1
|
Saputro RE, Chou CC, Lin YY, Tarumi T, Liao YH. Exercise-mediated modulation of autonomic nervous system and inflammatory response in sleep-deprived individuals: A narrative reviews of implications for cardiovascular health. Auton Neurosci 2025; 259:103256. [PMID: 40073691 DOI: 10.1016/j.autneu.2025.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Sleep deprivation is a growing concern in cardiovascular risk, causing physiological disruptions like autonomic dysregulation and inflammation. Recent research indicates that sleep deprivation increases sympathetic nervous activity while decreasing parasympathetic activity, leading to increased blood pressure, impaired endothelial function, and heightened inflammation. Exercise has emerged as a non-pharmacological approach to increase cardiovascular health. However, the impact of exercise on sleep deprivation-induced changes in autonomic activity and inflammation remains unclear. To explore this, we reviewed studies investigating the effects of acute exercise on autonomic regulation and inflammatory markers following sleep deprivation. We conducted a narrative review of the literature. PubMed/MEDLINE, Google Scholar, and Web of Science (WOS) searched the articles between May 2022 and April 2023. The papers had to: [1] focus on recent studies between 2000 and 2023; [2] consist of sleep deprivation participants; [3] be published in English. Acute moderate- to high-intensity exercise after sleep deprivation may reduce parasympathetic activity, trigger pro-inflammatory cytokines, and delay recovery to normal levels. In contrast, regular exercise routines may mitigate the adverse effects of sleep deprivation on autonomic regulation and reduce systemic inflammation. Sleep deprivation can lead to autonomic imbalance, increased blood pressure, and increased inflammatory responses, which are further amplified by acute exercise, increasing the cardiovascular burden. When sleep deprivation occurs, exercise intensity and timing should be carefully chosen to avoid adverse cardiovascular health risks.
Collapse
Affiliation(s)
- Riki Edo Saputro
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan; Department of Physical Education, Universitas Wahid Hasyim, Semarang 50224, Indonesia
| | - Chun-Chung Chou
- Physical Education Office, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Takashi Tarumi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| |
Collapse
|
2
|
Liu W, Wang S, Gu H, Li R. Heart rate variability, a potential assessment tool for identifying anxiety, depression, and sleep disorders in elderly individuals. Front Psychiatry 2025; 16:1485183. [PMID: 39916745 PMCID: PMC11798971 DOI: 10.3389/fpsyt.2025.1485183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction This study investigates how anxiety, depression, and sleep disorders impact heart rate variability (HRV) in the elderly, exploring the clinical implications of HRV changes. Methods We examined 355 patients (163 men, 192 women) at Xijing Hospital from July 2021 to December 2022 during health check-ups. Demographics were recorded, and emotional status was assessed using the Hamilton Anxiety Scale (HAMA) and the Hamilton Depression Scale (HAMD). The Pittsburgh Sleep Quality Scale (PSQI) evaluated sleep quality. Patients were categorized into groups A-G based on the presence of emotional states and sleep disorders. HRV indices-SDNN, SDANN, RMSSD, PNN50, LF/HF, LF, and HF-were analyzed using ANOVA and multivariate logistic regression. Results No statistically significant differences were observed in demographic, clinical, and lifestyle factors across the eight groups. Variables assessed included age, sex, body mass index (BMI), fasting blood glucose, glycated hemoglobin (HbA1c), blood lipids, blood pressure, heart rate, and histories of smoking and alcohol consumption. Additionally, the presence of hypertension, diabetes, coronary heart disease, marital status, income, and education level were evaluated, with all showing equivalence (P > 0.05). Significant differences in HRV indices were observed across groups, particularly in group G (patients with anxiety, depression and sleep disorders), which showed decreased HRV parameters except LF/HF, and group H (control group), which showed increased parameters, also except LF/HF (P < 0.01). Anxiety was an independent risk factor for reduced SDNN, SDANN, and LF (P ≤ 0.01), and increased LF/HF ratio (P < 0.01). Depression was linked to decreased SDNN, RMSSD, PNN50, and HF (P < 0.05). Sleep disorders independently predicted reduced PNN50 and SDANN (P < 0.01). Conclusion HRV indices of individuals with varying emotional states and sleep disorders exhibited varying degrees of decrease. Anxiety, depression, and sleep disorders presented a superimposed effect on HRV. SDNN, SDANN, RMSSD, PNN50, HF and LF of HRV are of great reference value in the diagnosis of emotional and sleep disorders. For elderly patients experiencing cognitive impairment, HRV is anticipated to serve as a convenient and effective tool for assessing mood and sleep disorders.
