1
|
Jiang H, Weihs A, Frenzel S, Klinger-König J, Ewert R, Stubbe B, Berger K, Penzel T, Fietze I, Bülow R, Völzke H, Grabe HJ. The impact of childhood emotional abuse and depressive symptoms on sleep macro-architecture and cortical thickness. J Affect Disord 2025; 376:92-103. [PMID: 39909163 DOI: 10.1016/j.jad.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Adverse childhood events and especially emotional abuse (EA) is consistently associated with poor psychiatric outcomes in adulthood, with depressive symptoms being one of the most prevalent. Both EA and depression are frequently associated with poorer sleep quality and cortical structural abnormalities. Interestingly, some individuals who experienced early-life EA are resilient against the development of psychiatric illness in adulthood and are believed to possess distinct neurobiology that confer more effective coping mechanisms. METHODS 682 subjects from a population-based cohort underwent polysomnography (PSG), whole-body magnetic resonance imaging (MRI) and completed the Childhood Trauma Questionnaire (CTQ) and Patient Health Questionnaire (PHQ-9). Linear regressions were used to model joint EA and depressive symptoms effects with sleep macro-architecture and cortical thickness; and path analyses were used to investigate mediation effects. RESULTS Considering depressive symptoms as a product variable with EA (EA×depression), we observed the strongest effect in EA×depression with percentage spent in SWS (%SWS), where %SWS increased with EA in non-depressed subjects. We observed increased thicknesses in three cortical regions in emotionally-abused, non-depressed individuals from structural MRI. Mediation analysis demonstrated that %SWS significantly mediated the association of EA×depression with cortical thickness in two of the three regions. LIMITATIONS We are not able to infer any causal role of sleep in our cross-sectional design. Self-report questionnaires are also subject to recall-bias. CONCLUSIONS Higher regional cortical thicknesses in emotionally-abused, non-depressed individuals can partially be explained by increased %SWS, suggesting a potentially protective role of SWS against brain volume loss associated with EA and depression.
Collapse
Affiliation(s)
- Hanyi Jiang
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany.
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), site Rostock/Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | | | - Ralf Ewert
- Department of Internal Medicine B - Cardiology, Pulmonary Medicine, Infectious Diseases and Intensive Care Medicine, University Medicine Greifswald, Germany
| | - Beate Stubbe
- Department of Internal Medicine B - Cardiology, Pulmonary Medicine, Infectious Diseases and Intensive Care Medicine, University Medicine Greifswald, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Thomas Penzel
- University Hospital Charité Berlin, Sleep Medicine Center, Berlin, Germany
| | - Ingo Fietze
- University Hospital Charité Berlin, Sleep Medicine Center, Berlin, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Lucey BP. Sleep Alterations and Cognitive Decline. Semin Neurol 2025. [PMID: 40081821 DOI: 10.1055/a-2557-8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Sleep disturbances and cognitive decline are intricately connected, and both are prevalent in aging populations and individuals with neurodegenerative disorders such as Alzheimer's disease (AD) and other dementias. Sleep is vital for cognitive functions including memory consolidation, executive function, and attention. Disruption in these processes is associated with cognitive decline, although causal evidence is mixed. This review delves into the bidirectional relationship between alterations in sleep and cognitive impairment, exploring key mechanisms such as amyloid-β accumulation, tau pathology, synaptic homeostasis, neurotransmitter dysregulation, oxidative stress, and vascular contributions. Evidence from both experimental research and population-based studies underscores the necessity of early interventions targeting sleep to mitigate risks of neurodegenerative diseases. A deeper understanding of the interplay between sleep and cognitive health may pave the way for innovative strategies to prevent or reduce cognitive decline through improved sleep management.
Collapse
Affiliation(s)
- Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri
- Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
3
|
Leitner C, Greco V, Casoni F, Lewis PA, Ferini-Strambi L, Galbiati A. Isolated Rem Sleep Behavior Disorder: A Model to Assess the Overnight Habituation of Emotional Reactivity. Clocks Sleep 2025; 7:9. [PMID: 40136846 PMCID: PMC11941121 DOI: 10.3390/clockssleep7010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
(1) Background: Phasic events in rapid eye movement (REM) sleep are a core feature of isolated REM behavior disorder (iRBD), which is often associated with emotion dysregulation. This study explores the relationship between sleep and the overnight habituation of emotional reactivity in healthy controls (HCs) and iRBD patients, focusing on the role of REM phasic events and a specific non-REM waveform, namely sleep spindles. (2) Methods: Participants underwent polysomnography and completed arousal rating tasks and mood scales before and after sleep. In total, eight HCs (4 M, mean age 60.62 ± 6.8) and eight iRBD patients (7 M, mean age 68.25 ± 5.12) were included in the analyses. (3) Results: In HCs, longer REM sleep duration correlated positively with overnight habituation. In the whole sample, overnight habituation negatively correlated with REM sleep latency and wake-after-sleep onset, and positively with N2 sleep. Higher overnight habituation was associated with fewer REM arousals and awakenings in the whole sample, and with greater N2 sleep spindle density in HCs. (4) Conclusions: Our preliminary results suggest that REM sleep and spindles in N2 play critical roles in emotional processing. The study confirms the relationship between emotion dysregulation and REM phasic events, enhancing our understanding of how sleep impacts emotional reactivity and also in the prodromal phase of neurodegenerative disease.
Collapse
Affiliation(s)
- Caterina Leitner
- Faculty of Pyschology, “Vita-Salute” San Raffaele University, 20127 Milan, Italy; (C.L.)
- Department of Clinical Neurosciences, Neurology—Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy;
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK; (V.G.)
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology—Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy;
| | - Penelope A. Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK; (V.G.)
| | - Luigi Ferini-Strambi
- Faculty of Pyschology, “Vita-Salute” San Raffaele University, 20127 Milan, Italy; (C.L.)
- Department of Clinical Neurosciences, Neurology—Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy;
| | - Andrea Galbiati
- Faculty of Pyschology, “Vita-Salute” San Raffaele University, 20127 Milan, Italy; (C.L.)
- Department of Clinical Neurosciences, Neurology—Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy;
| |
Collapse
|
4
|
Leveille C, Saad M, Brabant D, Birnie D, Fonseca K, Lee EK, Douglass A, Northoff G, Nikolitch K, Carrier J, Fogel S, Higginson C, Kendzerska T, Robillard R. Modulation of cardiac autonomic activity across consciousness states and levels of sleep depth in individuals with sleep complaints and bipolar disorder or unipolar depressive disorders. J Psychosom Res 2025; 189:111996. [PMID: 39644882 DOI: 10.1016/j.jpsychores.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Autonomic nervous system dysfunction and reduced heart rate variability (HRV) often co-exist with mood disorders, a phenomenon likely influenced by sleep disturbances. This study investigated heart rate (HR) and HRV across wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep in individuals with sleep complaints and bipolar or unipolar depressive disorder. METHODS Polysomnographic data was retrospectively collated for 120 adult patients with sleep complaints and depressive symptoms [60 diagnosed with bipolar disorder, 60 diagnosed with a unipolar depressive disorder], and 60 healthy controls. HR and time-based HRV variables were computed on 30-s segments and averaged across the night for wake, NREM and REM sleep. RESULTS Significant group by consciousness state interactions showed that the unipolar and bipolar groups had lower standard deviation of normal-to-normal intervals root mean square of successive R-R interval differences compared to controls during NREM and REM sleep, but not during wake (SDNN: F(4, 330) = 3.0, p = .021, np2 = 0.035; RMSSD: F(4, 332) = 5.8, p < .001, np2 = 0.065). The magnitude of these group differences did not vary significantly between NREM 1, NREM 2 and NREM 3 sleep. These interactions persisted after excluding individuals taking 3rd generation antipsychotic, lithium, anticonvulsant, and cardiovascular medications. CONCLUSION Although further work is required to account for the impact of psychotropic and cardiac medications, as well as manic and euthymic states, these findings suggest that the sleep-based autonomic signature of depressive states differs across different types of mood disorders and could potentially inform the development of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chloe Leveille
- School of Psychology, University of Ottawa, Canada; Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Mysa Saad
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada; Faculty of Medicine, Department of Medicine, University of Ottawa, Canada
| | - Daniel Brabant
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | | | - Karina Fonseca
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Elliott Kyung Lee
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada; Department of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Alan Douglass
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada; Department of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Canada
| | - Katerina Nikolitch
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Julie Carrier
- Center for advanced research in sleep medicine, Research Center of the CIUSSS du Nord-de-l'Ile-de-, Montréal, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Canada; Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Caitlin Higginson
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Tetyana Kendzerska
- Faculty of Medicine, Department of Medicine, University of Ottawa, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- School of Psychology, University of Ottawa, Canada; Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada.
