1
|
Freeman SA, Ayoub I, Dauvilliers Y, Liblau RS. Unraveling the pathophysiology of narcolepsy type 1 through hypothesis-driven and hypothesis-generating approaches. Semin Immunol 2025; 78:101962. [PMID: 40373365 DOI: 10.1016/j.smim.2025.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
Narcolepsy type 1 (NT1) is a chronic orphan neurological sleep disorder characterized by the loss of hypocretin-producing neurons in the lateral hypothalamus, which play a crucial role in wakefulness. Given the genetic association with the HLA-DQB1 * 06:02 allele and environmental links with the 2009 influenza pandemic, many lines of evidence point towards an immune mechanism, notably autoimmunity, underlying the disease pathophysiology. Autoreactive T cells are found in the blood of NT1 patients, and mouse models demonstrate their migratory capacity and contribution in the selective destruction of hypocretin-producing neurons. However, direct evidence for their role in human NT1 pathophysiology remains elusive. In complementing these findings, hypothesis-generating approaches-including multiparametric immune profiling, transcriptomic sequencing and large-scale proteomic of blood and cerebrospinal fluid-have uncovered promising new avenues into the immune system's involvement in NT1. In this review, we explore the mechanisms driving NT1 pathogenesis, emphasizing both hypothesis-driven and hypothesis-generating approaches, and discuss potential future directions that could pave the way for targeted immunotherapies.
Collapse
Affiliation(s)
- Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Ikram Ayoub
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yves Dauvilliers
- Institute of Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| |
Collapse
|
2
|
Vringer M, Zhou J, Gool JK, Bijlenga D, Lammers GJ, Fronczek R, Schinkelshoek MS. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med Rev 2024; 78:101993. [PMID: 39241492 DOI: 10.1016/j.smrv.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder in which people typically experience excessive daytime sleepiness, cataplexy and other sleep-wake disturbances impairing daily life activities. NT1 symptoms are due to hypocretin deficiency. The cause for the observed hypocretin deficiency remains unclear, even though the most likely hypothesis is that this is due to an auto-immune process. The search for autoantibodies and autoreactive T-cells has not yet produced conclusive evidence for or against the auto-immune hypothesis. Other mechanisms, such as reduced corticotrophin-releasing hormone production in the paraventricular nucleus have recently been suggested. There is no reversive treatment, and the therapeutic approach is symptomatic. Early diagnosis and appropriate NT1 treatment is essential, especially in children to prevent impaired cognitive, emotional and social development. Hypocretin receptor agonists have been designed to replace the attenuated hypocretin signalling. Pre-clinical and clinical trials have shown encouraging initial results. A better understanding of NT1 pathophysiology may contribute to faster diagnosis or treatments, which may cure or prevent it.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mink S Schinkelshoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Hamdan S, Wasling P, Lind A. High-resolution HLA sequencing and hypocretin receptor 2 autoantibodies in narcolepsy type 1 and type 2. Int J Immunogenet 2024; 51:310-318. [PMID: 38898624 DOI: 10.1111/iji.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Narcolepsy is a sleep disorder caused by an apparent degeneration of orexin/hypocretin neurons in the lateral hypothalamic area and a subsequent decrease in orexin/hypocretin levels in the cerebrospinal fluid. Narcolepsy is classified into type 1 (NT1) and type 2 (NT2). While genetic associations in the human leukocyte antigen (HLA) region and candidate autoantibodies have been investigated in NT1 to imply an autoimmune origin, less is known about the pathogenesis in NT2. Twenty-six NT1 and 15 NT2 patients were included, together with control groups of 24 idiopathic hypersomnia (IH) patients and 778 general population participants. High-resolution sequencing was used to determine the alleles, the extended haplotypes, and the genotypes of HLA-DRB3, -DRB4, -DRB5, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1. Radiobinding assay was used to determine autoantibodies against hypocretin receptor 2 (anti-HCRTR2 autoantibodies). NT1 was associated with HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01 (odds ratio [OR]: 9.15; p = 8.31 × 10-4) and HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB4*01:03:01, -DRB1*04:01:01, -DQA1*03:02//03:03:01, -DQB1*03:01:01 (OR: 23.61; p = 1.58 × 10-4) genotypes. Lower orexin/hypocretin levels were reported in the NT2 subgroup (n = 5) that was associated with the extended HLA-DQB1*06:02:01 haplotype (p = .001). Anti-HCRTR2 autoantibody levels were not different between study groups (p = .8524). We confirmed the previous association of NT1 with HLA-DQB1*06:02:01 extended genotypes. A subgroup of NT2 patients with intermediate orexin/hypocretin levels and association with HLA-DQB1*06:02:01 was identified, indicating a possible overlap between the two distinct narcolepsy subtypes, NT1 and NT2. Low anti-HCRTR2 autoantibody levels suggest that these receptors might not function as autoimmune targets in either NT1 or NT2.
Collapse
Affiliation(s)
- Samia Hamdan
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexander Lind
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| |
Collapse
|
4
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
5
|
Maycock TJ, Rossor T, Vanegas M, Gringras P, Jungbluth H. Child Neurology: Common Occurrence of Narcolepsy Type 1 and Myasthenia Gravis. Neurology 2024; 103:e209598. [PMID: 38976840 DOI: 10.1212/wnl.0000000000209598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Narcolepsy with cataplexy and myasthenia gravis are both chronic neurologic conditions causing symptoms of muscle weakness, often affecting facial muscles, and have both been attributed to an immune-mediated etiology. We report an adolescent girl diagnosed with both conditions and discuss possible shared mechanisms and the diagnostic challenges presented by her case to inform and aid clinicians managing children and young people with these rare conditions.