Collapse
Affiliation(s)
| | | | | | - Rong Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Jain N, Lehrer HM, Chin BN, Tracy EL, Evans MA, Krafty RT, Buysse DJ, Hall MH. Heart rate and heart rate variability following sleep deprivation in retired night shift workers and retired day workers. Psychophysiology 2023; 60:e14374. [PMID: 37409638 PMCID: PMC10770290 DOI: 10.1111/psyp.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Shift workers experience poor sleep and dysregulated cardiac autonomic function during sleep. However, it is unknown if this dysregulation persists into retirement, potentially accelerating the age-associated risk for adverse cardiovascular outcomes. Using sleep deprivation as a physiological challenge to cardiovascular autonomic function, we compared heart rate (HR) and high-frequency heart rate variability (HF-HRV) during baseline and recovery sleep following sleep deprivation between retired night shift and day workers. Participants were retired night shift (N = 33) and day workers (N = 37) equated on age (mean [standard deviation] = 68.0 [5.6] years), sex (47% female), race/ethnicity (86% White), and body mass index. Participants completed a 60-h lab protocol including one night of baseline polysomnography-monitored sleep, followed by 36 h of sleep deprivation and one night of recovery sleep. Continuously recorded HR was used to calculate HF-HRV. Linear mixed models compared HR and HF-HRV during non-rapid eye movement (NREM) and REM sleep between groups during baseline and recovery nights. Groups did not differ on HR or HF-HRV during NREM or REM sleep (ps > .05) and did not show differential responses to sleep deprivation. In the full sample, HR increased and HF-HRV decreased from baseline to recovery during NREM (ps < .05) and REM (ps < .01). Both groups exhibited cardiovascular autonomic changes during recovery sleep following 36 h of sleep deprivation. Sleep deprivation appears to induce cardiovascular autonomic changes that persist into recovery sleep in older adults, regardless of shift work history.
Collapse
Affiliation(s)
- Naveen Jain
- School of Medicine, University of Pittsburgh
| | | | | | | | | | - Robert T. Krafty
- Department of Biostatistics and Bioinformatics, Emory University
| | | | | |
Collapse
|
4
|
Raizen DM, Mullington J, Anaclet C, Clarke G, Critchley H, Dantzer R, Davis R, Drew KL, Fessel J, Fuller PM, Gibson EM, Harrington M, Ian Lipkin W, Klerman EB, Klimas N, Komaroff AL, Koroshetz W, Krupp L, Kuppuswamy A, Lasselin J, Lewis LD, Magistretti PJ, Matos HY, Miaskowski C, Miller AH, Nath A, Nedergaard M, Opp MR, Ritchie MD, Rogulja D, Rolls A, Salamone JD, Saper C, Whittemore V, Wylie G, Younger J, Zee PC, Craig Heller H. Beyond the symptom: the biology of fatigue. Sleep 2023; 46:zsad069. [PMID: 37224457 PMCID: PMC10485572 DOI: 10.1093/sleep/zsad069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
Collapse
Affiliation(s)
- David M Raizen
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Janet Mullington
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hugo Critchley
- Brighton and Sussex Medical School Department of Neuroscience, University of Sussex, Brighton, UK
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald Davis
- Department of Biochemistry and Genetics, Stanford University, Palo Alto, CA, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Josh Fessel
- Division of Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Patrick M Fuller
- Department of Neurological Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Mary Harrington
- Department of Psychology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, and Departments of Neurology and Pathology, Columbia University, New York City, NY, USA
| | - Elizabeth B Klerman
- Division of Sleep Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Klimas
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Anthony L Komaroff
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Krupp
- Department of Neurology, NYU Grossman School of Medicine, NYC, NY, USA
| | - Anna Kuppuswamy
- University College London, Queen Square Institute of Neurology, London, England
| | - Julie Lasselin
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Laura D Lewis
- Center for Systems Neuroscience, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Heidi Y Matos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maiken Nedergaard
- Departments of Neurology and Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark R Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Penn Center for Precision Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard University, Boston, MA, USA
| | - Asya Rolls
- Rappaport Institute for Medical Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Clifford Saper
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Vicky Whittemore