| |
Collapse
|
5
|
Mohammadi M, Samadi S, Batouli SAH, Pestei K, Oghabian MA. Reduced Oxygen Extraction Fraction as a Biomarker for Cognitive Deficits in Obstructive Sleep Apnea. Brain Behav 2025; 15:e70273. [PMID: 39915228 PMCID: PMC11802275 DOI: 10.1002/brb3.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is characterized by disruptive breathing, resulting in a decline in cognitive performance. This study investigates the role of oxygen extraction fraction (OEF) and quantitative susceptibility mapping (QSM) in OSA-related cognitive impairment. METHODS The study recruited 15 patients with confirmed OSA and 16 healthy controls, who underwent overnight polysomnography and brain MRI using a 3 Tesla machine and 64-channel head coil. A two-step MRI analysis was employed to measure OEF. QSM was first created by processing separate phase and magnitude images. OEF maps were then generated by identifying veins based on their susceptibility. Volumetric analysis was performed using the FreeSurfer. Neuropsychological tests were administered to evaluate cognition. RESULTS The analysis of OEF revealed significantly lower values in various cerebral cortical regions of OSA patients than in controls. Notably, OEF in the cerebral cortex and frontal, temporal, and occipital regions showed negative correlations with the duration of stage N2 sleep (highest correlation between N2 and right temporal OEF: p = 0.005, r = -0.681). Furthermore, poorer performance on neuropsychological tests, such as the backward digit span test, was significantly correlated with reduced OEF in the left hemisphere (p = 0.016), left cerebral cortex (p = 0.019), right frontal (p = 0.034), left frontal (p = 0.014), left parietal (p = 0.008), left temporal (p = 0.048), and left occipital lobes (p = 0.015). No significant differences in QSM or brain volume were observed. CONCLUSIONS Decreased OEF emerges as a potential biomarker for cognitive deficits in OSA, suggesting disturbances in cerebral oxygen metabolism may underlie cognitive impairments. These findings underscore the importance of investigating physiological markers in understanding OSA-related cognitive dysfunction.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of MedicineTehran University of Medical SciencesTehranIran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment InstituteTehran University of Medical SciencesTehranIran
| | - Shahram Samadi
- Sleep Breathing Disorders Research Center, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
- Anesthesia, Critical Care and Pain Management Research CenterTehran University of Medical SciencesTehranIran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Khalil Pestei
- Anesthesia, Critical Care and Pain Management Research CenterTehran University of Medical SciencesTehranIran
- Pain Research Center, Neuroscience Institute, Anesthesiology Department, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Oghabian
- Department of Medical Physics and Biomedical Engineering, School of MedicineTehran University of Medical SciencesTehranIran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Eze CO. Dream and its interpretation: scientific perspective. Intern Emerg Med 2025:10.1007/s11739-024-03849-4. [PMID: 39757316 DOI: 10.1007/s11739-024-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Dream is a mental activity that occurs during sleep. Its interpretation is common practice in many African cultures and this role is vested in unqualified persons, such as diviners, priests, and healers. Their unprofessional activities have led to dangerous consequences, such as anxiety, depression, loss of material possessions, bodily harm, family, or community conflicts, or even death. This review manuscript sought to unravel the mystery of dreams from a scientific perspective to educate the scientific community, especially in the developing world. This review manuscript unraveled the enigma of dreams by delving into the mechanisms underlying their occurrence, exploring the brain processes that shape their content, discussing different types of dreams, and examining the potential scientific basis for interpreting their significance. The scientific study of dreams and their interpretation has provided fascinating insights into the neural processes, cognitive functions, and emotional dimensions of this intriguing phenomenon.
Collapse
Affiliation(s)
- Chukwuemeka O Eze
- Neurology Unit, Internal Medicine Department, Alex Ekwueme Federal University Teaching Hospital, Abakaliki (AEFUTHA), Ebonyi State, Nigeria.
| |
Collapse
|
7
|
Martino M, Magioncalda P. A working model of neural activity and phenomenal experience in psychosis. Mol Psychiatry 2024; 29:3814-3825. [PMID: 38844531 DOI: 10.1038/s41380-024-02607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 12/05/2024]
Abstract
According to classical phenomenology, phenomenal experience is composed of perceptions (related to environmental stimuli) and imagery/ideas (unrelated to environmental stimuli). Intensity/vividness is supposed to represent the key phenomenal difference between perceptions and ideas, higher in perceptions than ideas, and thus the core subjective criterion to distinguish reality from imagination. At a neural level, phenomenal experience is related to brain activity in the sensory areas, driven by receptor stimulation (underlying perception) or associative areas (underlying imagery/ideas). An alteration of the phenomenal experience that leads to a loss of contact with reality characterizes psychosis, which mainly consists of hallucinations (false perceptions) and delusions (fixed ideas). According to the current data on their neural correlates across subclinical conditions and different neuropsychiatric disorders (such as schizophrenia), hallucinations are mainly associated with: transient (modality-specific) activations of sensory cortices (primarily superior temporal gyrus, occipito-temporal cortex, postcentral gyrus, and insula) during the hallucinatory experience; increased intrinsic activity/connectivity of associative/default-mode network (DMN) areas (primarily temporoparietal junction, posterior cingulate cortex, and medial prefrontal cortex); and deficits in the sensory systems. Analogously, delusions are mainly associated with increased intrinsic activity/connectivity of associative/DMN areas (primarily medial prefrontal cortex). Integrating these data into our three-dimensional model of neural activity and phenomenal-behavioral patterns, we propose the following model of psychosis. A functional/structural deficit in the sensory systems complemented by a functional reconfiguration of intrinsic brain activity favoring hyperactivity of associative/DMN areas may drive neuronal activations in the sensory (auditory/visual/somatosensory) areas and insular (interoceptive) areas with spatiotemporal configurations maximally independent from environmental stimuli and predominantly related to associative processing. This manifests in perception deficit and imagery/ideas composed of exteroceptive-like and interoceptive/affective-like elements that show a phenomenal intensity indistinguishable from perceptions, impairing the reality monitoring, along with minimal changeability by environmental stimuli, ultimately resulting in dissociation of the phenomenal experience from the environment, i.e., psychosis.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
8
|
McNamara P, Grafman J. Advances in brain and religion studies: a review and synthesis of recent representative studies. Front Hum Neurosci 2024; 18:1495565. [PMID: 39677407 PMCID: PMC11638176 DOI: 10.3389/fnhum.2024.1495565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
We review and synthesize recent religion and brain studies and find that at a broad network neuroscience level, religious/spiritual experiences (RSEs) appear to depend crucially upon interactions between the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). We see this general result as broadly consistent with Menon's et al. "Triple Network or Tripartite Model" (TPM) of neuropsychiatric function/dysfunction. A TPM cycling model is here offered to account for details of neural bases of an array of RSE phenomena including ecstatic seizures, neuroimaging of religious participants, psychedelically induced mystical states and perceptions of supernatural agents. To adequately account for SA perceptions, however, recent evidence suggests that REM sleep and dreaming mechanisms likely play a role. Future research should examine neurodevelopmental mechanisms of acquired SA perceptions as well as societal-level effects such as brain mediated religious beliefs of in-group cohesion and out-group hostility.
Collapse
Affiliation(s)
- Patrick McNamara
- Department of Psychology, National University, San Diego, CA, United States
- Boston University School of Medicine, Boston, MA, United States
- Center for Mind and Culture, Boston, MA, United States
| | - Jordan Grafman
- Cognitive Neuroscience Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Psychology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Rehel S, Duivon M, Doidy F, Champetier P, Clochon P, Grellard JM, Segura-Djezzar C, Geffrelot J, Emile G, Allouache D, Levy C, Viader F, Eustache F, Joly F, Giffard B, Perrier J. Sleep oscillations related to memory consolidation during aromatases inhibitors for breast cancer. Sleep Med 2024; 121:210-218. [PMID: 39004011 DOI: 10.1016/j.sleep.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Aromatase inhibitors (AIs) are associated with sleep difficulties in breast cancer (BC) patients. Sleep is known to favor memory consolidation through the occurrence of specific oscillations, i.e., slow waves (SW) and sleep spindles, allowing a dialogue between prefrontal cortex and the hippocampus. Interestingly, neuroimaging studies in BC patients have consistently shown structural and functional modifications in these two brain regions. With the aim to evaluate sleep oscillations related to memory consolidation during AIs, we collected polysomnography data in BC patients treated (AI+, n = 17) or not (AI-, n = 17) with AIs compared to healthy controls (HC, n = 21). None of the patients had received chemotherapy and radiotherapy was finished since at least 6 months, that limit the confounding effects of other treatments than AIs. Fast and slow spindles were detected during sleep stage 2 at centro-parietal and frontal electrodes respectively. SW were detected at frontal electrodes during stage 3. Here, we show lower frontal SW densities in AI + patients compared to HC. These results concord with previous reports about frontal cortical alterations in cancer following AIs administration. Moreover, AI + patients tended to have lower spindle density at C4 electrode. Regression analyses showed that, in both patient groups, spindle density at C4 electrode explained a large variance of memory performances. Slow spindle characteristics did not differ between groups and sleep oscillations characteristics of AI- patients did not differ significantly from those of both AI + patients and HC. Overall, our results add to the compelling evidence of the systemic effects of AIs previously reported in animals, with deleterious effects on cortical activity during sleep and associated memory consolidation in the current study. There is thus a need to further investigate sleep modifications during AIs administration. Longitudinal studies are needed to confirm these findings and investigation in other cancers on this topic should be conducted.
Collapse
Affiliation(s)
- S Rehel
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| | - M Duivon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Doidy
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Champetier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Clochon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - J M Grellard
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Segura-Djezzar
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - J Geffrelot
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - G Emile
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - D Allouache
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Levy
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - F Viader
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Joly
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; INSERM, Normandie Univ, UNICAEN, U1086 ANTICIPE, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - B Giffard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - J Perrier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
10
|
Pérez P, Manasova D, Hermann B, Raimondo F, Rohaut B, Bekinschtein TA, Naccache L, Arzi A, Sitt JD. Content-state dimensions characterize different types of neuronal markers of consciousness. Neurosci Conscious 2024; 2024:niae027. [PMID: 39011546 PMCID: PMC11246840 DOI: 10.1093/nc/niae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 07/17/2024] Open
Abstract
Identifying the neuronal markers of consciousness is key to supporting the different scientific theories of consciousness. Neuronal markers of consciousness can be defined to reflect either the brain signatures underlying specific conscious content or those supporting different states of consciousness, two aspects traditionally studied separately. In this paper, we introduce a framework to characterize markers according to their dynamics in both the "state" and "content" dimensions. The 2D space is defined by the marker's capacity to distinguish the conscious states from non-conscious states (on the x-axis) and the content (e.g. perceived versus unperceived or different levels of cognitive processing on the y-axis). According to the sign of the x- and y-axis, markers are separated into four quadrants in terms of how they distinguish the state and content dimensions. We implement the framework using three types of electroencephalography markers: markers of connectivity, markers of complexity, and spectral summaries. The neuronal markers of state are represented by the level of consciousness in (i) healthy participants during a nap and (ii) patients with disorders of consciousness. On the other hand, the neuronal markers of content are represented by (i) the conscious content in healthy participants' perception task using a visual awareness paradigm and (ii) conscious processing of hierarchical regularities using an auditory local-global paradigm. In both cases, we see separate clusters of markers with correlated and anticorrelated dynamics, shedding light on the complex relationship between the state and content of consciousness and emphasizing the importance of considering them simultaneously. This work presents an innovative framework for studying consciousness by examining neuronal markers in a 2D space, providing a valuable resource for future research, with potential applications using diverse experimental paradigms, neural recording techniques, and modeling investigations.