Collapse
|
6
|
Tran TTT, Nguyen THN, Dauvilliers Y, Liblau R, Nguyen XH. Absence of specific autoantibodies in patients with narcolepsy type 1 as indicated by an unbiased random peptide-displayed phage screening. PLoS One 2024; 19:e0297625. [PMID: 38442093 PMCID: PMC10914298 DOI: 10.1371/journal.pone.0297625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Narcolepsy type 1 (NT1) is an enigmatic sleep disorder characterized by the selective loss of neurons producing orexin (also named hypocretin) in the lateral hypothalamus. Although NT1 is believed to be an autoimmune disease, the orexinergic neuron-specific antigens targeted by the pathogenic immune response remain elusive. In this study, we evaluated the differential binding capacity of various peptides to serum immunoglobin G from patients with NT1 and other hypersomnolence complaints (OHCs). These peptides were selected using an unbiased phage display technology or based on their significant presence in the serum of NT1 patients as identified from previous studies. Although the subtractive biopanning strategy successfully enriched phage clones with high reactivity against NT1 serum IgG, the 101 randomly selected individual phage clones could not differentiate the sera from NT1 and OHC. Compared to the OHC control group, serum from several NT1 patients exhibited increased reactivity to the 12-mer peptides derived from TRBV7, BCL-6, NRXN1, RXRG, HCRT, and RTN4 proteins, although not statistically significant. Collectively, employing both unbiased and targeted methodologies, we were unable to detect the presence of specific autoantibodies in our NT1 patient cohort. This further supports the hypothesis that the autoimmune response in NT1 patients likely stems primarily from T cell-mediated immunity rather than humoral immunity.
Collapse
Affiliation(s)
- Thi-Tuyet Trinh Tran
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Thi-Hong Nhung Nguyen
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Yves Dauvilliers
- Department of Neurology, Sleep-Wake Disorder Center, CHU Montpellier, Montpellier, France
| | - Roland Liblau
- Department of Inflammatory Diseases of the Central Nervous System: Mechanisms and Therapies, Toulouse Institute for Infection and Inflammatory Diseases, University of Toulouse, Toulouse, France
| | - Xuan-Hung Nguyen
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
- College of Health Sciences, VinUnivesity, Hanoi, Vietnam
| |
Collapse
|
7
|
Prochazkova P, Sonka K, Roubalova R, Jezkova J, Nevsimalova S, Buskova J, Merkova R, Dvorakova T, Prihodova I, Dostalova S, Tlaskalova-Hogenova H. Investigation of anti-neuronal antibodies and disparity in central hypersomnias. Sleep Med 2024; 113:220-231. [PMID: 38056084 DOI: 10.1016/j.sleep.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
STUDY OBJECTIVES Microbial antigens can elicit an immune response leading to the production of autoantibodies cross-reacting with autoantigens. Still, their clinical significance in human sera in the context of brain diseases is unclear. Therefore, assessment of natural autoantibodies reacting with their neuropeptides may elucidate the autoimmune etiology of central hypersomnias. The study aims to determine whether serum autoantibody levels differ in patients with different types of central hypersomnias (narcolepsy type 1 and 2, NT1 and NT2; idiopathic hypersomnia, IH) and healthy controls and if the differences could suggest the participation of autoantibodies in disease pathogenesis. METHODS Sera from 91 patients with NT1, 27 with NT2, 46 with IH, and 50 healthy controls were examined for autoantibodies against assorted neuropeptides. Participants were screened using questionnaires related to sleep disorders, quality of life, and mental health conditions. In addition, serum biochemical parameters and biomarkers of microbial penetration through the intestinal wall were determined. RESULTS A higher prevalence of autoantibodies against neuropeptides was observed only for alpha-melanocytes-stimulating hormone (α-MSH) and neuropeptide glutamic acid-isoleucine (NEI), which differed slightly among diagnoses. Patients with both types of narcolepsy exhibited signs of microbial translocation through the gut barrier. According to the questionnaires, patients diagnosed with NT2 or IH had subjectively worse life quality than patients with NT1. Patients displayed significantly lower levels of bilirubin and creatinine and slightly higher alkaline phosphatase values than healthy controls. CONCLUSIONS Overall, serum anti-neuronal antibodies prevalence is rare, suggesting that their participation in the pathophysiology of concerned sleep disorders is insignificant. Moreover, their levels vary slightly between diagnoses indicating no major diagnostic significance.
Collapse
Affiliation(s)
- Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Janet Jezkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sona Nevsimalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jitka Buskova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radana Merkova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Dvorakova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Buonocore SM, van der Most RG. Narcolepsy and H1N1 influenza immunology a decade later: What have we learned? Front Immunol 2022; 13:902840. [PMID: 36311717 PMCID: PMC9601309 DOI: 10.3389/fimmu.2022.902840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022] Open
Abstract
In the wake of the A/California/7/2009 H1N1 influenza pandemic vaccination campaigns in 2009-2010, an increased incidence of the chronic sleep-wake disorder narcolepsy was detected in children and adolescents in several European countries. Over the last decade, in-depth epidemiological and immunological studies have been conducted to investigate this association, which have advanced our understanding of the events underpinning the observed risk. Narcolepsy with cataplexy (defined as type-1 narcolepsy, NT1) is characterized by an irreversible and chronic deficiency of hypocretin peptides in the hypothalamus. The multifactorial etiology is thought to include genetic predisposition, head trauma, environmental triggers, and/or infections (including influenza virus infections), and an increased risk was observed following administration of the A/California/7/2009 H1N1 vaccine Pandemrix (GSK). An autoimmune origin of NT1 is broadly assumed. This is based on its strong association with a predisposing allele (the human leucocyte antigen DQB1*0602) carried by the large majority of NT1 patients, and on links with other immune-related genetic markers affecting the risk of NT1. Presently, hypotheses on the underlying potential immunological mechanisms center on molecular mimicry between hypocretin and peptides within the A/California/7/2009 H1N1 virus antigen. This molecular mimicry may instigate a cross-reactive autoimmune response targeting hypocretin-producing neurons. Local CD4+ T-cell responses recognizing peptides from hypocretin are thought to play a central role in the response. In this model, cross-reactive DQB1*0602-restricted T cells from the periphery would be activated to cross the blood-brain barrier by rare, and possibly pathogen-instigated, inflammatory processes in the brain. Current hypotheses suggest that activation and expansion of cross-reactive T-cells by H1N1/09 influenza infection could have been amplified following the administration of the adjuvanted vaccine, giving rise to a “two-hit” hypothesis. The collective in silico, in vitro, and preclinical in vivo data from recent and ongoing research have progressively refined the hypothetical model of sequential immunological events, and filled multiple knowledge gaps. Though no definitive conclusions can be drawn, the mechanistical model plausibly explains the increased risk of NT1 observed following the 2009-2010 H1N1 pandemic and subsequent vaccination campaign, as outlined in this review.
