controls using fractional anisotropy (FA). RESULTS One SNP rs3908461 polymorphism in RNF219-AS1 was found to be significantly associated with ADHD caseness: with C-allele detected as the risk genotype in the allelic model (P = 8.607E-05) and dominant genotypic model (P = 9.628E-05). Nominal genotypic effects on inhibition (p = 0.020) and set-shifting (p = 0.046) were detected. While no direct effect on ADHD core symptoms was detected, mediation analysis suggested that SNP rs3908461 potentially exerted an indirect effect through inhibition function [B = 0.21 (SE = 0.12), 95% CI = 0.02-0.49]. Imaging genetic analyses detected significant associations between rs3908461 genotypes and FA values in corpus callosum, left superior longitudinal fasciculus, left posterior limb of internal capsule, left posterior thalamic radiate (include optic radiation), and the left anterior corona radiate (P FWE corrected < 0.05). CONCLUSION Our present study examined the potential roles of lncRNA in genetic etiological of ADHD and provided preliminary evidence in support of the potential RNF219-AS1 involvement in the pathophysiology of ADHD in line with the RDoC framework.
Collapse
Affiliation(s)
- Guang‐Hui Fu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Wai Chen
- Mental Health ServiceFiona Stanley HospitalPerthAustralia
- Graduate School of EducationThe University of Western AustraliaPerthAustralia
- School of MedicineThe University of Notre Dame AustraliaFremantleAustralia
- School of PsychologyMurdoch UniversityPerthAustralia
| | - Hai‐Mei Li
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Yu‐Feng Wang
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Qiu‐Jin Qian
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| |
Collapse
|
16
|
Pike AC, Lowther M, Robinson OJ. The Importance of Common Currency Tasks in Translational Psychiatry. Curr Behav Neurosci Rep 2021; 8:1-10. [PMID: 33708469 PMCID: PMC7904709 DOI: 10.1007/s40473-021-00225-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Purpose of Review Common currency tasks are tasks that investigate the same phenomenon in different species. In this review, we discuss how to ensure the translational validity of common currency tasks, summarise their benefits, present recent research in this area and offer future directions and recommendations. Recent Findings We discuss the strengths and limitations of three specific examples where common currency tasks have added to our understanding of psychiatric constructs—affective bias, reversal learning and goal-based decision making. Summary Overall, common currency tasks offer the potential to improve drug discovery in psychiatry. We recommend that researchers prioritise construct validity above face validity when designing common currency tasks and suggest that the evidence for construct validity is summarised in papers presenting research in this area.
Collapse
Affiliation(s)
- Alexandra C Pike
- Anxiety Lab, Neuroscience and Mental Health Group, University College London Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AR UK
| | - Millie Lowther
- Anxiety Lab, Neuroscience and Mental Health Group, University College London Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AR UK
| | - Oliver J Robinson
- Anxiety Lab, Neuroscience and Mental Health Group, University College London Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AR UK.,Research Department of Clinical, Educational and Health Psychology Department, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
17
|
Tigaret CM, Lin TCE, Morrell ER, Sykes L, Moon AL, O’Donovan MC, Owen MJ, Wilkinson LS, Jones MW, Thomas KL, Hall J. Neurotrophin receptor activation rescues cognitive and synaptic abnormalities caused by hemizygosity of the psychiatric risk gene Cacna1c. Mol Psychiatry 2021; 26:1748-1760. [PMID: 33597718 PMCID: PMC8440217 DOI: 10.1038/s41380-020-01001-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Genetic variation in CACNA1C, which encodes the alpha-1 subunit of CaV1.2 L-type voltage-gated calcium channels, is strongly linked to risk for psychiatric disorders including schizophrenia and bipolar disorder. To translate genetics to neurobiological mechanisms and rational therapeutic targets, we investigated the impact of mutations of one copy of Cacna1c on rat cognitive, synaptic and circuit phenotypes implicated by patient studies. We show that rats hemizygous for Cacna1c harbour marked impairments in learning to disregard non-salient stimuli, a behavioural change previously associated with psychosis. This behavioural deficit is accompanied by dys-coordinated network oscillations during learning, pathway-selective disruption of hippocampal synaptic plasticity, attenuated Ca2+ signalling in dendritic spines and decreased signalling through the Extracellular-signal Regulated Kinase (ERK) pathway. Activation of the ERK pathway by a small-molecule agonist of TrkB/TrkC neurotrophin receptors rescued both behavioural and synaptic plasticity deficits in Cacna1c+/- rats. These results map a route through which genetic variation in CACNA1C can disrupt experience-dependent synaptic signalling and circuit activity, culminating in cognitive alterations associated with psychiatric disorders. Our findings highlight targeted activation of neurotrophin signalling pathways with BDNF mimetic drugs as a genetically informed therapeutic approach for rescuing behavioural abnormalities in psychiatric disorder.
Collapse
Affiliation(s)
- Cezar M. Tigaret
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tzu-Ching E. Lin
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Edward R. Morrell
- grid.5600.30000 0001 0807 5670School of Psychology, Cardiff University, Cardiff, UK ,grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Lucy Sykes
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK ,Present Address: Neem Biotech, Abertillery, Blaenau Gwent UK
| | - Anna L. Moon
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
| | - Michael C. O’Donovan
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
| | - Michael J. Owen
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
| | - Lawrence S. Wilkinson
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670School of Psychology, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
| | - Matthew W. Jones
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Kerrie L. Thomas
- grid.5600.30000 0001 0807 5670Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670School of Bioscience, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. .,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
18
|
Moon AL, Brydges NM, Wilkinson LS, Hall J, Thomas KL. Cacna1c Hemizygosity Results in Aberrant Fear Conditioning to Neutral Stimuli. Schizophr Bull 2020; 46:1231-1238. [PMID: 31910256 PMCID: PMC7505182 DOI: 10.1093/schbul/sbz127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CACNA1C, a gene that encodes an alpha-1 subunit of L-type voltage-gated calcium channels, has been strongly associated with psychiatric disorders including schizophrenia and bipolar disorder. An important objective is to understand how variation in this gene can lead to an increased risk of psychopathology. Altered associative learning has also been implicated in the pathology of psychiatric disorders, particularly in the manifestation of psychotic symptoms. In this study, we utilize auditory-cued fear memory paradigms in order to investigate whether associative learning is altered in rats hemizygous for the Cacna1c gene. Cacna1c hemizygous (Cacna1c+/-) rats and their wild-type littermates were exposed to either delay, trace, or unpaired auditory fear conditioning. All rats received a Context Recall (24 h post-conditioning) and a Cue Recall (48 h post-conditioning) to test their fear responses. In the delay condition, which results in strong conditioning to the cue in wild-type animals, Cacna1c+/- rats showed increased fear responses to the context. In the trace condition, which results in strong conditioning to the context in wild-type animals, Cacna1c+/- rats showed increased fear responses to the cue. Finally, in the unpaired condition, Cacna1c+/- rats showed increased fear responses to both context and cue. These results indicate that Cacna1c heterozygous rats show aberrantly enhanced fear responses to inappropriate cues, consistent with key models of psychosis.
Collapse
Affiliation(s)
- Anna L Moon
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|