Collapse
Affiliation(s)
- Pauline Pérez
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Hospice Civils de Lyon—HCL, Département anesthésie-réanimation, Hôpital Edouard Herriot
- Neuro ICU, DMU Neurosciences, AP-HP, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Dragana Manasova
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Université Paris Cité, Paris 75006, France
| | - Bertrand Hermann
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Université Paris Cité, Paris 75006, France
- Medical Intensive Care Unit, HEGP Hôpital, Assistance Publique—Hôpitaux de Paris-Centre (APHP-Centre), Paris 75015, France
| | - Federico Raimondo
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Dusseldorf 40225, Germany
| | - Benjamin Rohaut
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Neuro ICU, DMU Neurosciences, AP-HP, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Tristán A Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Lionel Naccache
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Neurophysiologie Clinique, Paris 75013, France
| | - Anat Arzi
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacobo D Sitt
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
| |
Collapse
|
11
|
Pesonen AK, Koskinen MK, Vuorenhela N, Halonen R, Mäkituuri S, Selin M, Luokkala S, Suutari A, Hovatta I. The effect of REM-sleep disruption on affective processing: A systematic review of human and animal experimental studies. Neurosci Biobehav Rev 2024; 162:105714. [PMID: 38729279 DOI: 10.1016/j.neubiorev.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Evidence on the importance of rapid-eye-movement sleep (REMS) in processing emotions is accumulating. The focus of this systematic review is the outcomes of experimental REMS deprivation (REMSD), which is the most common method in animal models and human studies on REMSD. This review revealed that variations in the applied REMSD methods were substantial. Animal models used longer deprivation protocols compared with studies in humans, which mostly reported acute deprivation effects after one night. Studies on animal models showed that REMSD causes aggressive behavior, increased pain sensitivity, reduced sexual behavior, and compromised consolidation of fear memories. Animal models also revealed that REMSD during critical developmental periods elicits lasting consequences on affective-related behavior. The few human studies revealed increases in pain sensitivity and suggest stronger consolidation of emotional memories after REMSD. As pharmacological interventions (such as selective serotonin reuptake inhibitors [SSRIs]) may suppress REMS for long periods, there is a clear gap in knowledge regarding the effects and mechanisms of chronic REMS suppression in humans.
Collapse
Affiliation(s)
- Anu-Katriina Pesonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland.
| | - Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Neea Vuorenhela
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Risto Halonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Saara Mäkituuri
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Maikki Selin
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Sanni Luokkala
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Alma Suutari
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| |
Collapse
|
12
|
Ferini-Strambi L, Liguori C, Lucey BP, Mander BA, Spira AP, Videnovic A, Baumann C, Franco O, Fernandes M, Gnarra O, Krack P, Manconi M, Noain D, Saxena S, Kallweit U, Randerath W, Trenkwalder C, Rosenzweig I, Iranzo A, Bradicich M, Bassetti C. Role of sleep in neurodegeneration: the consensus report of the 5th Think Tank World Sleep Forum. Neurol Sci 2024; 45:749-767. [PMID: 38087143 DOI: 10.1007/s10072-023-07232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-β (Aβ) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aβ. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy.
| | - Claudio Liguori
- Sleep Medicine Center, University of Rome Tor Vergata, Rome, Italy
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aleksandar Videnovic
- Department of Neurology, Division of Sleep Medicine, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Oscar Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oriella Gnarra
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Faculty of Biomedical Sciences, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniela Noain
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, University Witten/Herdecke, Witten, Germany
| | | | - C Trenkwalder
- Department of Neurosurgery, Paracelsus-Elena Klinik, University Medical Center, KasselGoettingen, Germany
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, King's College London, London, UK
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clinic de Barcelona, Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Matteo Bradicich
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Xu H, Dou Z, Luo Y, Yang L, Xiao X, Zhao G, Lin W, Xia Z, Zhang Q, Zeng F, Yu S. Neuroimaging profiles of the negative affective network predict anxiety severity in patients with chronic insomnia disorder: A machine learning study. J Affect Disord 2023; 340:542-550. [PMID: 37562562 DOI: 10.1016/j.jad.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Sleep is instrumental in safeguarding emotional well-being. While the susceptibility to both insomnia and anxiety has been demonstrated to involve intricate brain systems, the neuroimaging profile of chronic insomnia disorder with comorbid anxiety symptoms (CID-A) remains unexplored. Employing machine learning methodologies, this study aims to elucidate the distinct neural substrates underlying CID-A and to investigate whether these cerebral markers can prognosticate anxiety symptoms in patients with insomnia. METHODS Functional magnetic resonance imaging (fMRI) data were procured from a relatively large cohort (dataset 1) comprised of 47 CID-A patients, 49 CID patients without anxiety (CID-NA), and 48 good sleeper controls (GSC). Aberrant cerebral functional alterations were assessed through functional connectivity strength (FCS) and resting-state functional connectivity (rsFC). Subsequently, Support Vector Regression (SVR) models were constructed to predict anxiety symptoms in CID patients based on neuroimaging features, which were validated utilizing an external cohort (dataset 2). RESULTS In comparison to CID-NA and GSC subjects, CID-A patients exhibited heightened FCS in the right dorsomedial prefrontal cortex (DMPFC), a central hub within the negative affective network. Moreover, the SVR models revealed that DMPFC-related rsFC/FCS features could be employed to predict anxiety symptoms in two independent cohorts of CID patients. LIMITATION Modifications in brain functionality might vary across insomnia subtypes. CONCLUSION The present findings suggest a potential negative affective network model for the neuropathophysiology of CID accompanied by anxiety. Importantly, the negative affective network pattern may serve as a predictor for anxiety symptoms in CID patients.
Collapse
Affiliation(s)
- Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, Department of Interventional Radiology, School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Xia
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| | - Fang Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
14
|
Gao JX, Yan G, Li XX, Xie JF, Spruyt K, Shao YF, Hou YP. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci 2023; 13:1350. [PMID: 37759951 PMCID: PMC10526299 DOI: 10.3390/brainsci13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of REM sleep that specifically limits the processing of external information. PGO waves look just like a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are considered to be both a reflection of REM sleep brain activity and causal to dreams due to their stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions during REM sleep dreams, such as memory consolidation, unlearning, and brain development and plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage research into the phenomenon of human PGO waves and their possible functions in dreaming.
Collapse
Affiliation(s)
- Jin-Xian Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Guizhong Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Xin-Xuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Jun-Fan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France;
| | - Yu-Feng Shao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Yi-Ping Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
15
|
Mishra A, Yang PF, Manuel TJ, Newton AT, Phipps MA, Luo H, Sigona MK, Reed JL, Gore JC, Grissom WA, Caskey CF, Chen LM. Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei. Brain Stimul 2023; 16:1430-1444. [PMID: 37741439 PMCID: PMC10702144 DOI: 10.1016/j.brs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.
Collapse
Affiliation(s)
- Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Manuel
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Ungurean G, Behroozi M, Böger L, Helluy X, Libourel PA, Güntürkün O, Rattenborg NC. Wide-spread brain activation and reduced CSF flow during avian REM sleep. Nat Commun 2023; 14:3259. [PMID: 37277328 DOI: 10.1038/s41467-023-38669-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Mammalian sleep has been implicated in maintaining a healthy extracellular environment in the brain. During wakefulness, neuronal activity leads to the accumulation of toxic proteins, which the glymphatic system is thought to clear by flushing cerebral spinal fluid (CSF) through the brain. In mice, this process occurs during non-rapid eye movement (NREM) sleep. In humans, ventricular CSF flow has also been shown to increase during NREM sleep, as visualized using functional magnetic resonance imaging (fMRI). The link between sleep and CSF flow has not been studied in birds before. Using fMRI of naturally sleeping pigeons, we show that REM sleep, a paradoxical state with wake-like brain activity, is accompanied by the activation of brain regions involved in processing visual information, including optic flow during flight. We further demonstrate that ventricular CSF flow increases during NREM sleep, relative to wakefulness, but drops sharply during REM sleep. Consequently, functions linked to brain activation during REM sleep might come at the expense of waste clearance during NREM sleep.
Collapse
Affiliation(s)
- Gianina Ungurean
- Avian Sleep Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany.
| | - Leonard Böger
- Max-Planck Research Group Neural Information Flow, Max Planck Institute for the Neurobiology of Behavior - caesar, Bonn, Germany
- Max-Planck Research Group Genetics of Behaviour, Max Planck Institute for the Neurobiology of Behavior - caesar, Bonn, Germany
| | - Xavier Helluy
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Paul-Antoine Libourel
- CRNL, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, Bron, France
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
17
|
Kong SDX, Gordon CJ, Hoyos CM, Wassing R, D’Rozario A, Mowszowski L, Ireland C, Palmer JR, Grunstein RR, Shine JM, McKinnon AC, Naismith SL. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun 2023; 5:fcad129. [PMID: 37234683 PMCID: PMC10208252 DOI: 10.1093/braincomms/fcad129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Reduced heart rate variability can be an early sign of autonomic dysfunction in neurodegenerative diseases and may be related to brain dysfunction in the central autonomic network. As yet, such autonomic dysfunction has not been examined during sleep-which is an ideal physiological state to study brain-heart interaction as both the central and peripheral nervous systems behave differently compared to during wakefulness. Therefore, the primary aim of the current study was to examine whether heart rate variability during nocturnal sleep, specifically slow wave (deep) sleep, is associated with central autonomic network functional connectivity in older adults 'at-risk' of dementia. Older adults (n = 78; age range = 50-88 years; 64% female) attending a memory clinic for cognitive concerns underwent resting-state functional magnetic resonance imaging and an overnight polysomnography. From these, central autonomic network functional connectivity strength and heart rate variability data during sleep were derived, respectively. High-frequency heart rate variability was extracted to index parasympathetic activity during distinct periods of sleep, including slow wave sleep as well as secondary outcomes of non-rapid eye movement sleep, wake after sleep onset, and rapid eye movement sleep. General linear models were used to examine associations between central autonomic network functional connectivity and high-frequency heart rate variability. Analyses revealed that increased high-frequency heart rate variability during slow wave sleep was associated with stronger functional connectivity (F = 3.98, P = 0.022) in two core brain regions within the central autonomic network, the right anterior insular and posterior midcingulate cortex, as well as stronger functional connectivity (F = 6.21, P = 0.005) between broader central autonomic network brain regions-the right amygdala with three sub-nuclei of the thalamus. There were no significant associations between high-frequency heart rate variability and central autonomic network connectivity during wake after sleep onset or rapid eye movement sleep. These findings show that in older adults 'at-risk' of dementia, parasympathetic regulation during slow wave sleep is uniquely linked to differential functional connectivity within both core and broader central autonomic network brain regions. It is possible that dysfunctional brain-heart interactions manifest primarily during this specific period of sleep known for its role in memory and metabolic clearance. Further studies elucidating the pathophysiology and directionality of this relationship should be conducted to determine if heart rate variability drives neurodegeneration, or if brain degeneration within the central autonomic network promotes aberrant heart rate variability.
