1
|
Wu Y, Bhat NR, Liu M. Reduction of orexin-expressing neurons and a unique sleep phenotype in the Tg-SwDI mouse model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1529769. [PMID: 39968126 PMCID: PMC11832706 DOI: 10.3389/fnagi.2025.1529769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Sleep disturbances are common in Alzheimer's disease (AD) and AD-related dementia (ADRD). We performed a sleep study on Tg-SwDI mice, a cerebral amyloid angiopathy (CAA) model, and age-matched wild-type (WT) control mice. The results showed that at 12 months of age, the hemizygous Tg-SwDI mice spent significantly more time in non-rapid eye movement (NREM) sleep (44.6 ± 2.4% in Tg-SwDI versus 35.9 ± 2.5% in WT) and had a much shorter average length of wake bout during the dark (active) phase (148.5 ± 8.7 s in the Tg-SwDI versus 203.6 ± 13.0 s in WT). Histological analysis revealed stark decreases of orexin immunoreactive (orexin-IR) neuron number and soma size in these Tg-SwDI mice (cell number: 2187 ± 97.1 in Tg-SwDI versus 3318 ± 137.9 in WT. soma size: 109.1 ± 8.1 μm2 in Tg-SwDI versus 160.4 ± 6.6 μm2 in WT), while the number and size of melanin-concentrating hormone (MCH) immunoreactive (MCH-IR) neurons remained unchanged (cell number: 4256 ± 273.3 in Tg-SwDI versus 4494 ± 326.8 in WT. soma size: 220.1 ± 13.6 μm2 in Tg-SwDI versus 202.0 ± 7.8 μm2 in WT). The apoptotic cell death marker cleaved caspase-3 immunoreactive (Caspase-3-IR) percentage in orexin-IR neurons was significantly higher in Tg-SwDI mice than in WT controls. This selective loss of orexin-IR neurons could be associated with the abnormal sleep phenotype in these Tg-SwDI mice. Further studies are needed to determine the cause of the selective death of orexin-IR cells and relevant effects on cognition impairments in this mouse model of microvascular amyloidosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Narayan R. Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
2
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Boeck B, Westmark CJ. Bibliometric Analysis and a Call for Increased Rigor in Citing Scientific Literature: Folic Acid Fortification and Neural Tube Defect Risk as an Example. Nutrients 2024; 16:2503. [PMID: 39125384 PMCID: PMC11313885 DOI: 10.3390/nu16152503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The health benefits of vitamin B9 (folate) are well documented, particularly in regard to neural tube defects during pregnancy; however, much remains to be learned regarding the health effects and risks of consuming folic acid supplements and foods fortified with folic acid. In 2020, our laboratory conducted a population-based analysis of the Food Fortification Initiative (FFI) dataset to determine the strength of the evidence regarding the prevalence of neural tube defects (NTD) at the national level in response to mandatory fortification of cereal grains with folic acid. We found a very weak correlation between the prevalence of NTDs and the level of folic acid fortification irrespective of the cereal grain fortified (wheat, maize, or rice). We found a strong linear relationship between reduced NTDs and higher socioeconomic status (SES). Our paper incited a debate on the proper statistics to employ for population-level data. Subsequently, there has been a large number of erroneous citations to our original work. The objective here was to conduct a bibliometric analysis to quantitate the accuracy of citations to Murphy and Westmark's publication entitled, "Folic Acid Fortification and Neural Tube Defect Risk: Analysis of the Food Fortification Initiative Dataset". We found a 70% inaccuracy rate. These findings highlight the dire need for increased rigor in citing scientific literature, particularly in regard to biomedical research that directly impacts public health policy.
