1
|
Møller TA, Booth TJ, Shaw S, Møller VK, Frandsen RJ, Weber T. ActinoMation: A literate programming approach for medium-throughput robotic conjugation of Streptomyces spp. Synth Syst Biotechnol 2025; 10:667-676. [PMID: 40235855 PMCID: PMC11999424 DOI: 10.1016/j.synbio.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 04/17/2025] Open
Abstract
The genus Streptomyces are valuable producers of antibiotics and other pharmaceutically important bioactive compounds. Advances in molecular engineering tools, such as CRISPR, have provided some access to the metabolic potential of Streptomyces, but efficient genetic engineering of strains is hindered by laborious and slow manual transformation protocols. In this paper, we present a semi-automated medium-throughput workflow for the introduction of recombinant DNA into Streptomyces spp. using the affordable and open-sourced Opentrons (OT-2) robotics platform. To increase the accessibility of the workflow we provide an open-source protocol-creator, ActinoMation. ActinoMation is a literate programming environment using Python in Jupyter Notebook. We validated the method by transforming Streptomyces coelicolor (M1152 and M1146), S. albidoflavus (J1047), and S. venezuelae (DSM40230) with the plasmids pSETGUS and pIJ12551. We demonstrate conjugation efficiencies of 3.33∗10-3/0.33 % for M1152 with pSETGUS and pIJ12551; 2.96∗10-3/0.29 % for M1146 with pSETGUS and pIJ12551; 1.21∗10-5/0.0012 % for J1047 with pSETGUS and 4.70∗10-4/0.047 % with pIJ12551, and 4.97∗10-2/4.97 % for DSM40230 with pSETGUS and 6.13∗10-2/6.13 % with pIJ12551 with a false positive rate between 8.33 % and 54.54 %. Automation of the conjugation workflow facilitates a streamlined workflow on a larger scale without any evident loss of conjugation efficiency.
Collapse
Affiliation(s)
- Tenna A. Møller
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas J. Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Vilhelm K. Møller
- DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Seong MJ, Yoon YR, Kwon KK, Kim H, Lee SG, Shin J, Lee DH. Automated Construction of a Yeast-Based Multigene Library via Homologous Recombination in a Biofoundry Workflow. ACS Synth Biol 2025; 14:1549-1556. [PMID: 40331904 DOI: 10.1021/acssynbio.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Efficiently building metabolic pathways via multigene assembly has long been constrained by the limitations of traditional cloning techniques, necessitating a breakthrough in gene assembly methods. Notably, various in vitro gene assembly methods have been developed to simplify the construction of an expression-tunable library. However, in vitro gene assembly requires a tedious multistep construction process, making it time-consuming and labor-intensive. Therefore, in this study, we developed an automated one-step multigene assembly method for constructing an expression-tunable library based on in vivo homologous recombination. We optimized the shuttle vector for in vivo homologous recombination to improve the assembly efficiency. We also scaled down the whole assembly method for a high-throughput gene assembly. Finally, the developed method demonstrated the construction of the expression-tunable multigene library in the biofoundry. Therefore, this study offers a versatile strategy for parallel and high-throughput genetic engineering in synthetic biology.
Collapse
Affiliation(s)
- Min-Jun Seong
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ye Rin Yoon
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haseong Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jonghyeok Shin
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Hägele L, Trachtmann N, Takors R. The knowledge driven DBTL cycle provides mechanistic insights while optimising dopamine production in Escherichia coli. Microb Cell Fact 2025; 24:111. [PMID: 40380156 DOI: 10.1186/s12934-025-02729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Dopamine is a promising organic compound with several key applications in emergency medicine, diagnosis and treatment of cancer, production of lithium anodes, and wastewater treatment. Since studies on in vivo dopamine production are limited, this study demonstrates the development and optimisation of a dopamine production strain by the help of the knowledge driven design-build-test-learn (DBTL) cycle for rational strain engineering. RESULTS The knowledge driven DBTL cycle, involving upstream in vitro investigation, is an automated workflow that enables both mechanistic understanding and efficient DBTL cycling. Following the in vitro cell lysate studies, the results were translated to the in vivo environment through high-throughput ribosome binding site (RBS) engineering. As a result, we developed a dopamine production strain capable of producing dopamine at concentrations of 69.03 ± 1.2 mg/L which equals 34.34 ± 0.59 mg/gbiomass. Compared to state-of-the-art in vivo dopamine production, our approach improved performance by 2.6 and 6.6-fold, respectively. CONCLUSION In essence, a highly efficient dopamine production strain was developed by implementing the knowledge driven DBTL cycle involving upstream in vitro investigation. The fine-tuning of the dopamine pathway by high-throughput RBS engineering clearly demonstrated the impact of GC content in the Shine-Dalgarno sequence on the RBS strength.