Collapse
Affiliation(s)
- Shawn D X Kong
- Correspondence to: Shawn Dexiao KongHealthy Brain Ageing ProgramBrain and Mind Centre, University of Sydney100 Mallett St, Camperdown, NSW 2050, Australia E-mail:
| | - Christopher J Gordon
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Camilla M Hoyos
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Rick Wassing
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Angela D’Rozario
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
| | - Catriona Ireland
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Jake R Palmer
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW 2050, Australia
| | - James M Shine
- Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
18
|
Northoff G, Scalabrini A, Fogel S. Topographic-dynamic reorganisation model of dreams (TRoD) - A spatiotemporal approach. Neurosci Biobehav Rev 2023; 148:105117. [PMID: 36870584 DOI: 10.1016/j.neubiorev.2023.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Dreams are one of the most bizarre and least understood states of consciousness. Bridging the gap between brain and phenomenology of (un)conscious experience, we propose the Topographic-dynamic Re-organization model of Dreams (TRoD). Topographically, dreams are characterized by a shift towards increased activity and connectivity in the default-mode network (DMN) while they are reduced in the central executive network, including the dorsolateral prefrontal cortex (except in lucid dreaming). This topographic re-organization is accompanied by dynamic changes; a shift towards slower frequencies and longer timescales. This puts dreams dynamically in an intermediate position between awake state and NREM 2/SWS sleep. TRoD proposes that the shift towards DMN and slower frequencies leads to an abnormal spatiotemporal framing of input processing including both internally- and externally-generated inputs (from body and environment). In dreams, a shift away from temporal segregation to temporal integration of inputs results in the often bizarre and highly self-centric mental contents as well as hallucinatory-like states. We conclude that topography and temporal dynamics are core features of the TroD, which may provide the connection of neural and mental activity, e.g., brain and experience during dreams as their "common currency".
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Stuart Fogel
- Sleep and Neuroscience, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute and Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Pourhassan J, Sarginson J, Hitzl W, Richter K. Cognitive function in soccer athletes determined by sleep disruption and self-reported health, yet not by decision-reinvestment. Front Neurol 2023; 13:872761. [PMID: 36814538 PMCID: PMC9939841 DOI: 10.3389/fneur.2022.872761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Sleep disruption (SD) increases sympathetic activity and cortisol secretion, and delays cognitive functions such as reaction-time (RT). Sympathetic activity of disturbed sleepers, is similar to those of so-called decision-reinvesters. Decision-reinvestment refers to traits in individuals with greater tendency to ruminate and reinvest in their decisions, with significant decrease in both motor-control and cognitive performance. Decision-making quality is a crucial attribute to athletic performance which relies on RT. Consequently, SD affects pitch-performance negatively, particularly in decision-reinvesters. This observational pilot-study examined the relationship between SD and cognitive function, perceived health, as well as reinvestment strategies. The hypothesis was that athletes with lower SD perceive their health better, report lower stress levels, perform better in cognitive tasks, and show lower tendency for decision-reinvestment. Methods Twenty-one football player recorded their sleep with fit-trackers for 7 nights. Participants self-reported their mental and physical health, decision-reinvestment strategy, sleep behaviour, and perceived stress levels. Athletes then performed a set of cognitive tests to examine memory function (Backwards Corsi), selective attention (STROOP), and cognitive flexibility (Wisconsin Card Sorting Test, WCST). Normality was tested with a Shapiro-Wilk test, and analysed with a Pearson's or Spearman's correlation test. Results Significant correlation appeared between extended sleep-interruptions and Backwards Corsi RT, r = 0.66, p = 0.010, as further in total sleep time and wellbeing r = 0.50, p = 0.029. A negative correlation exist in regard of pain scores and Backwards Corsi scores r = -0.57, p = 0.110. Physical health correlated with error-rates in the WCST, r = 0.69, p ≤ 0.001. Also, reinvestment negatively correlated with physical health, r = -0.80, p ≤ 0.001. Conclusion Wellbeing relies on total sleep-time. Athletes with extended sleep-interruptions are slower in recalling memory, and those with greater reported pain have lower memory scores. Participants who rate physical health greater, have more error-rates in the WCST; indicating that cognitive flexibility is enhanced in individuals with inferior perceived health. However, individuals with lower physical health scores also have greater tendency to ruminate and reinvest in decisions, suggesting interrelation between reinvestment and physical health.
Collapse
Affiliation(s)
- Jasmin Pourhassan
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom,University Clinic for Psychiatry and Psychotherapy, Klinikum Nuernberg, Paracelsus Medical University, Nuremberg, Germany,*Correspondence: Jasmin Pourhassan ✉
| | - Jane Sarginson
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Wolfgang Hitzl
- Department Research and Innovation Management (RIM), Biostatistics and Publication of Clinical Trial Studies, Paracelsus Medical University, Salzburg, Austria,Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria,Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Kneginja Richter
- University Clinic for Psychiatry and Psychotherapy, Klinikum Nuernberg, Paracelsus Medical University, Nuremberg, Germany,Faculty for Social Work, Technical University for Applied Sciences, Nuremberg, Germany,Faculty for Medical Sciences, Goce Delcev University, Stip, North Macedonia,Kneginja Richter ✉
| |
Collapse
|
20
|
Gilson M, Tagliazucchi E, Cofré R. Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain. Phys Rev E 2023; 107:024121. [PMID: 36932548 DOI: 10.1103/physreve.107.024121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Consciousness is supported by complex patterns of brain activity which are indicative of irreversible nonequilibrium dynamics. While the framework of stochastic thermodynamics has facilitated the understanding of physical systems of this kind, its application to infer the level of consciousness from empirical data remains elusive. We faced this challenge by calculating entropy production in a multivariate Ornstein-Uhlenbeck process fitted to Functional magnetic resonance imaging brain activity recordings. To test this approach, we focused on the transition from wakefulness to deep sleep, revealing a monotonous relationship between entropy production and the level of consciousness. Our results constitute robust signatures of consciousness while also advancing our understanding of the link between consciousness and complexity from the fundamental perspective of statistical physics.
Collapse
Affiliation(s)
- Matthieu Gilson
- Institut de Neurosciences des Systèmes INSERM-AMU, Marseille 13005, France
| | - Enzo Tagliazucchi
- Physics Department University of Buenos Aires and Buenos Aires Physics Institute Argentina, Buenos Aires 1428, Argentina
- Latin American Brain Health Institute (BrainLat) Universidad Adolfo Ibañez, Santiago 7941169, Chile
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso 2340000, Chile
- Institute of Neuroscience (NeuroPSI-CNRS) Paris-Saclay University, Gif sur Yvette 91400, France
| |
Collapse
|
21
|
Muñoz-Torres Z, Corsi-Cabrera M, Velasco F, Velasco AL. Amygdala and hippocampus dialogue with neocortex during human sleep and wakefulness. Sleep 2023; 46:6702585. [PMID: 36124713 DOI: 10.1093/sleep/zsac224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/03/2022] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT Previous studies have described synchronic electroencephalographic (EEG) patterns of the background activity that is characteristic of several vigilance states. STUDY OBJECTIVES To explore whether the background synchronous activity of the amygdala-hippocampal-neocortical circuit is modified during sleep in the delta, theta, alpha, sigma, beta, and gamma bands characteristic of each sleep state. METHODS By simultaneously recording intracranial and noninvasive scalp EEG (10-20 system) in epileptic patients who were candidates for neurosurgery, we explored synchronous activity among the amygdala, hippocampus, and neocortex during wakefulness (W), Non-Rapid Eye Movement (NREM), and Rapid-Eye Movement (REM) sleep. RESULTS Our findings reveal that hippocampal-cortical synchrony in the sleep spindle frequencies was spread across the cortex and was higher during NREM versus W and REM, whereas the amygdala showed punctual higher synchronization with the temporal lobe. Contrary to expectations, delta synchrony between the amygdala and frontal lobe and between the hippocampus and temporal lobe was higher during REM than NREM. Gamma and alpha showed higher synchrony between limbic structures and the neocortex during wakefulness versus sleep, while synchrony among deep structures showed a mixed pattern. On the one hand, amygdala-hippocampal synchrony resembled cortical activity (i.e. higher gamma and alpha synchrony in W); on the other, it showed its own pattern in slow frequency oscillations. CONCLUSIONS This is the first study to depict diverse patterns of synchronic interaction among the frequency bands during distinct vigilance states in a broad human brain circuit with direct anatomical and functional connections that play a crucial role in emotional processes and memory.
Collapse
Affiliation(s)
- Zeidy Muñoz-Torres
- Psychobiology and Neuroscience, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico, Mexico.,Neural Dynamics Group, Center for the Sciences of Complexity, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - María Corsi-Cabrera
- Unit of Neurodevelopment, Institute of Neurobiology, Universidad Nacional Autónoma de México, Queretaro, Mexico.,Laboratory of Sleep, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Francisco Velasco
- Clinic of Epilepsy, Unit of Functional Neurosurgery, Stereotaxy and Radiosurgery, Hospital General de México, Mexico, Mexico
| | - Ana Luisa Velasco
- Clinic of Epilepsy, Unit of Functional Neurosurgery, Stereotaxy and Radiosurgery, Hospital General de México, Mexico, Mexico
| |
Collapse
|
22
|
Abstract
Sleep plays a crucial role in the consolidation of memories, including those for fear acquisition and extinction training. This chapter reviews findings from studies testing this relationship in laboratory, naturalistic, and clinical settings. While evidence is mixed, several studies in humans have linked fear and extinction recall/retention to both rapid eye-movement and slow wave sleep. Sleep appears to further aid in the processing of both simulated and actual trauma and improves psychotherapeutic treatment outcomes in those with anxiety and trauma- and stressor-related disorders. This chapter concludes with a discussion of the current challenges facing sleep and emotional memory research in addition to suggestions for improving future research.