Collapse
Affiliation(s)
- Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
4
|
Yin P, Wang H, Xue T, Yu X, Meng X, Mi Q, Song S, Xiong B, Bi Y, Yu L. Four-Dimensional Label-Free Quantitative Proteomics of Ginsenoside Rg 2 Ameliorated Scopolamine-Induced Memory Impairment in Mice through the Lysosomal Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14640-14652. [PMID: 38885433 DOI: 10.1021/acs.jafc.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease. Ginsenoside Rg2 has shown potential in treating AD, but the underlying protein regulatory mechanisms associated with ginsenoside Rg2 treatment for AD remain unclear. This study utilized scopolamine to induce memory impairment in mice, and proteomics methods were employed to investigate the potential molecular mechanism of ginsenoside Rg2 in treating AD model mice. The Morris water maze, hematoxylin and eosin staining, and Nissl staining results indicated that ginsenoside Rg2 enhanced cognitive ability and decreased neuronal damage in AD mice. Proteomics, western blot, and immunofluorescence results showed that ginsenoside Rg2 primarily improved AD mice by downregulating the expression of LGMN, LAMP1, and PSAP proteins through the regulation of the lysosomal pathway. Transmission electron microscopy and network pharmacology prediction results showed a potential connection between the mechanism of ginsenoside Rg2 treatment for AD mice and lysosomes. The comprehensive results indicated that ginsenoside Rg2 may improve AD by downregulating LGMN, LAMP1, and PSAP through the regulation of the lysosomal pathway.
Collapse
Affiliation(s)
- Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Heyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Tingfang Xue
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Xiaoran Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Xingjian Meng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Boyu Xiong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| |
Collapse
|
5
|
Westmark PR, Swietlik TJ, Runde E, Corsiga B, Nissan R, Boeck B, Granger R, Jennings E, Nebbia M, Thauwald A, Lyon G, Maganti RK, Westmark CJ. Adult Inception of Ketogenic Diet Therapy Increases Sleep during the Dark Cycle in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2024; 25:6679. [PMID: 38928388 PMCID: PMC11203515 DOI: 10.3390/ijms25126679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ethan Runde
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brian Corsiga
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rachel Nissan
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ricky Granger
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Erica Jennings
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Maya Nebbia
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Andrew Thauwald
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Greg Lyon
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
6
|
Westmark PR, Lyon G, Gutierrez A, Boeck B, Van Hammond O, Ripp N, Pagan-Torres NA, Brower J, Held PK, Scarlett C, Westmark CJ. Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice. Nutrients 2024; 16:284. [PMID: 38257177 PMCID: PMC10819477 DOI: 10.3390/nu16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is a pediatric epidemic that is more prevalent in children with developmental disabilities. We hypothesize that soy protein-based diets increase weight gain and alter neurobehavioral outcomes. Our objective herein was to test matched casein- and soy protein-based purified ingredient diets in a mouse model of fragile X syndrome, Fmr1KO mice. The experimental methods included assessment of growth; 24-7 activity levels; motor coordination; learning and memory; blood-based amino acid, phytoestrogen and glucose levels; and organ weights. The primary outcome measure was body weight. We find increased body weight in male Fmr1KO from postnatal day 6 (P6) to P224, male wild type (WT) from P32-P39, female Fmr1KO from P6-P18 and P168-P224, and female Fmr1HET from P9-P18 as a function of soy. Activity at the beginning of the light and dark cycles increased in female Fmr1HET and Fmr1KO mice fed soy. We did not find significant differences in rotarod or passive avoidance behavior as a function of genotype or diet. Several blood-based amino acids and phytoestrogens were significantly altered in response to soy. Liver weight was increased in WT and adipose tissue in Fmr1KO mice fed soy. Activity levels at the beginning of the light cycle and testes weight were greater in Fmr1KO versus WT males irrespective of diet. DEXA analysis at 8-months-old indicated increased fat mass and total body area in Fmr1KO females and lean mass and bone mineral density in Fmr1KO males fed soy. Overall, dietary consumption of soy protein isolate by C57BL/6J mice caused increased growth, which could be attributed to increased lean mass in males and fat mass in females. There were sex-specific differences with more pronounced effects in Fmr1KO versus WT and in males versus females.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
| | - Greg Lyon
- Undergraduate Research Scholars Program, University of Wisconsin, Madison, WI 53706, USA; (G.L.); (O.V.H.)
| | - Alejandra Gutierrez
- Molecular Environmental Toxicology Master’s Program, University of Wisconsin, Madison, WI 53706, USA;
| | - Brynne Boeck
- Neurology Undergraduate Research, University of Wisconsin, Madison, WI 53706, USA; (B.B.); (N.R.)
| | - Olivia Van Hammond
- Undergraduate Research Scholars Program, University of Wisconsin, Madison, WI 53706, USA; (G.L.); (O.V.H.)
| | - Nathan Ripp
- Neurology Undergraduate Research, University of Wisconsin, Madison, WI 53706, USA; (B.B.); (N.R.)