Collapse
|
10
|
Klaus S, Carolan A, O'Rourke D, Kennedy B. What respiratory physicians should know about narcolepsy and other hypersomnias. Breathe (Sheff) 2022; 18:220157. [PMID: 36865656 PMCID: PMC9973529 DOI: 10.1183/20734735.0157-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Narcolepsy and related central disorders of hypersomnolence may present to the sleep clinic with excessive daytime sleepiness. A strong clinical suspicion and awareness of the diagnostic clues, such as cataplexy, are essential to avoid unnecessary diagnostic delay. This review provides an overview of the epidemiology, pathophysiology, clinical features, diagnostic criteria and management of narcolepsy and related disorders, including idiopathic hypersomnia, Kleine-Levin syndrome (recurrent episodic hypersomnia) and secondary central disorders of hypersomnolence.
Collapse
Affiliation(s)
- Stephen Klaus
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland
| | - Aoife Carolan
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland
| | - Deirdre O'Rourke
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland
| | - Barry Kennedy
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland,Corresponding author: Barry Kennedy ()
| |
Collapse
|
11
|
Latorre D, Federica S, Bassetti CLA, Kallweit U. Narcolepsy: a model interaction between immune system, nervous system, and sleep-wake regulation. Semin Immunopathol 2022; 44:611-623. [PMID: 35445831 PMCID: PMC9519713 DOI: 10.1007/s00281-022-00933-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a rare chronic neurological disorder characterized by an irresistible excessive daytime sleepiness and cataplexy. The disease is considered to be the result of the selective disruption of neuronal cells in the lateral hypothalamus expressing the neuropeptide hypocretin, which controls the sleep-wake cycle. Diagnosis and management of narcolepsy represent still a substantial medical challenge due to the large heterogeneity in the clinical manifestation of the disease as well as to the lack of understanding of the underlying pathophysiological mechanisms. However, significant advances have been made in the last years, thus opening new perspective in the field. This review describes the current knowledge of clinical presentation and pathology of narcolepsy as well as the existing diagnostic criteria and therapeutic intervention for the disease management. Recent evidence on the potential immune-mediated mechanisms that may underpin the disease establishment and progression are also highlighted.
Collapse
Affiliation(s)
| | - Sallusto Federica
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany.,Center for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| |
Collapse
|
12
|
Senel G, Karadeniz D. Neuroanatomical and Etiological Approaches to Secondary Narcolepsy. NEUROL SCI NEUROPHYS 2022. [DOI: 10.4103/nsn.nsn_5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
O'Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. "World in motion" - emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines 2021; 6:158. [PMID: 34934069 PMCID: PMC8692316 DOI: 10.1038/s41541-021-00418-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.
Collapse
|
14
|
Giannoccaro MP, Gastaldi M, Rizzo G, Jacobson L, Vacchiano V, Perini G, Capellari S, Franciotta D, Costa A, Liguori R, Vincent A. Antibodies to neuronal surface antigens in patients with a clinical diagnosis of neurodegenerative disorder. Brain Behav Immun 2021; 96:106-112. [PMID: 34022370 DOI: 10.1016/j.bbi.2021.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Autoimmune encephalitis due to antibodies against neuronal surface antigens (NSA-Ab) frequently presents with cognitive impairment, often as the first and prevalent manifestation, but few studies have systematically assessed the frequency of NSA-Ab in consecutive patients with established neurodegenerative disorders. METHODS We studied sera of 93 patients (41F, 52 M), aged 69.2 ± 9.4 years, with neurodegenerative conditions, and of 50 population controls aged over 60 years. Specific NSA-Abs were investigated by antigen-specific cell-based assays (CBAs). After testing, we evaluated the association between the NSA-Abs and clinical, CSF and radiological features. RESULTS The patients included 13/93 (13.8%) who had specific antibodies to neuronal surface antigens: 6 GlyR, 3 GABAAR (1 also positive for AMPAR), 2 LGI1, 1 CASPR2 and 1 GABABR. One of the 50 controls (2%) was positive for NMDAR antibody and the others were negative on all tests (P = 0.020). No difference was observed in antibody frequency between patients presenting with parkinsonism and those presenting with dementia (P = 0.55); however, NSA-Ab were more frequent in those with unclassified forms of dementia (5/13, 38.5%) than in those with unclassified parkinsonism (2/9, 22.2%) or with classified forms of dementia (4/43, 9.3%) or parkinsonism (2/28, 7.1%) (P = 0.03). A logistic regression analysis demonstrated that an unclassified diagnosis (P = 0.02) and an irregular progression (P = 0.024) were predictors of seropositive status. CONCLUSIONS NSA-Abs are relatively frequent in patients with neurodegenerative disorders, particularly in those with an irregular disease progression of atypical clinical features, inconsistent with a recognized diagnosis. The significance of these antibodies and their possible primary or secondary roles need to be investigated in prospective studies.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy.