Collapse
Affiliation(s)
- Ryan Bottary
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Laura D Straus
- Department of Research, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| |
Collapse
|
23
|
Uji M, Tamaki M. Sleep, learning, and memory in human research using noninvasive neuroimaging techniques. Neurosci Res 2022; 189:66-74. [PMID: 36572251 DOI: 10.1016/j.neures.2022.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
An accumulating body of evidence indicates that sleep is beneficial for learning and memory. Task performance improves significantly after a period that includes sleep, whereas a lack of sleep nullifies or impairs such improvements. Our current knowledge about sleep's role in learning and memory has been obtained based on studies that were conducted in both animal models and human subjects. Nevertheless, how sleep promotes learning and memory in humans is not fully understood. In this review, we overview our current understating of how sleep may contribute to learning and memory, covering different roles of non-rapid eye movement and rapid eye movement sleep. We then discuss cutting-edge advanced techniques that are currently available, including simultaneous functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) and simultaneous functional magnetic resonance spectroscopy (fMRS) and EEG measurements, and evaluate how these may contribute to advance the understanding of the role of sleep in human cognition. We also highlight the current limitations and challenges using these methods and discuss ways that may allow us to overcome these limitations.
Collapse
Affiliation(s)
- Makoto Uji
- RIKEN Center for Brain Science, Saitama 3510198, Japan
| | - Masako Tamaki
- RIKEN Center for Brain Science, Saitama 3510198, Japan; RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan.
| |
Collapse
|
24
|
Petit JM, Strippoli MPF, Stephan A, Ranjbar S, Haba-Rubio J, Solelhac G, Heinzer R, Preisig M, Siclari F, Do KQ. Sleep spindles in people with schizophrenia, schizoaffective disorders or bipolar disorders: a pilot study in a general population-based cohort. BMC Psychiatry 2022; 22:758. [PMID: 36463186 PMCID: PMC9719140 DOI: 10.1186/s12888-022-04423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Sleep spindles have been involved in sleep stabilization and sleep-related memory mechanisms and their deficit emerged as possible biomarker in schizophrenia. However, whether this sleep phenotype is also present in other disorders that share psychotic symptoms remains unclear. To address this gap, we assessed sleep spindles in participants of a prospective population-based cohort who underwent psychiatric assessment (CoLaus|PsyCoLaus) and polysomnographic recording (HypnoLaus). METHODS Sleep was recorded using ambulatory polysomnography in participants (N = 1037) to the PsyCoLaus study. Sleep spindle parameters were measured in people with a lifelong diagnosis of schizophrenia (SZ), schizoaffective depressive (SAD), schizoaffective manic (SAM), bipolar disorder type I (BP-I) and type II (BP-II). The associations between lifetime diagnostic status (independent variables, SZ, SAD, SAM, BPD-I, BPD-II, controls) and spindle parameters (dependent variables) including density, duration, frequency and maximum amplitude, for all (slow and fast), slow- and fast-spindle were assessed using linear mixed models. Pairwise comparisons of the different spindle parameters between the SZ group and each of the other psychiatric groups was performed using a contrast testing framework from our multiple linear mixed models. RESULTS Our results showed a deficit in the density and duration of sleep spindles in people with SZ. They also indicated that participants with a diagnosis of SAD, SAM, BP-I and BP-II exhibited different sleep spindle phenotypes. Interestingly, spindle densities and frequencies were different in people with a history of manic symptoms (SAM, BP-I, and BP-II) from those without (SZ, SAD). CONCLUSIONS Although carried out on a very small number of participants due to the low prevalence of these disorders in general population, this pilot study brought new elements that argued in favor of a deficit of sleep spindles density and duration in people with schizophrenia. In addition, while we could expect a gradual change in intensity of the same sleep spindle parameters through psychotic diagnoses, our results seem to indicate a more complex situation in which the frequency of sleep spindles might be more impacted by diagnoses including a history of mania or hypomania. Further studies with a larger number of participants are required to confirm these effects.
Collapse
Affiliation(s)
- Jean-Marie Petit
- Center for Psychiatric Neuroscience (CNP), CHUV, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 11c, CH-1008, Prilly, Switzerland.
| | - Marie-Pierre F. Strippoli
- grid.9851.50000 0001 2165 4204Center for Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Aurélie Stephan
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Serateh Ranjbar
- grid.9851.50000 0001 2165 4204Center for Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - José Haba-Rubio
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Geoffroy Solelhac
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Heinzer
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- grid.9851.50000 0001 2165 4204Center for Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Francesca Siclari
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q. Do
- grid.414250.60000 0001 2181 4933Center for Psychiatric Neuroscience (CNP), CHUV, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 11c, CH-1008 Prilly, Switzerland
| |
Collapse
|
25
|
Lipinska G, Austin H, Moonsamy JR, Henry M, Lewis R, Baldwin DS, Thomas KGF, Stuart B. Preferential consolidation of emotional reactivity during sleep: A systematic review and meta-analysis. Front Behav Neurosci 2022; 16:976047. [PMID: 36268469 PMCID: PMC9578377 DOI: 10.3389/fnbeh.2022.976047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated whether sleep affects cognitively unmodulated reactivity to emotional stimuli. These studies operationalize emotion regulation by using subjective and/or objective measures to compare pre- and post-sleep reactivity to the same emotional stimuli. Findings have been inconsistent: some show that sleep attenuates emotional reactivity, whereas others report enhanced or maintained reactivity. Across-study methodological differences may account for discrepant findings. To resolve the questions of whether sleep leads to the attenuation, enhancement, or maintenance of emotional reactivity, and under which experimental conditions particular effects are observed, we undertook a synthesized narrative and meta-analytic approach. We searched PubMed, PsycINFO, PsycARTICLES, Web of Science, and Cochrane Library databases for relevant articles, using search terms determined a priori and search limits of language = English, participants = human, and dates = January 2006–June 2021. Our final sample included 24 studies that investigated changes in emotional reactivity in response to negatively and/or positively valenced material compared to neutral material over a period of sleep compared to a matched period of waking. Primary analyses used random effects modeling to investigate whether sleep preferentially modulates reactivity in response to emotional stimuli; secondary analyses examined potential moderators of the effect. Results showed that sleep (or equivalent periods of wakefulness) did not significantly affect psychophysiological measures of reactivity to negative or neutral stimuli. However, self-reported arousal ratings of negative stimuli were significantly increased post-sleep but not post-waking. Sub-group analyses indicated that (a) sleep-deprived participants, compared to those who slept or who experienced daytime waking, reacted more strongly and negatively in response to positive stimuli; (b) nap-exposed participants, compared to those who remained awake or who slept a full night, rated negative pictures less negatively; and (c) participants who did not obtain substantial REM sleep, compared to those who did and those exposed to waking conditions, had attenuated reactivity to neutral stimuli. We conclude that sleep may affect emotional reactivity, but that studies need more consistency in methodology, commitment to collecting both psychophysiological and self-report measures, and should report REM sleep parameters. Using these methodological principles would promote a better understanding of under which conditions particular effects are observed.
Collapse
Affiliation(s)
- Gosia Lipinska
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Gosia Lipinska
| | - Holly Austin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jasmin R. Moonsamy
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Michelle Henry
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- Numeracy Centre, Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
| | - Raphaella Lewis
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - David S. Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kevin G. F. Thomas
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Beth Stuart
- Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Cortico-cortical and thalamo-cortical connectivity during non-REM and REM sleep: Insights from intracranial recordings in humans. Clin Neurophysiol 2022; 143:84-94. [PMID: 36166901 DOI: 10.1016/j.clinph.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.
Collapse
|
27
|
Lassmann Ł, Pollis M, Żółtowska A, Manfredini D. Gut Bless Your Pain—Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines 2022; 10:biomedicines10071528. [PMID: 35884835 PMCID: PMC9313154 DOI: 10.3390/biomedicines10071528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Increased attention has been paid to the gut–brain axis recently, but little is known so far regarding how this translates into pain susceptibility. Aim. The aim of this review is to determine whether gastroenterological disorders and sleep disorders (directly or indirectly) contribute to an increased susceptibility to depression and chronic orofacial pain. Method. A search was performed in the U.S. National Library of Medicine (PubMed) database in order to find studies published before 19 December 2021. We used the following terms: gut microbiome, OR sleep quality, OR melatonin, OR GERD, OR IBS, AND: depression OR chronic pain, in different configurations. Only papers in English were selected. Given the large number of papers retrieved in the search, their findings were described and organized narratively. Results. A link exists between sleep disorders and gastroenterological disorders, which, by adversely affecting the psyche and increasing inflammation, disturb the metabolism of tryptophan and cause excessive microglial activation, leading to increased susceptibility to pain sensation and depression. Conclusions. Pain therapists should pay close attention to sleep and gastrointestinal disorders in patients with chronic pain and depression.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Dental Sense Medicover, 80-283 Gdańsk, Poland
- Correspondence:
| | - Matteo Pollis
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| | - Agata Żółtowska
- Department of Conservative Dentistry, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Daniele Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| |
Collapse
|
28
|
Abstract
Behavioral states naturally alternate between wakefulness and the sleep phases rapid eye movement and nonrapid eye movement sleep. Waking and sleep states are complex processes that are elegantly orchestrated by spatially fine-tuned neurochemical changes of neurotransmitters and neuromodulators including glutamate, acetylcholine, γ-aminobutyric acid, norepinephrine, dopamine, serotonin, histamine, hypocretin, melanin concentrating hormone, adenosine, and melatonin. However, as highlighted in this brief overview, no single neurotransmitter or neuromodulator, but rather their complex interactions within organized neuronal ensembles, regulate waking and sleep states. The neurochemical pathways presented here are aimed to provide a conceptual framework for the understanding of the effects of currently used sleep medications.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Chylinski D, Van Egroo M, Narbutas J, Muto V, Bahri MA, Berthomier C, Salmon E, Bastin C, Phillips C, Collette F, Maquet P, Carrier J, Lina JM, Vandewalle G. Timely coupling of sleep spindles and slow waves is linked to early amyloid-β burden and predicts memory decline. eLife 2022; 11:78191. [PMID: 35638265 PMCID: PMC9177143 DOI: 10.7554/elife.78191] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Sleep alteration is a hallmark of ageing and emerges as a risk factor for Alzheimer’s disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD processes is not fully established. Here, we investigated whether the coupling of spindles and slow waves (SW) is associated with early amyloid-β (Aβ) brain burden, a hallmark of AD neuropathology, and cognitive change over 2 years in 100 healthy individuals in late-midlife (50–70 years; 68 women). We found that, in contrast to other sleep metrics, earlier occurrence of spindles on slow-depolarisation SW is associated with higher medial prefrontal cortex Aβ burden (p=0.014, r²β*=0.06) and is predictive of greater longitudinal memory decline in a large subsample (p=0.032, r²β*=0.07, N=66). These findings unravel early links between sleep, AD-related processes, and cognition and suggest that altered coupling of sleep microstructure elements, key to its mnesic function, contributes to poorer brain and cognitive trajectories in ageing.