| | - Nicole Arianne Pagan-Torres
- Molecular Environmental Toxicology Summer Research Opportunities Program, University of Wisconsin, Madison, WI 53706, USA;
| | - James Brower
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA; (J.B.); (P.K.H.)
| | - Patrice K. Held
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA; (J.B.); (P.K.H.)
| | - Cameron Scarlett
- School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA;
| | - Cara J. Westmark
- Department of Neurology and Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
7
|
Altunkaya A, Deichsel C, Kreuzer M, Nguyen DM, Wintergerst AM, Rammes G, Schneider G, Fenzl T. Altered sleep behavior strengthens face validity in the ArcAβ mouse model for Alzheimer's disease. Sci Rep 2024; 14:951. [PMID: 38200079 PMCID: PMC10781983 DOI: 10.1038/s41598-024-51560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Demographic changes will expand the number of senior citizens suffering from Alzheimer's disease (AD). Key aspects of AD pathology are sleep impairments, associated with onset and progression of AD. AD mouse models may provide insights into mechanisms of AD-related sleep impairments. Such models may also help to establish new biomarkers predicting AD onset and monitoring AD progression. The present study aimed to establish sleep-related face validity of a widely used mouse model of AD (ArcAβ model) by comprehensively characterizing its baseline sleep/wake behavior. Chronic EEG recordings were performed continuously on four consecutive days in freely behaving mice. Spectral and temporal sleep/wake parameters were assessed and analyzed. EEG recordings showed decreased non-rapid eye movement sleep (NREMS) and increased wakefulness in transgenic mice (TG). Vigilance state transitions were different in TG mice when compared to wildtype littermates (WT). During NREMS, TG mice had lower power between 1 and 5 Hz and increased power between 5 and 30 Hz. Sleep spindle amplitudes in TG mice were lower. Our study strongly provides sleep-linked face validity for the ArcAβ model. These findings extend the potential of the mouse model to investigate mechanisms of AD-related sleep impairments and the impact of sleep impairments on the development of AD.
Collapse
Affiliation(s)
- Alp Altunkaya
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Cassandra Deichsel
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Duy-Minh Nguyen
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ann-Marie Wintergerst
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Westmark PR, Gholston AK, Swietlik TJ, Maganti RK, Westmark CJ. Ketogenic Diet Affects Sleep Architecture in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2023; 24:14460. [PMID: 37833907 PMCID: PMC10572443 DOI: 10.3390/ijms241914460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Nearly half of children with fragile X syndrome experience sleep problems including trouble falling asleep and frequent nighttime awakenings. The goals here were to assess sleep-wake cycles in mice in response to Fmr1 genotype and a dietary intervention that reduces hyperactivity. Electroencephalography (EEG) results were compared with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. Specifically, sleep-wake patterns in adult wild type and Fmr1KO littermate mice were recorded after EEG electrode implantation and the recordings manually scored for vigilance states. The data indicated that Fmr1KO mice exhibited sleep-wake patterns similar to wild type littermates when maintained on a control purified ingredient diet. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of non-rapid eye movement (NREM) sleep in both wild type and Fmr1KO mice during the dark cycle, which corresponded to decreased activity levels. Treatment with a ketogenic diet flattened diurnal sleep periodicity in both wild type and Fmr1KO mice. Differences in several sleep microstructure outcomes (number and length of sleep and wake bouts) supported the altered sleep states in response to a ketogenic diet and were correlated with altered rest-activity cycles. While actigraphy may be a less expensive, reduced labor surrogate for sleep EEG during the dark cycle, daytime resting in mice did not correlate with EEG sleep states.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Aaron K. Gholston
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
9
|
Drew VJ, Wang C, Kim T. Progressive sleep disturbance in various transgenic mouse models of Alzheimer's disease. Front Aging Neurosci 2023; 15:1119810. [PMID: 37273656 PMCID: PMC10235623 DOI: 10.3389/fnagi.2023.1119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The relationship between AD and sleep dysfunction has received increased attention over the past decade. The use of genetically engineered mouse models with enhanced production of amyloid beta (Aβ) or hyperphosphorylated tau has played a critical role in the understanding of the pathophysiology of AD. However, their revelations regarding the progression of sleep impairment in AD have been highly dependent on the mouse model used and the specific techniques employed to examine sleep. Here, we discuss the sleep disturbances and general pathology of 15 mouse models of AD. Sleep disturbances covered in this review include changes to NREM and REM sleep duration, bout lengths, bout counts and power spectra. Our aim is to describe in detail the severity and chronology of sleep disturbances within individual mouse models of AD, as well as reveal broader trends of sleep deterioration that are shared among most models. This review also explores a variety of potential mechanisms relating Aβ accumulation and tau neurofibrillary tangles to the progressive deterioration of sleep observed in AD. Lastly, this review offers perspective on how study design might impact our current understanding of sleep disturbances in AD and provides strategies for future research.