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | - Giulia Perini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | | | - Alfredo Costa
- Unit of Behavioral Neurology, IRCCS Fondazione Mondino, and Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Vringer M, Kornum BR. Emerging therapeutic targets for narcolepsy. Expert Opin Ther Targets 2021; 25:559-572. [PMID: 34402358 DOI: 10.1080/14728222.2021.1969361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Narcolepsy type 1 (NT1) and type 2 (NT2) are chronic sleep disorders primarily characterized by excessive daytime sleepiness (EDS), disturbed sleep-wake regulation, and reduced quality of life. The precise disease mechanism is unclear, but it is certain that in NT1 the hypocretin/orexin (Hcrt) system is affected. Current treatment options are symptomatic - they improve EDS and/or reduce cataplexy. Complete symptom control is relatively rare - particularly problematic is residual daytime sleepiness. AREAS COVERED This review discusses various emerging treatment targets for narcolepsy. The focus is on the Hcrt receptors but included are also wake-promoting pathways, and sleep-stabilization through GABAergic mechanisms. Additionally, we discuss the potential of targeting the likely autoimmune basis of narcolepsy. PubMed and ClinicalTrials.gov was searched through June 2021 for relevant information. EXPERT OPINION Targeting Hcrt receptors has the potential to alleviate narcolepsy symptoms. Results from ongoing drug development programs are promising, but care needs to be taken when evaluating potential side effects. It is still largely unknown what roles Hcrt receptors play in the periphery and how these might be affected by treatment. Immunotherapies could potentially target the core pathophysiology of narcolepsy, but more work is needed to identify the best therapeutic target for this approach.
Collapse
Affiliation(s)
- Marieke Vringer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (Mhens), Maastricht University, Maastricht, Netherlands
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Luo G, Yogeshwar S, Lin L, Mignot EJM. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci Rep 2021; 11:7841. [PMID: 33837283 PMCID: PMC8035403 DOI: 10.1038/s41598-021-87481-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαβ clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.
Collapse
Affiliation(s)
- Guo Luo
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Selina Yogeshwar
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emmanuel Jean-Marie Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Giannoccaro MP, Liguori R, Plazzi G, Pizza F. Reviewing the Clinical Implications of Treating Narcolepsy as an Autoimmune Disorder. Nat Sci Sleep 2021; 13:557-577. [PMID: 34007229 PMCID: PMC8123964 DOI: 10.2147/nss.s275931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a lifelong sleep disorder, primarily characterized clinically by excessive daytime sleepiness and cataplexy and pathologically by the loss of hypocretinergic neurons in the lateral hypothalamus. Despite being a rare disorder, the NT1-related burden for patients and society is relevant due to the early onset and chronic nature of this condition. Although the etiology of narcolepsy is still unknown, mounting evidence supports a central role of autoimmunity. To date, no cure is available for this disorder and current treatment is symptomatic. Based on the hypothesis of the autoimmune etiology of this disease, immunotherapy could possibly represent a valid therapeutic option. However, contrasting and limited results have been provided so far. This review discusses the evidence supporting the use of immunotherapy in narcolepsy, the outcomes obtained so far, current issues and future directions.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Giannoccaro MP, Pizza F, Jacobson L, Liguori R, Plazzi G, Vincent A. Neuronal surface antibodies are common in children with narcolepsy and active movement disorders. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323638. [PMID: 32943584 DOI: 10.1136/jnnp-2020-323638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Maria Pia Giannoccaro
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
19
|
Dietmann A, Horn MP, Schinkelshoek MS, Fronczek R, Salmen A, Bargiotas P, Lammers GJ, Khatami R, Bassetti CLA. Conventional autoantibodies against brain antigens are not routinely detectable in serum and CSF of narcolepsy type 1 and 2 patients. Sleep Med 2020; 75:188-191. [PMID: 32858359 DOI: 10.1016/j.sleep.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 11/24/2022]
Abstract
Narcolepsy with cataplexy (NT1) is a chronic hypothalamic disorder with a presumed immune-mediated etiology leading to a loss of hypocretin neurons. Previous studies reported conflicting results in terms of presence of auto-antibodies involved in narcolepsy pathophysiology. A total of 86 patients with primary/idiopathic narcolepsy (74 NT1, 12 NT2) and 23 control patients with excessive daytime sleepiness due to other causes were tested for the presence of a wide range of anti-neuronal antibodies in both serum and cerebrospinal fluid (CSF). Anti-neuronal antibodies were rarely found in patients with narcolepsy (n = 2) and in controls (n = 1). Our results are in line with previous reports. We can therefore support the current evidence, that conventional anti-neuronal antibodies are not routinely detected during the workup of NT1 and other CDH patients.