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Wylie
- Rocco Ortenzio Neuroimaging Center at Kessler Foundation, East Hanover, NJ, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Phyllis C Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - H Craig Heller
- Department of Biology, Stanford University and Sleep Research Society, Stanford, CA, USA
| |
Collapse
|
5
|
Ma Y, Yang H, Vazquez M, Buraks O, Haack M, Mullington JM, Goldstein MR. Dismantling the Component-Specific Effects of Yogic Breathing: Feasibility of a Fully Remote Three-Arm RCT with Virtual Laboratory Visits and Wearable Physiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3180. [PMID: 36833875 PMCID: PMC9958552 DOI: 10.3390/ijerph20043180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Despite the growing research base examining the benefits and physiological mechanisms of slow-paced breathing (SPB), mindfulness (M), and their combination (as yogic breathing, SPB + M), no studies have directly compared these in a "dismantling" framework. To address this gap, we conducted a fully remote three-armed feasibility study with wearable devices and video-based laboratory visits. Eighteen healthy participants (age 18-30 years, 12 female) were randomized to one of three 8-week interventions: slow-paced breathing (SPB, N = 5), mindfulness (M, N = 6), or yogic breathing (SPB + M, N = 7). The participants began a 24-h heart rate recording with a chest-worn device prior to the first virtual laboratory visit, consisting of a 60-min intervention-specific training with guided practice and experimental stress induction using a Stroop test. The participants were then instructed to repeat their assigned intervention practice daily with a guided audio, while concurrently recording their heart rate data and completing a detailed practice log. The feasibility was determined using the rates of overall study completion (100%), daily practice adherence (73%), and the rate of fully analyzable data from virtual laboratory visits (92%). These results demonstrate feasibility for conducting larger trial studies with a similar fully remote framework, enhancing the ecological validity and sample size that could be possible with such research designs.
Collapse
Affiliation(s)
- Yan Ma
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Huan Yang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Department of Internal Medicine, Brookdale Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Michael Vazquez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Buraks
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janet M. Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R. Goldstein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Costa MD, Heckbert SR, Redline S, Goldberger AL. Method to quantify the impact of sleep on cardiac neuroautonomic functionality: application to the prediction of cardiovascular events in the Multi-Ethnic Study of Atherosclerosis. Am J Physiol Regul Integr Comp Physiol 2022; 323:R968-R978. [PMID: 36222857 PMCID: PMC9829462 DOI: 10.1152/ajpregu.00184.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 01/21/2023]
Abstract
We introduce the concept of cardiac neuroautonomic renewability and a method for its quantification. This concept refers to the involuntary nervous system's capacity to improve cardiac control in response to restorative interventions, such as sleep. We used the change in heart rate fragmentation (ΔHRF), before sleep onset compared with after sleep termination, to quantify the restorative effects of sleep. We hypothesized that the ability to improve cardiac neuroautonomic functionality would diminish with age and be associated with lower risk of major adverse cardiovascular events (MACE). We analyzed the ECG channel of polysomnographic recordings from an ancillary investigation of the Multi-Ethnic Study of Atherosclerosis (MESA). In a cohort of 659 participants (mean ± SD age, 69.7 ± 8.8; 42% male), HRF was significantly (P < 0.001) lower after sleep (before: 74 ± 12%, after: 67 ± 13%). Furthermore, the magnitude of the decrease significantly (P < 0.001) diminished with cross-sectional age. In addition, a larger reduction in HRF following sleep (i.e., higher ΔHRF) was associated with lower risk of MACE, independent of traditional cardiovascular risk factors and current measures of sleep quality. Specifically, over a mean follow-up period of 6.4 ± 1.6 yr, in which 60 participants had their first MACE, a one-SD (12%) increase in ΔHRF was associated with a 36% (95% CI: 12%-53%) decrease in the risk of MACE. The results demonstrate the restorative impact of sleep on heart rate control. As such they support the concept of cardiac neuroautonomic renewability and the utility of ΔHRF for its quantification.