Collapse
Affiliation(s)
- Victor J. Drew
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
11
|
Westmark CJ, Brower J, Held PK. Improving Reproducibility to Enhance Scientific Rigor through Consideration of Mouse Diet. Animals (Basel) 2022; 12:ani12243448. [PMID: 36552368 PMCID: PMC9774320 DOI: 10.3390/ani12243448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Animal husbandry conditions, including rodent diet, constitute an example highlighting the importance of reporting experimental variables to enhance scientific rigor. In the present study, we examine the effects of three common rodent diets including two chows (Purina 5015 and Teklad 2019) and one purified ingredient diet (AIN-76A) on growth anthropometrics (body weight), behavior (nest building, actigraphy, passive avoidance) and blood biomarkers (ketones, glucose, amino acid profiles) in male and female C57BL/6J mice. We find increased body weight in response to the chows compared to purified ingredient diet albeit selectively in male mice. We did not find significantly altered behavior in female or male wild type C57BL/6J mice. However, amino acid profiles changed as an effect of sex and diet. These data contribute to a growing body of knowledge indicating that rodent diet impacts experimental outcomes and needs to be considered in study design and reporting.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-262-9730
| | - James Brower
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA
| | - Patrice K. Held
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
12
|
Katsuki F, Gerashchenko D, Brown RE. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res Bull 2022; 187:181-198. [PMID: 35850189 DOI: 10.1016/j.brainresbull.2022.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Sleep abnormalities are widely reported in patients with Alzheimer's disease (AD) and are linked to cognitive impairments. Sleep abnormalities could be potential biomarkers to detect AD since they are often observed at the preclinical stage. Moreover, sleep could be a target for early intervention to prevent or slow AD progression. Thus, here we review changes in brain oscillations observed during sleep, their connection to AD pathophysiology and the role of specific brain circuits. Slow oscillations (0.1-1 Hz), sleep spindles (8-15 Hz) and their coupling during non-REM sleep are consistently reduced in studies of patients and in AD mouse models although the timing and magnitude of these alterations depends on the pathophysiological changes and the animal model studied. Changes in delta (1-4 Hz) activity are more variable. Animal studies suggest that hippocampal sharp-wave ripples (100-250 Hz) are also affected. Reductions in REM sleep amount and slower oscillations during REM are seen in patients but less consistently in animal models. Thus, changes in a variety of sleep oscillations could impact sleep-dependent memory consolidation or restorative functions of sleep. Recent mechanistic studies suggest that alterations in the activity of GABAergic neurons in the cortex, hippocampus and thalamic reticular nucleus mediate sleep oscillatory changes in AD and represent a potential target for intervention. Longitudinal studies of the timing of AD-related sleep abnormalities with respect to pathology and dysfunction of specific neural networks are needed to identify translationally relevant biomarkers and guide early intervention strategies to prevent or delay AD progression.