Collapse
Affiliation(s)
- Anelia Dietmann
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Michael P Horn
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Mink S Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Sleep-wake Centre SEIN, Heemstede, the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Sleep-wake Centre SEIN, Heemstede, the Netherlands
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Panagiotis Bargiotas
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Gert J Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Sleep-wake Centre SEIN, Heemstede, the Netherlands
| | - Ramin Khatami
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland; Center for Sleep Medicine and Sleep Research, Clinic Barmelweid, Barmelweid, Switzerland
| | - Claudio L A Bassetti
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland; Neurology Department, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
20
|
Giacomozzi C, Guaraldi F, Cambiaso P, Niceta M, Verrillo E, Tartaglia M, Cutrera R. Anti-Hypothalamus and Anti-Pituitary Auto-antibodies in ROHHAD Syndrome: Additional Evidence Supporting an Autoimmune Etiopathogenesis. Horm Res Paediatr 2020; 92:124-132. [PMID: 31039576 DOI: 10.1159/000499163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD) is a very rare and complex pediatric syndrome characterized by altered hypothalamic thermal regulation, pain threshold, and respiratory control, hyperphagia with rapid weight gain and, often, hypothalamic-pituitary dysfunction. Its etiopathogenesis remains undetermined. We investigated the presence of alterations to target genes and hypothalamic-pituitary autoimmunity in a patient with -ROHHAD syndrome. METHODS A 3-year-old girl presenting with obesity after rapid weight gain was diagnosed with ROHHAD syndrome based on clinical features and abnormal biochemical and functional testing results. Because of worsening of rapid symptoms and demonstration of oligoclonal bands on cerebrospinal fluid (CSF) analysis, she was treated with plasmapheresis, methylprednisolone, anti-CD20 monoclonal antibodies, and azathioprine. Despite initial partial clinical improvement, the patient soon died of cardiorespiratory arrest. Post-mortem, whole exome sequencing, high-resolution comparative genomic hybridization array, and optimized indirect immunofluorescence (IIF) analysis were performed on blood and CSF. RESULTS No putative causative genomic variants compatible with dominant or recessive inheritance nor clinically significant structural rearrangement were detected. IIF on serum and CSF demonstrated the presence of anti-pituitary and anti-hypothalamus autoantibodies. CONCLUSIONS These findings support the involvement of autoimmunity in ROHHAD syndrome. However, response to immunosuppressive treatment was only transient and the patient died. Further cases are required to define the complex disease pathogenesis.
Collapse
Affiliation(s)
| | - Federica Guaraldi
- Pituitary Unit, IRCCS Institute of Neurological Sciences of Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Cambiaso
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Verrillo
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy.,Respiratory Unit, Pediatric Academic Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Renato Cutrera
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy.,Respiratory Unit, Pediatric Academic Department, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
21
|
Melén K, Jalkanen P, Kukkonen JP, Partinen M, Nohynek H, Vuorela A, Vaarala O, Freitag TL, Meri S, Julkunen I. No evidence of autoimmunity to human OX 1 or OX 2 orexin receptors in Pandemrix-vaccinated narcoleptic children. J Transl Autoimmun 2020; 3:100055. [PMID: 32743535 PMCID: PMC7388359 DOI: 10.1016/j.jtauto.2020.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Narcolepsy type 1, likely an immune-mediated disease, is characterized by excessive daytime sleepiness and cataplexy. The disease is strongly associated with human leukocyte antigen (HLA) DQB1∗06:02. A significant increase in the incidence of childhood and adolescent narcolepsy was observed after a vaccination campaign with AS03-adjuvanted Pandemrix influenza vaccine in Nordic and several other countries in 2010 and 2011. Previously, it has been suggested that a surface-exposed region of influenza A nucleoprotein, a structural component of the Pandemrix vaccine, shares amino acid residues with the first extracellular domain of the human OX2 orexin/hypocretin receptor eliciting the development of autoantibodies. Here, we analyzed, whether H1N1pdm09 infection or Pandemrix vaccination contributed to the development of autoantibodies to the orexin precursor protein or the OX1 or OX2 receptors. The analysis was based on the presence or absence of autoantibody responses against analyzed proteins. Entire OX1 and OX2 receptors or just their extracellular N-termini were transiently expressed in HuH7 cells to determine specific antibody responses in human sera. Based on our immunofluorescence analysis, none of the 56 Pandemrix-vaccinated narcoleptic patients, 28 patients who suffered from a laboratory-confirmed H1N1pdm09 infection or 19 Pandemrix-vaccinated controls showed specific autoantibody responses to prepro-orexin, orexin receptors or the isolated extracellular N-termini of orexin receptors. We also did not find any evidence for cell-mediated immunity against the N-terminal epitopes of OX2. Our findings do not support the hypothesis that the surface-exposed region of the influenza nucleoprotein A would elicit the development of an immune response against orexin receptors. No evidence of humoral immunity against human OX1 or OX2 orexin receptors. No cross-reactive antibodies between influenza virus NP and orexin receptors. No evidence for cell-mediated immunity against the N-terminal epitopes of OX2.
Collapse
Affiliation(s)
- Krister Melén
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00300, Helsinki, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jyrki P Kukkonen
- Department of Physiology and Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine and Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre Helsinki and Medicum, Faculty of Medicine, University of Helsinki, Finland
| | - Hanna Nohynek
- Infectious Disease Control and Vaccination Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arja Vuorela
- Reseach Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
| | - Outi Vaarala
- Reseach Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
| | - Tobias L Freitag
- Department of Bacteriology and Immunology and Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Turku University Hospital, Clinical Microbiology, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
22
|
Kornum BR. Narcolepsy type 1: what have we learned from immunology? Sleep 2020; 43:5813740. [DOI: 10.1093/sleep/zsaa055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract
Narcolepsy type 1 is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the hypothalamus. Ample genetic and epidemiological evidence points in the direction of a pathogenesis involving the immune system, but this is not considered proof of autoimmunity. In fact, it remains a matter of debate how to prove that a given disease is indeed an autoimmune disease. In this review, a set of commonly used criteria for autoimmunity is described and applied to narcolepsy type 1. In favor of the autoimmune hypothesis are data showing that in narcolepsy type 1 a specific adaptive immune response is directed to hypocretin/orexin neurons. Autoreactive T cells and autoantibodies have been detected in blood samples from patients, but it remains to be seen if these T cells or antibodies are in fact present in the hypothalamus. It is also unclear if the autoreactive T cells and/or autoantibodies can transfer the disease to healthy individuals or animals or if immunization with the proposed autoantigens can induce the disease in animal models. Most importantly, it is still controversial whether suppression of the autoimmune response can prevent disease progression. In conclusion, narcolepsy type 1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, but more and more results are pointing in that direction.