Collapse
Affiliation(s)
- Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Abstract
Memories of the past help us adaptively respond to similar situations in the future. Originally described by Schacter & Addis in 2007, the "constructive episodic simulation" hypothesis proposes that waking thought combines fragments of various past episodes into imagined simulations of events that may occur in the future. This same framework may be useful for understanding the function of dreaming. N = 48 college students were asked to identify waking life sources for a total of N = 469 dreams. Participants frequently traced dreams to at least one past or future episodic source (53.5% and 25.7% of dreams, respectively). Individual dreams were very often traced to multiple waking sources (43.9% of all dreams with content), with fragments of past memory incorporated into scenarios that anticipated future events. Waking-life dream sources are described in terms of their phenomenology and distribution across time and sleep stage, providing new evidence that dreams not only reflect the past, but also utilize memory in simulating potential futures.
Collapse
Affiliation(s)
- Erin J. Wamsley
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, South Carolina, United States of America
| |
Collapse
|
31
|
Zhang X, Liu X, Wang Y, Liu C, Zhang N, Lu J, Lv Y. Exploration of cortical inhibition and habituation in insomnia: based on CNV and EEG. Methods 2022; 204:73-83. [DOI: 10.1016/j.ymeth.2022.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022] Open
|
32
|
A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6168199. [PMID: 35069976 PMCID: PMC8769857 DOI: 10.1155/2022/6168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Sleep disturbances, as well as sleep-wake rhythm disorders, are characteristic symptoms of Alzheimer's disease (AD) that may head the other clinical signs of this neurodegenerative disease. Age-related structural and physiological changes in the brain lead to changes in sleep patterns. Conditions such as AD affect the cerebral cortex, basal forebrain, locus coeruleus, and the hypothalamus, thus changing the sleep-wake cycle. Sleep disorders likewise adversely affect the course of the disease. Since the sleep quality is important for the proper functioning of the memory, impaired sleep is associated with problems in the related areas of the brain that play a key role in learning and memory functions. In addition to synthetic drugs, utilization of medicinal plants has become popular in the treatment of neurological diseases. Curcuminoids, which are in a diarylheptanoid structure, are the main components of turmeric. Amongst them, curcumin has multiple applications in treatment regimens of various diseases such as cardiovascular diseases, obesity, cancer, inflammatory diseases, and aging. Besides, curcumin has been reported to be effective in different types of neurodegenerative diseases. Scientific studies exclusively showed that curcumin leads significant improvements in the pathological process of AD. Yet, its low solubility hence low bioavailability is the main therapeutic limitation of curcumin. Although previous studies have focused different types of advanced nanoformulations of curcumin, new approaches are needed to solve the solubility problem. This review summarizes the available scientific data, as reported by the most recent studies describing the utilization of curcumin in the treatment of AD and sleep deprivation-related consequences.
Collapse
|
33
|
Šćepanović S, Aiello LM, Barrett D, Quercia D. Epidemic dreams: dreaming about health during the COVID-19 pandemic. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211080. [PMID: 35116145 PMCID: PMC8790359 DOI: 10.1098/rsos.211080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/04/2023]
Abstract
The continuity hypothesis of dreams suggests that the content of dreams is continuous with the dreamer's waking experiences. Given the unprecedented nature of the experiences during COVID-19, we studied the continuity hypothesis in the context of the pandemic. We implemented a deep-learning algorithm that can extract mentions of medical conditions from text and applied it to two datasets collected during the pandemic: 2888 dream reports (dreaming life experiences), and 57 milion tweets (waking life experiences) mentioning the pandemic. The health expressions common to both sets were typical COVID-19 symptoms (e.g. cough, fever and anxiety), suggesting that dreams reflected people's real-world experiences. The health expressions that distinguished the two sets reflected differences in thought processes: expressions in waking life reflected a linear and logical thought process and, as such, described realistic symptoms or related disorders (e.g. nasal pain, SARS, H1N1); those in dreaming life reflected a thought process closer to the visual and emotional spheres and, as such, described either conditions unrelated to the virus (e.g. maggots, deformities, snake bites), or conditions of surreal nature (e.g. teeth falling out, body crumbling into sand). Our results confirm that dream reports represent an understudied yet valuable source of people's health experiences in the real world.
Collapse
Affiliation(s)
| | | | - Deirdre Barrett
- Harvard Medical School, 352 Harvard Street, Cambridge, MA 02138, USA
| | - Daniele Quercia
- Nokia Bell Labs, 21 JJ Thomson Avenue, Cambridge CB30FA, UK
- CUSP, King's College London, Strand, London, WC2R 2LS, UK
| |
Collapse
|
34
|
Chellappa SL, Aeschbach D. Sleep and anxiety: From mechanisms to interventions. Sleep Med Rev 2021; 61:101583. [PMID: 34979437 DOI: 10.1016/j.smrv.2021.101583] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Anxiety is the most common mental health problem worldwide. Epidemiological studies show that sleep disturbances, particularly insomnia, affect ∼50% of individuals with anxiety, and that insufficient sleep can instigate or further exacerbate it. This review outlines brain mechanisms underlying sleep and anxiety, by addressing recent human functional/structural imaging studies on brain networks underlying the anxiogenic impact of sleep loss, and the beneficial effect of sleep on these brain networks. We discuss recent developments from human molecular imaging studies that highlight the role of specific brain neurotransmitter mechanisms, such as the adenosinergic receptor system, on anxiety, arousal, and sleep. This review further discusses frontline sleep interventions aimed at enhancing sleep in individuals experiencing anxiety, such as nonbenzodiazepines/antidepressants, lifestyle and sleep interventions and cognitive behavioral therapy for insomnia. Notwithstanding therapeutic success, up to ∼30% of individuals with anxiety can be nonresponsive to frontline treatments. Thus, we address novel non-invasive brain stimulation techniques that can enhance electroencephalographic slow waves, and might help alleviate sleep and anxiety symptoms. Collectively, these findings contribute to an emerging biological framework that elucidates the interrelationship between sleep and anxiety, and highlight the prospect of slow wave sleep as a potential therapeutic target for reducing anxiety.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany; Division of Sleep Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|
35
|
Shi Y, Zhang L, He C, Yin Y, Song R, Chen S, Fan D, Zhou D, Yuan Y, Xie C, Zhang Z. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: A multicenter study based on machine learning. J Affect Disord 2021; 295:148-155. [PMID: 34461370 DOI: 10.1016/j.jad.2021.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Objective biomarkers are crucial for overcoming the clinical dilemma in major depressive disorder (MDD), and the individualized diagnosis is essential to facilitate the precise medicine for MDD. METHODS Sleep disturbance-related magnetic resonance imaging (MRI) features was identified in the internal dataset (92 MDD patients) using the relevance vector regression algorithm, which was further verified in 460 MDD patients of an independent, multicenter dataset. Subsequently, using these MRI features, the eXtreme Gradient Boosting classification model was constructed in the current multicenter dataset (460 MDD patients and 470 normal controls). Meanwhile, the association between classification outputs and the severity of depressive symptoms was also investigated. RESULTS In MDD patients, the combination of gray matter density and fractional amplitude of low-frequency fluctuation can accurately predict individual sleep disturbance score that was calculated by the sum of item 4 score, item 5 score, and item 6 score of the 17-Item Hamilton Rating Scale for Depression (HAMD-17) (R2 = 0.158 in the internal dataset; R2 = 0.110 in multicenter dataset). Furthermore, the classification model based on these MRI features distinguished MDD patients from normal controls with 86.3% accuracy (area under the curve = 0.937). Importantly, the classification outputs significantly correlated with HAMD-17 scores in MDD patients. LIMITATION Lacking some specialized tools to assess the personal sleep quality, e.g. Pittsburgh Sleep Quality Index. CONCLUSION Neuroimaging features can reflect accurately individual sleep disturbance manifestation and serve as potential diagnostic biomarkers of MDD.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Linhai Zhang
- School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ruize Song
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Deyu Zhou
- School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, Guangdong 510330, China.
| |
Collapse
|
36
|
Luo J, Wang X, Guo Z, Xiao Y, Cao W, Zhang L, Su L, Guo J, Huang R. Endothelial Function and Arterial Stiffness Should Be Measured to Comprehensively Assess Obstructive Sleep Apnea in Clinical Practice. Front Cardiovasc Med 2021; 8:716916. [PMID: 34676249 PMCID: PMC8523814 DOI: 10.3389/fcvm.2021.716916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: An effective clinical tool to assess endothelial function and arterial stiffness in patients with obstructive sleep apnea (OSA) is lacking. This study evaluated the clinical significance of subclinical markers for OSA management in males without serious complications. Patients/Methods: Males without serious complications were consecutively recruited. Clinical data, biomarker tests, reactive hyperemia index (RHI), and augmentation index at 75 beats/min (AIx75) measured by peripheral arterial tonometry were collected. An apnea hypopnea index (AHI) cutoff of ≥15 events/h divided the patients into two groups. Results: Of the 75 subjects, 42 had an AHI ≥15 events/h. Patients with an AHI ≥15 events/h had higher high-sensitivity C-reactive protein, tumor necrosis factor-alpha (TNF-α), vascular endothelial growth factor, and AIx75 values than the control group but no statistical difference in RHI was observed. After controlling for confounders, TNF-α was negatively correlated with the average oxygen saturation (r = −0.258, P = 0.043). RHI was correlated with the rapid eye movement (REM) stage percentage (r = 0.306, P = 0.016) but not with AHI (P > 0.05). AIx75 was positively correlated with the arousal index (r = 0.289, P = 0.023) but not with AHI (r = 0.248, P = 0.052). Conclusions: In males with OSA without severe complications, TNF-α and AIx75 are independently related to OSA. The role of RHI in OSA management requires further elucidation. These markers combined can comprehensively evaluate OSA patients to provide more evidence for the primary prevention of coronary heart disease and treatment response assessment.