Collapse
Affiliation(s)
- Madalena D Costa
- Department of Medicine, Beth Israel Deaconess Medical Center, Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine, Harvard Medical School, Boston, Massachusetts
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ary L Goldberger
- Department of Medicine, Beth Israel Deaconess Medical Center, Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Yamazaki EM, Rosendahl-Garcia KM, Casale CE, MacMullen LE, Ecker AJ, Kirkpatrick JN, Goel N. Left Ventricular Ejection Time Measured by Echocardiography Differentiates Neurobehavioral Resilience and Vulnerability to Sleep Loss and Stress. Front Physiol 2022; 12:795321. [PMID: 35087419 PMCID: PMC8787291 DOI: 10.3389/fphys.2021.795321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
There are substantial individual differences (resilience and vulnerability) in performance resulting from sleep loss and psychosocial stress, but predictive potential biomarkers remain elusive. Similarly, marked changes in the cardiovascular system from sleep loss and stress include an increased risk for cardiovascular disease. It remains unknown whether key hemodynamic markers, including left ventricular ejection time (LVET), stroke volume (SV), heart rate (HR), cardiac index (CI), blood pressure (BP), and systemic vascular resistance index (SVRI), differ in resilient vs. vulnerable individuals and predict differential performance resilience with sleep loss and stress. We investigated for the first time whether the combination of total sleep deprivation (TSD) and psychological stress affected a comprehensive set of hemodynamic measures in healthy adults, and whether these measures differentiated neurobehavioral performance in resilient and vulnerable individuals. Thirty-two healthy adults (ages 27-53; 14 females) participated in a 5-day experiment in the Human Exploration Research Analog (HERA), a high-fidelity National Aeronautics and Space Administration (NASA) space analog isolation facility, consisting of two baseline nights, 39 h TSD, and two recovery nights. A modified Trier Social Stress Test induced psychological stress during TSD. Cardiovascular measure collection [SV, HR, CI, LVET, BP, and SVRI] and neurobehavioral performance testing (including a behavioral attention task and a rating of subjective sleepiness) occurred at six and 11 timepoints, respectively. Individuals with longer pre-study LVET (determined by a median split on pre-study LVET) tended to have poorer performance during TSD and stress. Resilient and vulnerable groups (determined by a median split on average TSD performance) showed significantly different profiles of SV, HR, CI, and LVET. Importantly, LVET at pre-study, but not other hemodynamic measures, reliably differentiated neurobehavioral performance during TSD and stress, and therefore may be a biomarker. Future studies should investigate whether the non-invasive marker, LVET, determines risk for adverse health outcomes.