Collapse
Affiliation(s)
- Lorena Hägele
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Natalia Trachtmann
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
4
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Wang F, Marouli A, Charoenwongwatthana P, Chang CY. Learn from artificial intelligence: the pursuit of objectivity. Lett Appl Microbiol 2025; 78:ovaf021. [PMID: 39933596 DOI: 10.1093/lambio/ovaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Humans continuously face threats from emerging novel pathogens and antimicrobial resistant bacteria or fungi, which requires urgently and efficient solutions. Alternatively, microbes also produce compounds or chemicals highly valuable to humans of which require continuous refinement and improvement of yields. Artificial intelligence (AI) is a promising tool to search for solutions combatting against diseases and facilitating productivity underpinned by robust research providing accurate information. However, the extent of AI credibility is yet to be fully understood. In terms of human bias, AI could arguably act as a means of ensuring scientific objectivity to increase accuracy and precision, however, whether this is possible or not has not been fully discussed. Human bias and error can be introduced at any step of the research process, including conducting experiments and data processing, through to influencing clinical applications. Despite AI's contribution to advancing knowledge, the question remains, is AI able to achieve objectivity in microbiological research? Here, the benefits, drawbacks, and responsibilities of AI utilization in microbiological research and clinical applications were discussed.
Collapse
Affiliation(s)
- Fengyi Wang
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| | - Angeliki Marouli
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| | - Pisit Charoenwongwatthana
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Chien-Yi Chang
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| |
Collapse
|
6
|
Hamburger F, Schlichting N, Eichenlaub M, Costea PI, Sauer C, Jenewein S, Kabisch J. Automation-aided construction and characterization of Bacillus subtilis PrsA strains for the secretion of amylases. Front Bioeng Biotechnol 2025; 12:1479626. [PMID: 39917281 PMCID: PMC11798935 DOI: 10.3389/fbioe.2024.1479626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Proteins face an obstacle race on their way to successful folding. Chaperones facilitate the proper folding of proteins by ensuring they remain on the correct path toward their final tertiary structure. In bacilli, the PrsA chaperone is essential for the correct folding and stabilization of proteins within the cell wall. Overexpression of the PrsA chaperone has been shown to improve the successful folding and secretion of many biotechnologically relevant secreted enzymes. This resulted in a double benefit: firstly, it promotes the efficient release of properly folded enzymes from the cell wall, and second, it reduces the folding stress for the cell, thereby enhancing the overall fitness of the production organism. This paper presents a workflow in which different wild-type PrsA molecules in Bacillus subtilis are co-expressed with different amylases having different signal peptides and promoters. To achieve this, six genome-reduced strains and nine PrsA proteins were systematically selected based on their cultivation performance and the production of two reference amylases. Following strain selection and deletion of major extracellular proteases, several hundred individual strains were created and screened using a stepwise and modular automation approach combined with amplicon sequencing. In addition to providing the key learnings from the workflow, it was revealed that no single PrsA molecule consistently improved amylase production, but genetic constructs combining different elements showed up to a 10-fold variation in yield. Among the screened constructs, the signal peptides YdjM and YvcE demonstrated the best performance.
Collapse
Affiliation(s)
- Felix Hamburger
- Computer-aided Synthetic Biology, TU Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | - Johannes Kabisch
- Computer-aided Synthetic Biology, TU Darmstadt, Darmstadt, Germany
- Institute for Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Butkovich LV, Vining OB, O'Malley MA. New approaches to secondary metabolite discovery from anaerobic gut microbes. Appl Microbiol Biotechnol 2025; 109:12. [PMID: 39831966 PMCID: PMC11747023 DOI: 10.1007/s00253-024-13393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize in silico tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. KEY POINTS: • Gut microbial secondary metabolites have therapeutic and biotechnological potential • Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery • Anaerobic biofoundries enable high-throughput workflows for metabolite discovery.
Collapse
Affiliation(s)
- Lazarina V Butkovich
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Oliver B Vining
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Vegh P, Chapman E, Gilmour C, Fragkoudis R. Modular DNA Construct Design for High-Throughput Golden Gate Assembly. Methods Mol Biol 2025; 2850:61-77. [PMID: 39363066 DOI: 10.1007/978-1-0716-4220-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning enables the modular assembly of DNA parts into desired synthetic genetic constructs. The "one-pot" nature of Golden Gate reactions makes them particularly amenable to high-throughput automation, facilitating the generation of thousands of constructs in a massively parallel manner. One potential bottleneck in this process is the design of these constructs. There are multiple parameters that must be considered during the design of an assembly process, and the final design should also be checked and verified before implementation. Doing this by hand for large numbers of constructs is neither practical nor feasible and increases the likelihood of introducing potentially costly errors. In this chapter we describe a design workflow that utilizes bespoke computational tools to automate the key phases of the construct design process and perform sequence editing in batches.