Collapse
Affiliation(s)
- Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Giannoccaro MP, Sallemi G, Liguori R, Plazzi G, Pizza F. Immunotherapy in Narcolepsy. Curr Treat Options Neurol 2020; 22:2. [PMID: 31997035 DOI: 10.1007/s11940-020-0609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Narcolepsy type 1 (NT1) is a chronic and disabling sleep disorder due to the loss of hypocretinergic neurons in the lateral hypothalamus pathophysiologically linked to an autoimmune process. Current treatment is symptomatic, and no cure is available to date. Immunotherapy is considered a promising future therapeutic option, and this review discusses the rationale for immunotherapy in narcolepsy, current evidences of its effects, outcome measures, and future directions. RECENT FINDINGS A limited number of case reports and uncontrolled small case series have reported the effect of different immunotherapies in patients with NT1. These studies were mainly based on the use of intravenous immunoglobulin (IVig), followed by corticosteroids, plasmapheresis, and monoclonal antibodies. Although initial reports showed an improvement of symptoms, particularly when patients were treated close to disease onset, other observations have not confirmed these results. Inadequate timing of treatment, placebo effects, and spontaneous improvement due to the natural disease course can account for these contrasting findings. Moreover, clear endpoints and standardized outcome measures have not been used and are currently missing in the pediatric population. On the basis of the available data, there are no enough evidences to support the use of immunotherapy in NT1. Randomized, controlled studies using clear endpoints and new outcome measures are needed to achieve a definitive answer about the usefulness of these treatments in narcolepsy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giombattista Sallemi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
24
|
Wallenius M, Lind A, Akel O, Karlsson E, Svensson M, Arvidsson E, Ramelius A, Törn C, Palm L, Lernmark Å, Elding Larsson H. Autoantibodies in Pandemrix ®-induced narcolepsy: Nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity 2019; 52:185-191. [PMID: 31328572 DOI: 10.1080/08916934.2019.1643843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Study objectives: Narcolepsy type 1 (NT1) is a chronic sleep disorder characterized by loss of hypocretin-producing neurons. Increased NT1 incidence was observed in Sweden following mass-vaccination with Pandemrix®. Genetic association to HLA DQB1*06:02 implies an autoimmune origin, but target autoantigen remains unknown. Candidate autoantigens for NT1 have previously been identified in solid-phase immunoassays, while autoantibodies against conformation-dependent epitopes are better detected in radiobinding assays. The aims are to determine autoantibody levels against nine candidate autoantigens representing (1) proteins of the hypocretin transmitter system; Preprohypocretin (ppHypocretin), Hypocretin peptides 1 and 2 (HCRT1 and HCRT2) and Hypocretin receptor 2 (HCRTR2); (2) proteins previously associated with NT1; Tribbles homologue 2 (TRIB2), Pro-opiomelanocortin/alpha-melanocyte-stimulating-hormone (POMC/α-MSH) and Prostaglandin D2 Receptor DP1 (DP1); (3) proteins suggested as autoantigens for multiple sclerosis (another HLA DQB1*06:02-associated neurological disease); ATP-dependent Inwardly Rectifying Potassium Channel Kir4.1 (KIR4.1) and Calcium-activated chloride channel Anoctamin 2 (ANO2). Methods: Serum from post-Pandemrix® NT1 patients (n = 31) and their healthy first-degree relatives (n = 66) were tested for autoantibody levels in radiobinding assays separating autoantibody bound from free labelled antigen with Protein A-Sepharose. 125I-labelled HCRT1 and HCRT2 were commercially available while 35S-methionine-labelled ppHypocretin, HCRTR2, TRIB2, α-MSH/POMC, DP1, KIR4.1 or ANO2 was prepared by in vitro transcription translation of respective cDNA. In-house standards were used to express data in arbitrary Units/ml (U/ml). Results: All radiolabelled autoantigens were detected in a concentration-dependent manner by respective standard sera. Levels of autoantibodies in the NT1 patients did not differ from healthy first-degree relatives in any of the nine candidate autoantigens. Conclusions: None of the nine labelled proteins proposed to be autoantigens were detected in the radiobinding assays for conformation-dependent autoantibodies. The results emphasise the need of further studies to identify autoantigen(s) and clarify the mechanisms in Pandemrix®-induced NT1.
Collapse
Affiliation(s)
- Madeleine Wallenius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Emma Karlsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Markus Svensson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Elin Arvidsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Carina Törn
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS , Malmö , Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS , Malmö , Sweden
| |
Collapse
|
25
|
Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 2019; 15:519-539. [DOI: 10.1038/s41582-019-0226-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
|
26
|
Cohet C, van der Most R, Bauchau V, Bekkat-Berkani R, Doherty TM, Schuind A, Tavares Da Silva F, Rappuoli R, Garçon N, Innis BL. Safety of AS03-adjuvanted influenza vaccines: A review of the evidence. Vaccine 2019; 37:3006-3021. [DOI: 10.1016/j.vaccine.2019.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
|
27
|
Giannoccaro MP, Cossins J, Sørland K, Fluge Ø, Vincent A. Searching for Serum Antibodies to Neuronal Proteins in Patients With Myalgic Encephalopathy/Chronic Fatigue Syndrome. Clin Ther 2019; 41:836-847. [PMID: 31053295 DOI: 10.1016/j.clinthera.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE A role for the immune system in causing myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is long suspected, but few studies have looked for specific autoantibodies that might contribute to the symptoms. Our aim was to look for evidence of antibodies to neuronal proteins in patients with ME/CSF. METHODS Sera samples from 50 patients and 50 healthy individuals were sent coded to the Neuroimmunology Laboratory in Oxford. Screening for antibody binding to neuronal tissue was performed on brain tissue and neuronal cultures. Specific serum antibodies were assessed by antigen-specific cell-based assays and radioimmunoassays. After antibody testing, the associations between seropositive status and clinical data were investigated. FINDINGS Overall, 8 patients and 11 participants were found to have some serum immunoreactivity toward neuronal or neuromuscular junction proteins, but only 1 patient and 2 participants had specific serum antibodies. Nevertheless, seropositive status in patients with ME was associated with shorter duration since onset and a more severe disease. IMPLICATIONS The results indicate no overall increased frequency of antibodies to neuronal proteins in ME/CSF and no evidence of a specific antibody that might be causative or contribute to clinical features in patients. However, the association of seropositive status with shorter duration of disease and more severe symptoms suggests a possible role of antibodies at onset in some patients and should be the focus of future studies.