Collapse
Affiliation(s)
- Erika M. Yamazaki
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | | | - Courtney E. Casale
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Laura E. MacMullen
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adrian J. Ecker
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James N. Kirkpatrick
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Letzen JE, Robinson M, Saletin J, Sheinberg R, Smith MT, Campbell CM. Racial disparities in sleep-related cardiac function in young, healthy adults: Implications for cardiovascular-related health. Sleep 2021; 44:6313209. [PMID: 34214173 DOI: 10.1093/sleep/zsab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES Considerable evidence shows that individuals from marginalized racial/ethnic groups in the US experience greater rates of sleep disturbance and cardiovascular complications. Because sleep is a modifiable factor that is critically involved in cardiovascular health, improved understanding of the association between sleep and cardiovascular health during early adulthood can prevent cardiovascular disparities. This study examined racial/ethnic differences in cardiovascular function during sleep using heart-rate and heart-rate-variability analyses. METHODS Participants in this laboratory-based sleep study included healthy, "good sleepers" who were in early adulthood and resided in the US at the time of participation [14 non-Hispanic Black (NHB; age=30.9(6.6), 57% female), 12 Asian (Asian, age=26.0(5.2), 42% female), and 24 non-Hispanic white (NHW; age=24.6(5.8), 79% female)]. RESULTS After adjusting for demographic factors and an apnea-hypopnea index, we found significantly higher heart rate within NREM Stage 2 (N2) (b=-22.6, p=.04) and REM sleep (b=-25.8, p=.048) and lower heart rate variability during N2 sleep (b=-22.6, p=.04) among NHB individuals compared to NHW individuals. Further, NHB and Asian participants demonstrated significantly lower percent of time in slow wave sleep (SWS) compared to NHW participants (NHB: b=-22.6, p=.04; Asian: b=-22.6, p=.04). Individuals' percent of time in SWS significantly mediated differences in heart rate during N2 [indirect=0.94, 95% CI (0.03, 2.68)] and REM sleep [indirect=1.02, 95% CI (0.04, 3.04)]. CONCLUSIONS Our results showed disparities in sleep-related cardiovascular function in early adulthood that are mediated by SWS. These data suggest targeting sleep health in early adulthood might help reduce cardiovascular disease burden on individuals from marginalized groups.
Collapse
Affiliation(s)
- Janelle E Letzen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21224 USA
| | - Mercedes Robinson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02906 USA
| | - Jared Saletin
- Department of Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Rosanne Sheinberg
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287 USA
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21224 USA
| | - Claudia M Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21224 USA
| |
Collapse
|
9
|
Yang H, Baltzis D, Bhatt V, Haack M, Meier-Ewert HK, Gautam S, Veves A, Mullington JM. Macro- and microvascular reactivity during repetitive exposure to shortened sleep: sex differences. Sleep 2021; 44:zsaa257. [PMID: 33249482 PMCID: PMC8120341 DOI: 10.1093/sleep/zsaa257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/17/2020] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have reported strong association between sleep loss and hypertension with unknown mechanisms. This study investigated macrovascular and microcirculation changes and inflammatory markers during repetitive sleep restriction. Sex differences were also explored. Forty-five participants completed a 22-day in-hospital protocol. Participants were assigned to, (1) eight-hour sleep per night (control), or (2) sleep restriction (SR) condition: participants slept from 0300 to 0700 h for three nights followed by a recovery night of 8-h sleep, repeated four times. Macrocirculation assessed by flow mediated dilation (FMD) and microcirculation reactivity tests were performed at baseline, last day of each experimental block and during recovery at the end. Cell adhesion molecules and inflammatory marker levels were measured in blood samples. No duration of deprivation (SR block) by condition interaction effects were found for FMD, microcirculation, norepinephrine, cell adhesion molecules, IL-6 or IL-8. However, when men and women were analyzed separately, there was a statistical trend (p = 0.08) for increased IL-6 across SR blocks in women, but not in men. Interestingly, men showed a significant progressive (dose dependent) increase in skin vasodilatation (p = 0.02). A novel and unexpected finding was that during the recovery period, men that had been exposed to repeated SR blocks had elevated IL-8 and decreased norepinephrine. Macrocirculation, microcirculation, cell adhesion molecules, and markers of inflammation appeared to be resistant to this model of short-term repetitive exposures to the blocks of shortened sleep in healthy sleepers. However, men and women responded differently, with women showing mild inflammatory response and men showing more vascular system sensitivity to the repetitive SR.
Collapse
Affiliation(s)
- Huan Yang
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Dimitrios Baltzis
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Vrushank Bhatt
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Hans K Meier-Ewert
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Shiva Gautam
- Department of Medicine, University of Florida College of Medicine – Jacksonville, Jacksonville, FL
| | - Aristidis Veves
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Yamazaki EM, Antler CA, Lasek CR, Goel N. Residual, differential neurobehavioral deficits linger after multiple recovery nights following chronic sleep restriction or acute total sleep deprivation. Sleep 2021; 44:5959861. [PMID: 33274389 DOI: 10.1093/sleep/zsaa224] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY OBJECTIVES The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). METHODS In total, 83 adults received two baseline nights (10-12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1-R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. RESULTS TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep. CONCLUSIONS PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.