Collapse
Affiliation(s)
- Jinmei Luo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaona Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zijian Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Xiao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenhao Cao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linfan Su
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junwei Guo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rong Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Iidaka T. Fluctuations in Arousal Correlate with Neural Activity in the Human Thalamus. Cereb Cortex Commun 2021; 2:tgab055. [PMID: 34557672 PMCID: PMC8455340 DOI: 10.1093/texcom/tgab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
The neural basis of consciousness has been explored in humans and animals; however, the exact nature of consciousness remains elusive. In this study, we aimed to elucidate which brain regions are relevant to arousal in humans. Simultaneous recordings of brain activity and eye-tracking were conducted in 20 healthy human participants. Brain activity was measured by resting-state functional magnetic resonance imaging with a multiband acquisition protocol. The subjective levels of arousal were investigated based on the degree of eyelid closure that was recorded using a near-infrared eye camera within the scanner. The results showed that the participants were in an aroused state for 79% of the scan time, and the bilateral thalami were significantly associated with the arousal condition. Among the major thalamic subnuclei, the mediodorsal nucleus (MD) showed greater involvement in arousal when compared with other subnuclei. A receiver operating characteristic analysis with leave-one-out crossvalidation conducted using template-based brain activity and arousal-level data from eye-tracking showed that, in most participants, thalamic activity significantly predicted the subjective levels of arousal. These results indicate a significant role of the thalamus, and in particular, the MD, which has rich connectivity with the prefrontal cortices and the limbic system in human consciousness.
Collapse
Affiliation(s)
- Tetsuya Iidaka
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
38
|
Konjedi S, Maleeh R. The dynamic framework of mind wandering revisited: How mindful meta-awareness affects mental states' constraints. Conscious Cogn 2021; 95:103194. [PMID: 34419729 DOI: 10.1016/j.concog.2021.103194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The dynamic framework of mind wandering (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016) is reviewed and modified through integrating the construct of mindful meta-awareness. The dynamic framework maintains that mind wandering belongs to a family of spontaneous thought phenomena. The key defining feature of mind wandering is 'spontaneity' which characterizes the dynamic nature of thoughts in the framework. The argument is made that incorporating the mindful meta-awareness construct modifies the dynamic framework as follows: (1) the framework's criteria for mind wandering do not hold anymore as meta-awareness changes the relationship between thoughts and constraints, and (2) lucid dreaming can be categorized as unguided thought while at the same time being dependent on deliberate constraints. Finally, the application of this modified framework will be discussed in terms of the treatment of mental disorders related to spontaneous thought alterations, in particular depression and nightmares.
Collapse
Affiliation(s)
| | - Reza Maleeh
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany; School of Historical and Philosophical Inquiry, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| |
Collapse
|
39
|
Debarnot U, Perrault AA, Sterpenich V, Legendre G, Huber C, Guillot A, Schwartz S. Motor imagery practice benefits during arm immobilization. Sci Rep 2021; 11:8928. [PMID: 33903619 PMCID: PMC8076317 DOI: 10.1038/s41598-021-88142-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Motor imagery (MI) is known to engage motor networks and is increasingly used as a relevant strategy in functional rehabilitation following immobilization, whereas its effects when applied during immobilization remain underexplored. Here, we hypothesized that MI practice during 11 h of arm-immobilization prevents immobilization-related changes at the sensorimotor and cortical representations of hand, as well as on sleep features. Fourteen participants were tested after a normal day (without immobilization), followed by two 11-h periods of immobilization, either with concomitant MI treatment or control tasks, one week apart. At the end of each condition, participants were tested on a hand laterality judgment task, then underwent transcranial magnetic stimulation to measure cortical excitability of the primary motor cortices (M1), followed by a night of sleep during which polysomnography data was recorded. We show that MI treatment applied during arm immobilization had beneficial effects on (1) the sensorimotor representation of hands, (2) the cortical excitability over M1 contralateral to arm-immobilization, and (3) sleep spindles over both M1s during the post-immobilization night. Furthermore, (4) the time spent in REM sleep was significantly longer, following the MI treatment. Altogether, these results support that implementing MI during immobilization may limit deleterious effects of limb disuse, at several levels of sensorimotor functioning.
Collapse
Affiliation(s)
- Ursula Debarnot
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland. .,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland. .,Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France. .,Institut Universitaire de France, Paris, France.
| | - Aurore A Perrault
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland.,Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Guillaume Legendre
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Chieko Huber
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| |
Collapse
|
40
|
Investigating the effect of a nap following experimental trauma on analogue PTSD symptoms. Sci Rep 2021; 11:4710. [PMID: 33633161 PMCID: PMC7907077 DOI: 10.1038/s41598-021-83838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/25/2021] [Indexed: 01/27/2023] Open
Abstract
Cognitive models assume that the incomplete integration of a traumatic experience into the autobiographical memory results in typical symptoms associated with post-traumatic stress disorder (PTSD) such as intrusive re-experiencing. Sleep supports the integration of new experiences into existing memory networks through memory consolidation. In fifty-six females, we investigated whether a 90-min daytime nap (n = 33) compared to a wake period (n = 23) after being exposed to an experimental trauma (i.e. a trauma film) prevents PTSD analogue symptoms. Intrusive memories were recorded for seven days using a diary, overall PTSD symptoms were assessed using the Impact of Event Scale (IES-R) and affective response to trauma cues were measured one week after experimental trauma. The two groups did not differ in any of the analogue PTSD symptoms. However, participants obtaining rapid eye movement (REM) sleep in the nap experienced less distressing intrusive memories. Moreover, the duration of REM sleep and slow wave activity was negatively correlated with analogue PTSD symptoms. Our findings suggest that even a short sleep period after experimental trauma can play a protective role in trauma memory formation but only if the nap contains REM sleep. Our data provide additional evidence for a critical role of REM sleep in PTSD development.
Collapse
|
41
|
Autonomic Modulation of Cardiac Activity Across Levels of Sleep Depth in Individuals With Depression and Sleep Complaints. Psychosom Med 2021; 82:172-180. [PMID: 31977732 DOI: 10.1097/psy.0000000000000766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We assessed mean heart rate (HR) and HR variability (HRV) across wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep, and across varying levels of NREM sleep depth in individuals with depression and sleep complaints. METHODS Retrospective polysomnographic data were obtained for 25 individuals diagnosed as having depression (84% female; mean age = 33.8 ± 12.2 years) and 31 mentally healthy controls (58.1% female; mean age = 37.2 ± 12.4 years). All were free of psychotropic and cardiovascular medication, cardiovascular disease, and sleep-related breathing disorders. HR and time-domain HRV parameters were computed on 30-second electrocardiography segments and averaged across the night for each stage of sleep and wake. RESULTS Compared with the control group, the depression group had higher HR across wake, REM, and all levels of NREM depth (F(1,51) = 6.3, p = .015). Significant group by sleep stage interactions were found for HRV parameters: SD of normal-to-normal intervals (SDNN; F(2.1,107.7) = 4.4, p = .014) and root mean square differences of successive R-R intervals (RMSSD; F(2.2,113.5) = 3.2, p = .041). No significant group difference was found for SDNN or RMSSD during wake (all, p ≥ .32). However, compared with the control group, the depression group had significantly lower SDNN in REM (p = .040) and all NREM stages (all p ≤ .045), and lower RMSSD during NREM 2 (p = .033) and NREM 3 (p = .034). CONCLUSIONS This study suggests that the abnormalities in autonomic cardiac regulation associated with depression and sleep problems are more prominent during sleep, especially NREM sleep, than during wake. This may be due to abnormalities in parasympathetic modulation of cardiac activity.
Collapse
|
42
|
Ren H, Jiang X, Xu K, Chen C, Yuan Y, Dai C, Chen W. A Review of Cerebral Hemodynamics During Sleep Using Near-Infrared Spectroscopy. Front Neurol 2020; 11:524009. [PMID: 33329295 PMCID: PMC7710901 DOI: 10.3389/fneur.2020.524009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Investigating cerebral hemodynamic changes during regular sleep cycles and sleep disorders is fundamental to understanding the nature of physiological and pathological mechanisms in the regulation of cerebral oxygenation during sleep. Although sleep neuroimaging methods have been studied and have been well-reviewed, they have limitations in terms of technique and experimental design. Neurologists are convinced that Near-infrared spectroscopy (NIRS) provides essential information and can be used to assist the assessment of cerebral hemodynamics, and numerous studies regarding sleep have been carried out based on NIRS. Thus, a brief historical overview of the sleep studies using NIRS will be helpful for the biomedical students, academicians, and engineers to better understand NIRS from various perspectives. In this study, the existing literature on sleep studies is reviewed, and an overview of the NIRS applications is synthesized and provided. The paper first reviews the application scenarios, as well as the patterns of fluctuation of NIRS, which includes the investigation in regular sleep and sleep-disordered breathing. Various factors such as different sleep stages, populations, and degrees of severity were considered. Furthermore, the experimental design and signal processing, as well as the regulation mechanisms involved in regular and pathological sleep, are investigated and discussed. The strengths and weaknesses of the existing NIRS applications are addressed and presented, which can direct further NIRS analysis and utilization.
Collapse
Affiliation(s)
- Haoran Ren
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xinyu Jiang
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ke Xu
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chen Chen
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yafei Yuan
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chenyun Dai
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Wei Chen
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| |
Collapse
|
43
|
It's complicated: The relationship between sleep and Alzheimer's disease in humans. Neurobiol Dis 2020; 144:105031. [PMID: 32738506 DOI: 10.1016/j.nbd.2020.105031] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an asymptomatic period of amyloid-β (Aβ) deposition as insoluble extracellular plaque, intracellular tau aggregation, neuronal and synaptic loss, and subsequent cognitive dysfunction and dementia. A growing public health crisis, the worldwide prevalence of AD is expected to rise from 46.8 million individuals affected in 2015 to 131.5 million in 2050. Sleep disturbances have been associated with increased future risk of AD. A bi-directional relationship is hypothesized between sleep and AD with sleep disturbances as either markers for AD pathology and/or a mechanism mediating increased risk of AD. In this review, the evidence in humans supporting this complex relationship between sleep and AD will be discussed as well as the therapeutic potential and challenges of treating sleep disturbances to prevent or delay the onset of AD.