Collapse
Affiliation(s)
- Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| |
Collapse
|
13
|
Westmark CJ, Filon MJ, Maina P, Steinberg LI, Ikonomidou C, Westmark PR. Effects of Soy-Based Infant Formula on Weight Gain and Neurodevelopment in an Autism Mouse Model. Cells 2022; 11:1350. [PMID: 35456030 PMCID: PMC9025435 DOI: 10.3390/cells11081350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Mice fed soy-based diets exhibit increased weight gain compared to mice fed casein-based diets, and the effects are more pronounced in a model of fragile X syndrome (FXS; Fmr1KO). FXS is a neurodevelopmental disability characterized by intellectual impairment, seizures, autistic behavior, anxiety, and obesity. Here, we analyzed body weight as a function of mouse age, diet, and genotype to determine the effect of diet (soy, casein, and grain-based) on weight gain. We also assessed plasma protein biomarker expression and behavior in response to diet. Juvenile Fmr1KO mice fed a soy protein-based rodent chow throughout gestation and postnatal development exhibit increased weight gain compared to mice fed a casein-based purified ingredient diet or grain-based, low phytoestrogen chow. Adolescent and adult Fmr1KO mice fed a soy-based infant formula diet exhibited increased weight gain compared to reference diets. Increased body mass was due to increased lean mass. Wild-type male mice fed soy-based infant formula exhibited increased learning in a passive avoidance paradigm, and Fmr1KO male mice had a deficit in nest building. Thus, at the systems level, consumption of soy-based diets increases weight gain and affects behavior. At the molecular level, a soy-based infant formula diet was associated with altered expression of numerous plasma proteins, including the adipose hormone leptin and the β-amyloid degrading enzyme neprilysin. In conclusion, single-source, soy-based diets may contribute to the development of obesity and the exacerbation of neurological phenotypes in developmental disabilities, such as FXS.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (M.J.F.); (P.M.); (L.I.S.); (C.I.); (P.R.W.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Mikolaj J. Filon
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (M.J.F.); (P.M.); (L.I.S.); (C.I.); (P.R.W.)
- Undergraduate Research Program, University of Wisconsin, Madison, WI 53706, USA
| | - Patricia Maina
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (M.J.F.); (P.M.); (L.I.S.); (C.I.); (P.R.W.)
- Molecular Environmental Toxicology Summer Research Opportunities Program, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren I. Steinberg
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (M.J.F.); (P.M.); (L.I.S.); (C.I.); (P.R.W.)
- Undergraduate Research Program, University of Wisconsin, Madison, WI 53706, USA
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (M.J.F.); (P.M.); (L.I.S.); (C.I.); (P.R.W.)
| | - Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (M.J.F.); (P.M.); (L.I.S.); (C.I.); (P.R.W.)
| |
Collapse
|
14
|
Liu H, Zheng W, Zhang L, Lin T, Tang Y, Hu L. Effect of Helicobacter pylori-Associated Chronic Gastritis on Autonomous Activity and Sleep Quality in Mice. Front Pharmacol 2022; 13:785105. [PMID: 35185560 PMCID: PMC8856107 DOI: 10.3389/fphar.2022.785105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Many reports have shown that patients with Hp-associated chronic gastritis exhibit anxiety and poor sleep quality. However, less is known about the effects and specific manifestations of Hp-associated chronic gastritis on autonomous activity and sleep quality in animals. Here, we investigated the effect of Helicobacter pylori (Hp)-associated chronic gastritis on autonomous activity and sleep quality in mice. To do this, a Hp-associated chronic gastritis mouse model was first established, then analyzed for autonomous activity, relative to controls, for 15 min using an autonomous activity tester. Next, sleep quality of mice was detected by sodium pentobarbital-induced sleep experiment and results compared between groups. The results showed that male mice in the model group exhibited higher activity counts but lower forelimb lift counts, relative to those in the control group, although there were no significant differences (all p > .05). Conversely, female mice in the model group recorded lower activity counts, albeit at no significant difference (p > .05), and significantly lower counts of forelimb lift (p < .05), relative to those in the control group. Notably, male mice in the model group had longer sleep latency and shorter sleep duration than those in the control group, albeit at no significant differences (all p > .05). On the other hand, female mice in the model group recorded significantly longer sleep latency as well as shorter sleep duration compared to those in the control group (all p < .01). We conclude that Hp-associated chronic gastritis exerts certain effects on autonomous activity and sleep quality of mice in a gender-dependent manner. Notably, female mice with Hp-associated chronic gastritis had lower activity and forelimb lift counts, as well as prolonged sleep latency, and shortened sleep duration. These effects were all statistically significant except for activity counts.