Collapse
Affiliation(s)
- Erika M Yamazaki
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Caroline A Antler
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Charlotte R Lasek
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| |
Collapse
|
11
|
Bourdillon N, Jeanneret F, Nilchian M, Albertoni P, Ha P, Millet GP. Sleep Deprivation Deteriorates Heart Rate Variability and Photoplethysmography. Front Neurosci 2021; 15:642548. [PMID: 33897355 PMCID: PMC8060636 DOI: 10.3389/fnins.2021.642548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Sleep deprivation has deleterious effects on cardiovascular health. Using wearable health trackers, non-invasive physiological signals, such as heart rate variability (HRV), photoplethysmography (PPG), and baroreflex sensitivity (BRS) can be analyzed for detection of the effects of partial sleep deprivation on cardiovascular responses. Methods Fifteen participants underwent 1 week of baseline recording (BSL, usual day activity and sleep) followed by 3 days with 3 h of sleep per night (SDP), followed by 1 week of recovery with sleep ad lib (RCV). HRV was recorded using an orthostatic test every morning [root mean square of the successive differences (RMSSD), power in the low-frequency (LF) and high-frequency (HF) bands, and normalized power nLF and nHF were computed]; PPG and polysomnography (PSG) were recorded overnight. Continuous blood pressure and psychomotor vigilance task were also recorded. A questionnaire of subjective fatigue, sleepiness, and mood states was filled regularly. Results RMSSD and HF decreased while nLF increased during SDP, indicating a decrease in parasympathetic activity and a potential increase in sympathetic activity. PPG parameters indicated a decrease in amplitude and duration of the waveforms of the systolic and diastolic periods, which is compatible with increases in sympathetic activity and vascular tone. PSG showed a rebound of sleep duration, efficiency, and deep sleep in RCV compared to BSL. BRS remained unchanged while vigilance decreased during SDP. Questionnaires showed an increased subjective fatigue and sleepiness during SDP. Conclusion HRV and PPG are two markers easily measured with wearable devices and modified by partial sleep deprivation, contradictory to BRS. Both markers showed a decrease in parasympathetic activity, known as detrimental to cardiovascular health.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,be.care SA, Renens, Switzerland
| | | | | | - Patrick Albertoni
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pascal Ha
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Deurveilher S, Shewchuk SM, Semba K. Homeostatic sleep and body temperature responses to acute sleep deprivation are preserved following chronic sleep restriction in rats. J Sleep Res 2021; 30:e13348. [PMID: 33783043 DOI: 10.1111/jsr.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
Chronic sleep insufficiency is common in our society and has negative cognitive and health impacts. It can also alter sleep regulation, yet whether it affects subsequent homeostatic responses to acute sleep loss is unclear. We assessed sleep and thermoregulatory responses to acute sleep deprivation before and after a '3/1' chronic sleep restriction protocol in adult male Wistar rats. The 3/1 protocol consisted of continuous cycles of wheel rotations (3 h on/1 h off) for 4 days. Sleep latency in a 2-h multiple sleep latency test starting 26 h post-3/1 was unchanged, whereas non-rapid eye movement sleep (NREMS) and associated electroencephalogram delta power (a measure of sleep need) over a 24-h period beginning 54 h post-3/1 were reduced, compared to respective pre-3/1 baseline levels. However, in response to acute sleep deprivation (6 h by 'gentle handling') starting 78 h post-3/1, the compensatory rebounds in NREMS and rapid eye movement sleep (REMS) amounts and NREMS delta power were unaltered. Body temperature increased progressively across the 3/1 protocol and returned to baseline levels on the second day post-3/1. The acute sleep deprivation also increased body temperature, followed by a decline below baseline levels, with no difference between before and after 3/1 sleep restriction. Non-sleep-restricted control rats showed responses to acute sleep deprivation similar to those observed in the sleep-restricted animals. These results suggest that the process of sleep homeostasis is altered on the third recovery day after a 4-day 3/1 sleep restriction protocol, whereas subsequent homeostatic sleep and temperature responses to brief sleep deprivation are not affected.