Collapse
|
44
|
Chen PC, Whitehurst LN, Naji M, Mednick SC. Autonomic Activity during a Daytime Nap Facilitates Working Memory Improvement. J Cogn Neurosci 2020; 32:1963-1974. [PMID: 32530384 DOI: 10.1162/jocn_a_01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent investigations have implicated the parasympathetic branch of the autonomic nervous system in higher-order executive functions. These actions are purported to occur through autonomic nervous system's modulation of the pFC, with parasympathetic activity during wake associated with working memory (WM) ability. Compared with wake, sleep is a period with substantially greater parasympathetic tone. Recent work has reported that sleep may also contribute to improvement in WM. Here, we examined the role of cardiac parasympathetic activity during sleep on WM improvement in healthy young adults. Participants were tested in an operation span task in the morning and evening, and during the intertest period, participants experienced either a nap or wake. We measured high-frequency heart rate variability as an index of cardiac, parasympathetic activity during both wake and sleep. Participants showed the expected boost in parasympathetic activity during nap, compared with wake. Furthermore, parasympathetic activity during sleep, but not wake, was significantly correlated with WM improvement. Together, these results indicate that the natural boost in parasympathetic activity during sleep may benefit gains in prefrontal executive function in young adults. We present a conceptual model illustrating the interaction between sleep, autonomic activity, and prefrontal brain function and highlight open research questions that will facilitate understanding of the factors that contribute to executive abilities in young adults as well as in cognitive aging.
Collapse
|
45
|
Chen PC, Whitehurst LN, Naji M, Mednick SC. Autonomic/central coupling benefits working memory in healthy young adults. Neurobiol Learn Mem 2020; 173:107267. [PMID: 32535198 DOI: 10.1016/j.nlm.2020.107267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/01/2023]
Abstract
Working memory (WM) is an executive function that can improve with training. However, the precise mechanism for this improvement is not known. Studies have shown greater WM gains after a period of sleep than a similar period of wake, and correlations between WM improvement and slow wave activity (SWA; 0.5-1 Hz) during slow wave sleep (SWS). A different body of literature has suggested an important role for autonomic activity during wake for WM. A recent study from our group reported that the temporal coupling of Autonomic/CentralEvents (ACEs) during sleep was associated with memory consolidation. We found that heart rate bursts (HR bursts) during non-rapid eye movement (NREM) sleep are accompanied by increases in SWA and sigma (12-15 Hz) power, as well as increases in the high-frequency (HF) component of the RR interval, reflecting vagal rebound. In addition, ACEs predict long-term, episodic memory improvement. Building on these previous results, we examined whether ACEs also contribute to gains in WM. We tested 104 young adults in an operation span task (OSPAN) in the morning and evening, with either a nap (n = 53; with electroencephalography (EEG) and electrocardiography (ECG)) or wake (n = 51) between testing sessions. We identified HR bursts in the ECG and replicated the increases in SWA and sigma prior to peak of the HR burst, as well as vagal rebound after the peak. Furthermore, we showed sleep-dependent WM improvement, which was predicted by ACE activity. Using regression analyses, we discovered that significantly more variance in WM improvement could be explained with ACE variables than with overall sleep activity not time-locked with ECG. These results provide the first evidence that coordinated autonomic and central events play a significant role in sleep-related WM improvement and implicate the potential of autonomic interventions during sleep for cognitive enhancement.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Department of Cognitive Science, University of California, Irvine USA
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego, CA, USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California, Irvine USA.
| |
Collapse
|
46
|
Weigend S, Holst SC, Treyer V, O'Gorman Tuura RL, Meier J, Ametamey SM, Buck A, Landolt HP. Dynamic changes in cerebral and peripheral markers of glutamatergic signaling across the human sleep-wake cycle. Sleep 2020; 42:5532239. [PMID: 31304973 PMCID: PMC6802568 DOI: 10.1093/sleep/zsz161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Sleep and brain glutamatergic signaling are homeostatically regulated. Recovery sleep following prolonged wakefulness restores efficient functioning of the brain, possibly by keeping glutamatergic signaling in a homeostatic range. Evidence in humans and mice suggested that metabotropic glutamate receptors of subtype-5 (mGluR5) contribute to the brain's coping mechanisms with sleep deprivation. Here, proton magnetic resonance spectroscopy in 31 healthy men was used to quantify the levels of glutamate (Glu), glutamate-to-glutamine ratio (GLX), and γ-amino-butyric-acid (GABA) in basal ganglia (BG) and dorsolateral prefrontal cortex on 3 consecutive days, after ~8 (baseline), ~32 (sleep deprivation), and ~8 hours (recovery sleep) of wakefulness. Simultaneously, mGluR5 availability was quantified with the novel radioligand for positron emission tomography, [18F]PSS232, and the blood levels of the mGluR5-regulated proteins, fragile X mental retardation protein (FMRP) and brain-derived neurotrophic factor (BDNF) were determined. The data revealed that GLX (p = 0.03) in BG (for Glu: p < 0.06) and the serum concentration of FMRP (p < 0.04) were increased after sleep loss. Other brain metabolites (GABA, N-acetyl-aspartate, choline, glutathione) and serum BDNF levels were not altered by sleep deprivation (pall > 0.6). By contrast, the night without sleep enhanced whole-brain, BG, and parietal cortex mGluR5 availability, which was normalized by recovery sleep (pall < 0.05). The findings provide convergent multimodal evidence that glutamatergic signaling is affected by sleep deprivation and recovery sleep. They support a role for mGluR5 and FMRP in sleep-wake regulation and warrant further studies to investigate their causality and relevance for regulating human sleep in health and disease. Clinical Trial Registration: www.clinicaltrials.gov (study identifier: NCT03813082).
Collapse
Affiliation(s)
- Susanne Weigend
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| | - Sebastian C Holst
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| | - Valérie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zürich, Switzerland.,Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | | | - Josefine Meier
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, Zürich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| |
Collapse
|
47
|
Borges CR, Poyares D, Piovezan R, Nitrini R, Brucki S. Alzheimer's disease and sleep disturbances: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 77:815-824. [PMID: 31826138 DOI: 10.1590/0004-282x20190149] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/23/2019] [Indexed: 01/19/2023]
Abstract
The association between Alzheimer's disease (AD) and sleep disturbances has received increasing scientific attention in the last decades. However, little is known about the impact of sleep and its disturbances on the development of preclinical AD stages, such as mild cognitive impairment. This review describes the evolution of knowledge about the potential bidirectional relationships between AD and sleep disturbances exploring recent large prospective studies and meta-analyses and studies of the possible mechanisms through which sleep and the neurodegenerative process could be associated. The review also makes a comprehensive exploration of the sleep characteristics of older people, ranging from cognitively normal individuals, through patients with mild cognitive impairment, up to the those with dementia with AD.
Collapse
Affiliation(s)
- Conrado Regis Borges
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Dalva Poyares
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Instituto do Sono, São Paulo SP, Brasil
| | - Ronaldo Piovezan
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Instituto do Sono, São Paulo SP, Brasil
| | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Sonia Brucki
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| |
Collapse
|
48
|
Horne J. REM sleep vs exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Med Rev 2020; 50:101252. [DOI: 10.1016/j.smrv.2019.101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
|
49
|
Pak K, Kim J, Kim K, Kim SJ, Kim IJ. Sleep and Neuroimaging. Nucl Med Mol Imaging 2020; 54:98-104. [PMID: 32377261 PMCID: PMC7198660 DOI: 10.1007/s13139-020-00636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022] Open
Abstract
We spend about one-third of our lives either sleeping or attempting to sleep. Therefore, the socioeconomic implications of sleep disorders may be higher than expected. However, the fundamental mechanisms and functions of sleep are not yet fully understood. Neuroimaging has been utilized to reveal the connectivity between sleep and the brain, which is associated with the physiology of sleep. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging studies have become increasingly common in sleep research. Recently, significant progress has been made in understanding the physiology of sleep through neuroimaging and the use of various radiopharmaceuticals, as the sleep-wake cycle is regulated by multiple neurotransmitters, including dopamine, adenosine, glutamate, and others. In addition, the characteristics of rapid eye and non-rapid eye movement sleep have been investigated by measuring cerebral glucose metabolism. The physiology of sleep has been investigated using PET to study glymphatic function as a means to clear the amyloid burden. However, the basic mechanisms and functions of sleep are not yet fully understood. Further studies are needed to investigate the effects and consequences of chronic sleep deprivation, and the relevance of sleep to other diseases.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Jiyoung Kim
- Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Seong Jang Kim
- Department of Nuclear Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
50
|
Goldstein-Piekarski AN, Holt-Gosselin B, O'Hora K, Williams LM. Integrating sleep, neuroimaging, and computational approaches for precision psychiatry. Neuropsychopharmacology 2020; 45:192-204. [PMID: 31426055 PMCID: PMC6879628 DOI: 10.1038/s41386-019-0483-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
In advancing precision psychiatry, we focus on what imaging technology and computational approaches offer for the future of diagnostic subtyping and personalized tailoring of interventions for sleep impairment in mood and anxiety disorders. Current diagnostic criteria for mood and anxiety tend to lump different forms of sleep disturbance together. Parsing the biological features of sleep impairment and brain circuit dysfunction is one approach to identifying subtypes within these disorders that are mechanistically coherent and offer targets for intervention. We focus on two large-scale neural circuits implicated in sleep impairment and in mood and anxiety disorders: the default mode network and negative affective network. Through a synthesis of existing knowledge about these networks, we pose a testable framework for understanding how hyper- versus hypo-engagement of these networks may underlie distinct features of mood and sleep impairment. Within this framework we consider whether poor sleep quality may have an explanatory role in previously observed associations between network dysfunction and mood symptoms. We expand this framework to future directions including the potential for connecting circuit-defined subtypes to more distal features derived from digital phenotyping and wearable technologies, and how new discovery may be advanced through machine learning approaches.
Collapse
Affiliation(s)
- Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| | - Kathleen O'Hora
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA.
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| |
Collapse
|