Collapse
Affiliation(s)
- Haihua Liu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Wenlong Zheng
- Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Ling Zhang
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tangtang Lin
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yang Tang
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Ling Hu,
| |
Collapse
|
15
|
Botchway BOA, Okoye FC, Chen Y, Arthur WE, Fang M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis 2022; 13:87-102. [PMID: 35111364 PMCID: PMC8782546 DOI: 10.14336/ad.2021.0616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a current public health challenge and will remain until the development of an effective intervention. However, developing an effective treatment for the disease requires a thorough understanding of its etiology, which is currently lacking. Although several studies have shown the association between oxidative damage and AD, only a few have clarified the specific mechanisms involved. Herein, we reviewed recent preclinical and clinical studies that indicated the significance of oxidative damage in AD, as well as potential antioxidants. Although several factors regulate oxidative stress in AD, we centered our investigation on apolipoprotein E and the gut microbiome. Apolipoprotein E, particularly apolipoprotein E-ε4, can impair the structural facets of the mitochondria. This, in turn, can minimize the mitochondrial functionality and result in the progressive build-up of free radicals, eventually leading to oxidative stress. Similarly, the gut microbiome can influence oxidative stress to a significant degree via its metabolite, trimethylamine N-oxide. Given the various roles of these two factors in modulating oxidative stress, we also discuss the possible relationship between them and provide future research directions.
Collapse
Affiliation(s)
- Benson OA Botchway
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| | - Favour C Okoye
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Chen
- Neurosurgery Department, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - William E Arthur
- Department of Internal Medicine, Eastern Regional Hospital, Koforidua, Ghana
| | - Marong Fang
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Vigoureux TFD, Lee S. Individual and joint associations of daily sleep and stress with daily well-being in hospital nurses: an ecological momentary assessment and actigraphy study. J Behav Med 2021; 44:320-332. [PMID: 33599869 DOI: 10.1007/s10865-021-00207-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/03/2021] [Indexed: 01/12/2023]
Abstract
Sleep and stress are predictors of daily physical and emotional well-being, but few studies assess both simultaneously. This study examined individual and joint associations of daily sleep and stress with daily well-being (DWB) in hospital nurses. Nurses (n = 60) participated in a 14-day ecological momentary assessment and actigraphy study. Multilevel modeling revealed associations of stressor severity and poor sleep health with DWB, independent of and coupled with each other, at within- and between-person levels. Greater stressor severity or poorer sleep health, independent of each other, were associated with more physical symptoms, less positive affect (PA), and more negative affect (NA). Joint associations of stress and sleep with DWB were observed: PA was lowest when higher stressor severity was coupled with poorer sleep health; NA was lowest when lower stressor severity was coupled with better sleep health. Findings suggest the importance of considering both sleep and stress for DWB in hospital nurses.
Collapse
Affiliation(s)
- Taylor F D Vigoureux
- School of Aging Studies, University of South Florida, 4202 E. Fowler Avenue, MHC1304A, Tampa, Fl, 33620, USA.
| | - Soomi Lee
- School of Aging Studies, University of South Florida, 4202 E. Fowler Avenue, MHC1304A, Tampa, Fl, 33620, USA
| |
Collapse
|
17
|
Sleep/Wake Behavior and EEG Signatures of the TgF344-AD Rat Model at the Prodromal Stage. Int J Mol Sci 2020; 21:ijms21239290. [PMID: 33291462 PMCID: PMC7730237 DOI: 10.3390/ijms21239290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Transgenic modification of the two most common genes (APPsw, PS1ΔE9) related to familial Alzheimer's disease (AD) in rats has produced a rodent model that develops pathognomonic signs of AD without genetic tau-protein modification. We used 17-month-old AD rats (n = 8) and age-matched controls (AC, n = 7) to evaluate differences in sleep behavior and EEG features during wakefulness (WAKE), non-rapid eye movement sleep (NREM), and rapid eye movement sleep (REM) over 24-h EEG recording (12:12h dark-light cycle). We discovered that AD rats had more sleep-wake transitions and an increased probability of shorter REM and NREM bouts. AD rats also expressed a more uniform distribution of the relative spectral power. Through analysis of information content in the EEG using entropy of difference, AD animals demonstrated less EEG information during WAKE, but more information during NREM. This seems to indicate a limited range of changes in EEG activity that could be caused by an AD-induced change in inhibitory network function as reflected by increased GABAAR-β2 expression but no increase in GAD-67 in AD animals. In conclusion, this transgenic rat model of Alzheimer's disease demonstrates less obvious EEG features of WAKE during wakefulness and less canonical features of sleep during sleep.
Collapse
|
18
|
Noyce AJ, Klein C. Genetic Risk of Alzheimer's Disease - Sleepless with the Enemy. Ann Neurol 2020; 89:27-29. [PMID: 33070350 DOI: 10.1002/ana.25938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|