Collapse
Affiliation(s)
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Abstract
This work shows that the amidated terminal ends of the secreted hypocretin (HCRT) peptides (HCRTNH2) are autoantigens in type 1 narcolepsy, an autoimmune disorder targeting HCRT neurons. The autoimmune process is usually initiated by influenza A flu infections, and a particular piece of the hemagglutinin (HA) flu protein of the pandemic 2009 H1N1 strain was identified as a likely trigger. This HA epitope has homology with HCRTNH2 and T cells cross-reactive to both epitopes are involved in the autoimmune process by molecular mimicry. Genes associated with narcolepsy mark the particular HLA heterodimer (DQ0602) involved in presentation of these antigens and modulate expression of the specific T cell receptor segments (TRAJ24 and TRBV4-2) involved in T cell receptor recognition of these antigens, suggesting causality. Type 1 narcolepsy (T1N) is caused by hypocretin/orexin (HCRT) neuronal loss. Association with the HLA DQB1*06:02/DQA1*01:02 (98% vs. 25%) heterodimer (DQ0602), T cell receptors (TCR) and other immune loci suggest autoimmunity but autoantigens are unknown. Onset is seasonal and associated with influenza A, notably pandemic 2009 H1N1 (pH1N1) infection and vaccination (Pandemrix). Peptides derived from HCRT and influenza A, including pH1N1, were screened for DQ0602 binding and presence of cognate DQ0602 tetramer-peptide–specific CD4+ T cells tested in 35 T1N cases and 22 DQ0602 controls. Higher reactivity to influenza pHA273–287 (pH1N1 specific), PR8 (H1N1 pre-2009 and H2N2)-specific NP17–31 and C-amidated but not native version of HCRT54–66 and HCRT86–97 (HCRTNH2) were observed in T1N. Single-cell TCR sequencing revealed sharing of CDR3β TRBV4-2-CASSQETQGRNYGYTF in HCRTNH2 and pHA273–287-tetramers, suggesting molecular mimicry. This public CDR3β uses TRBV4-2, a segment modulated by T1N-associated SNP rs1008599, suggesting causality. TCR-α/β CDR3 motifs of HCRT54–66-NH2 and HCRT86–97-NH2 tetramers were extensively shared: notably public CDR3α, TRAV2-CAVETDSWGKLQF-TRAJ24, that uses TRAJ24, a chain modulated by T1N-associated SNPs rs1154155 and rs1483979. TCR-α/β CDR3 sequences found in pHA273–287, NP17–31, and HCRTNH2 tetramer-positive CD4+ cells were also retrieved in single INF-γ–secreting CD4+ sorted cells stimulated with Pandemrix, independently confirming these results. Our results provide evidence for autoimmunity and molecular mimicry with flu antigens modulated by genetic components in the pathophysiology of T1N.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW After the connection between AS03-adjuvanted pandemic H1N1 vaccine Pandemrix and narcolepsy was recognized in 2010, research on narcolepsy has been more intensive than ever before. The purpose of this review is to provide the reader with current concepts and recent findings on the Pandemrix-associated narcolepsy. RECENT FINDINGS After the Pandemrix vaccination campaign in 2009-2010, the risk of narcolepsy was increased 5- to 14-fold in children and adolescents and 2- to 7-fold in adults. According to observational studies, the risk of narcolepsy was elevated for 2 years after the Pandemrix vaccination. Some confounding factors and potential diagnostic biases may influence the observed narcolepsy risk in some studies, but it is unlikely that they would explain the clearly increased incidence in all the countries where Pandemrix was used. An increased risk of narcolepsy after natural H1N1 infection was reported from China, where pandemic influenza vaccination was not used. There is more and more evidence that narcolepsy is an autoimmune disease. All Pandemrix-associated narcolepsy cases have been positive for HLA class II DQB1*06:02 and novel predisposing genetic factors directly linking to the immune system have been identified. Even though recent studies have identified autoantibodies against multiple neuronal structures and other host proteins and peptides, no specific autoantigens that would explain the disease mechanism in narcolepsy have been identified thus far. There was a marked increase in the incidence of narcolepsy after Pandemrix vaccination, especially in adolescents, but also in young adults and younger children. All vaccine-related cases were of narcolepsy type 1 characterized by hypocretin deficiency in the central nervous system. The disease phenotype and the severity of symptoms varied considerably in children and adolescents suffering from Pandemrix-associated narcolepsy, but they were indistinguishable from the symptoms of idiopathic narcolepsy. Narcolepsy type 1 is most likely an autoimmune disease, but the mechanisms have remained elusive.