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | | | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Spaeth AM, Goel N, Dinges DF. Caloric and Macronutrient Intake and Meal Timing Responses to Repeated Sleep Restriction Exposures Separated by Varying Intervening Recovery Nights in Healthy Adults. Nutrients 2020; 12:nu12092694. [PMID: 32899289 PMCID: PMC7550992 DOI: 10.3390/nu12092694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep restriction (SR) reliably increases caloric intake. It remains unknown whether such intake cumulatively increases with repeated SR exposures and is impacted by the number of intervening recovery sleep opportunities. Healthy adults (33.9 ± 8.9y; 17 women, Body Mass Index: 24.8 ± 3.6) participated in a laboratory protocol. N = 35 participants experienced two baseline nights (10 h time-in-bed (TIB)/night; 22:00–08:00) followed by 10 SR nights (4 h TIB/night; 04:00–08:00), which were divided into two exposures of five nights each and separated by one (n = 13), three (n = 12), or five (n = 10) recovery nights (12 h TIB/night; 22:00–10:00). Control participants (n = 10) were permitted 10 h TIB (22:00–08:00) on all nights. Food and drink consumption were ad libitum and recorded daily. Compared to baseline, sleep-restricted participants increased daily caloric (+527 kcal) and saturated fat (+7 g) intake and decreased protein (−1.2% kcal) intake during both SR exposures; however, intake did not differ between exposures or recovery conditions. Similarly, although sleep-restricted participants exhibited substantial late-night caloric intake (671 kcal), such intake did not differ between exposures or recovery conditions. By contrast, control participants showed no changes in caloric intake across days. We found consistent caloric and macronutrient intake increases during two SR exposures despite varying intervening recovery nights. Thus, energy intake outcomes do not cumulatively increase with repeated restriction and are unaffected by recovery opportunities.
Collapse
Affiliation(s)
- Andrea M. Spaeth
- Department of Kinesiology and Health, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence:
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA;
| | - David F. Dinges
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
14
|
Kumar TR, Reusch JE, Kohrt WM, Regensteiner JG. Sex Differences Across the Lifespan: A Focus on Cardiometabolism. J Womens Health (Larchmt) 2020; 29:899-909. [PMID: 32423340 PMCID: PMC7371550 DOI: 10.1089/jwh.2020.8408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Women's health and sex differences research remain understudied. In 2016, to address the topic of sex differences, the Center for Women' s Health Research (CWHR) at the University of Colorado (cwhr@ucdenver.edu) held its inaugural National Conference, "Sex Differences Across the Lifespan: A Focus on Metabolism" and published a report summarizing the presentations. Two years later, in 2018, CWHR organized the 2nd National Conference. The research presentations and discussions from the 2018 conference also addressed sex differences across the lifespan with a focus on cardiometabolism and expanded the focus by including circadian physiology and effects of sleep on cardiometabolic health. Over 100 participants, including basic scientists, clinicians, policymakers, advocacy group leaders, and federal agency leadership participated. The meeting proceedings reveal that although exciting advances in the area of sex differences have taken place, significant questions and gaps remain about women's health and sex differences in critical areas of health. Identifying these gaps and the subsequent research that will result may lead to important breakthroughs.
Collapse
Affiliation(s)
- T. Rajendra Kumar
- Department of Obstetrics and Gynecology and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane E.B. Reusch
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Administration Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Wendy M. Kohrt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith G. Regensteiner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Impact of shift work on blood pressure among emergency medical services clinicians and related shift workers: A systematic review and meta-analysis. Sleep Health 2020; 6:387-398. [DOI: 10.1016/j.sleh.2020.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 01/29/2023]
|