Collapse
Affiliation(s)
- Tomi Sarkanen
- Department of Neurology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Anniina Alakuijala
- Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
- HUS Medical Imaging Center, Department of Clinical Neurophysiology, Helsinki University Central Hospital, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Markku Partinen
- Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland.
- Helsinki Sleep Clinic, Vitalmed Research Center, Helsinki, Finland.
| |
Collapse
|
30
|
Moresco M, Lecciso M, Ocadlikova D, Filardi M, Melzi S, Kornum BR, Antelmi E, Pizza F, Mignot E, Curti A, Plazzi G. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease. Sleep Med 2018. [DOI: 10.1016/j.sleep.2017.11.1150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases. PLoS One 2017; 12:e0187305. [PMID: 29220370 PMCID: PMC5722318 DOI: 10.1371/journal.pone.0187305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background A recent publication suggested molecular mimicry of a nucleoprotein (NP) sequence from A/Puerto Rico/8/1934 (PR8) strain, the backbone used in the construction of the reassortant strain X-179A that was used in Pandemrix® vaccine, and reported on anti-hypocretin (HCRT) receptor 2 (anti-HCRTR2) autoantibodies in narcolepsy, mostly in post Pandemrix® narcolepsy cases (17 of 20 sera). In this study, we re-examined this hypothesis through mass spectrometry (MS) characterization of Pandemrix®, and two other pandemic H1N1 (pH1N1)-2009 vaccines, Arepanrix® and Focetria®, and analyzed anti-HCRTR2 autoantibodies in narcolepsy patients and controls using three independent strategies. Methods MS characterization of Pandemrix® (2 batches), Arepanrix® (4 batches) and Focetria® (1 batch) was conducted with mapping of NP 116I or 116M spectrogram. Two sets of narcolepsy cases and controls were used: 40 post Pandemrix® narcolepsy (PP-N) cases and 18 age-matched post Pandemrix® controls (PP-C), and 48 recent (≤6 months) early onset narcolepsy (EO-N) cases and 70 age-matched other controls (O-C). Anti-HCRTR2 autoantibodies were detected using three strategies: (1) Human embryonic kidney (HEK) 293T cells with transient expression of HCRTR2 were stained with human sera and then analyzed by flow cytometer; (2) In vitro translation of [35S]-radiolabelled HCRTR2 was incubated with human sera and immune complexes of autoantibody and [35S]-radiolabelled HCRTR2 were quantified using a radioligand-binding assay; (3) Optical density (OD) at 450 nm (OD450) of human serum immunoglobulin G (IgG) binding to HCRTR2 stably expressed in Chinese hamster ovary (CHO)-K1 cell line was measured using an in-cell enzyme-linked immunosorbent assay (ELISA). Results NP 116M mutations were predominantly present in all batches of Pandemrix®, Arepanrix® and Focetria®. The wild-type NP109-123 (ILYDKEEIRRIWRQA), a mimic to HCRTR234-45 (YDDEEFLRYLWR), was not found to bind to DQ0602. Three or four subjects were found positive for anti-HCRTR2 autoantibodies using two strategies or the third one, respectively. None of the post Pandemrix® narcolepsy cases (0 of 40 sera) was found positive with all three strategies. Conclusion Anti-HCRTR2 autoantibody is not a significant biological feature of narcolepsy or of post Pandemrix® autoimmune responses.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Summarize the recent findings in narcolepsy focusing on the environmental and genetic risk factors in disease development. RECENT FINDINGS Both genetic and epidemiological evidence point towards an autoimmune mechanism in the destruction of orexin/hypocretin neurons. Recent studies suggest both humoral and cellular immune responses in the disease development. SUMMARY Narcolepsy is a severe sleep disorder, in which neurons producing orexin/hypocretin in the hypothalamus are destroyed. The core symptoms of narcolepsy are debilitating, extreme sleepiness, cataplexy, and abnormalities in the structure of sleep. Both genetic and epidemiological evidence point towards an autoimmune mechanism in the destruction of orexin/hypocretin neurons. Importantly, the highest environmental risk is seen with influenza-A infection and immunization. However, how the cells are destroyed is currently unknown. In this review we summarize the disease symptoms, and focus on the immunological findings in narcolepsy. We also discuss the environmental and genetic risk factors as well as propose a model for disease development.
Collapse
Affiliation(s)
- Melodie Bonvalet
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
| | - Hanna M. Ollila
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
- National Institute for Health and Welfare, Public Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Aditya Ambati
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
| | - Emmanuel Mignot
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
| |
Collapse
|
33
|
Abstract
Narcolepsy type 1 (NT1) is a rare sleep disorder caused by the very specific loss of hypothalamic hypocretin (Hcrt)/orexin neurons. The exact underlying process leading to this destruction is yet unknown, but indirect evidence strongly supports an autoimmune origin. The association with immune-related genetic factors, in particular the strongest association ever reported in a disease with an allele of a human leukocyte antigen (HLA) gene, and with environmental factors (i.e., the H1N1 influenza infection and vaccination during the pandemic in 2009) are in favor of such a hypothesis. The loss of Hcrt neurons is irreversible, and NT1 is currently an incurable and disabling condition. Patients are managed with symptomatic medication, targeting the main symptoms (excessive daytime sleepiness, cataplexy, disturbed nocturnal sleep), and they require a lifelong treatment. Improved diagnostic tools, together with an increased understanding of the pathogenesis of NT1, may lead to new therapeutic and even preventive interventions. One future treatment could include Hcrt replacement, but this neuropeptide does not cross the blood-brain barrier. However, Hcrt receptor agonists may be promising candidates to treat NT1. Another option is immune-based therapies, administered at disease onset, with already some initiatives to slow down or stop the dysimmune process. Whether immune-based therapy could be beneficial in NT1 remains, however, to be proven.
Collapse
|