Collapse
Affiliation(s)
- Peter Vegh
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Elliott Chapman
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Craig Gilmour
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
9
|
Bultelle M, Casas A, Kitney R. Engineering biology and automation-Replicability as a design principle. ENGINEERING BIOLOGY 2024; 8:53-68. [PMID: 39734660 PMCID: PMC11681252 DOI: 10.1049/enb2.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 12/31/2024] Open
Abstract
Applications in engineering biology increasingly share the need to run operations on very large numbers of biological samples. This is a direct consequence of the application of good engineering practices, the limited predictive power of current computational models and the desire to investigate very large design spaces in order to solve the hard, important problems the discipline promises to solve. Automation has been proposed as a key component for running large numbers of operations on biological samples. This is because it is strongly associated with higher throughput, and with higher replicability (thanks to the reduction of human input). The authors focus on replicability and make the point that, far from being an additional burden for automation efforts, replicability should be considered central to the design of the automated pipelines processing biological samples at scale-as trialled in biofoundries. There cannot be successful automation without effective error control. Design principles for an IT infrastructure that supports replicability are presented. Finally, the authors conclude with some perspectives regarding the evolution of automation in engineering biology. In particular, they speculate that the integration of hardware and software will show rapid progress, and offer users a degree of control and abstraction of the robotic infrastructure on a level significantly greater than experienced today.
Collapse
Affiliation(s)
| | - Alexis Casas
- Department of BioengineeringImperial College LondonLondonUK
| | - Richard Kitney
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
10
|
Hägele L, Pfleger BF, Takors R. Getting the Right Clones in an Automated Manner: An Alternative to Sophisticated Colony-Picking Robotics. Bioengineering (Basel) 2024; 11:892. [PMID: 39329634 PMCID: PMC11429294 DOI: 10.3390/bioengineering11090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
In recent years, the design-build-test-learn (DBTL) cycle has become a key concept in strain engineering. Modern biofoundries enable automated DBTL cycling using robotic devices. However, both highly automated facilities and semi-automated facilities encounter bottlenecks in clone selection and screening. While fully automated biofoundries can take advantage of expensive commercially available colony pickers, semi-automated facilities have to fall back on affordable alternatives. Therefore, our clone selection method is particularly well-suited for academic settings, requiring only the basic infrastructure of a biofoundry. The automated liquid clone selection (ALCS) method represents a straightforward approach for clone selection. Similar to sophisticated colony-picking robots, the ALCS approach aims to achieve high selectivity. Investigating the time analogue of five generations, the model-based set-up reached a selectivity of 98 ± 0.2% for correctly transformed cells. Moreover, the method is robust to variations in cell numbers at the start of ALCS. Beside Escherichia coli, promising chassis organisms, such as Pseudomonas putida and Corynebacterium glutamicum, were successfully applied. In all cases, ALCS enables the immediate use of the selected strains in follow-up applications. In essence, our ALCS approach provides a 'low-tech' method to be implemented in biofoundry settings without requiring additional devices.
Collapse
Affiliation(s)
- Lorena Hägele
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Rosch T, Tenhaef J, Stoltmann T, Redeker T, Kösters D, Hollmann N, Krumbach K, Wiechert W, Bott M, Matamouros S, Marienhagen J, Noack S. AutoBioTech─A Versatile Biofoundry for Automated Strain Engineering. ACS Synth Biol 2024; 13:2227-2237. [PMID: 38975718 PMCID: PMC11264319 DOI: 10.1021/acssynbio.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The inevitable transition from petrochemical production processes to renewable alternatives has sparked the emergence of biofoundries in recent years. Manual engineering of microbes will not be sufficient to meet the ever-increasing demand for novel producer strains. Here we describe the AutoBioTech platform, a fully automated laboratory system with 14 devices to perform operations for strain construction without human interaction. Using modular workflows, this platform enables automated transformations of Escherichia coli with plasmids assembled via modular cloning. A CRISPR/Cas9 toolbox compatible with existing modular cloning frameworks allows automated and flexible genome editing of E. coli. In addition, novel workflows have been established for the fully automated transformation of the Gram-positive model organism Corynebacterium glutamicum by conjugation and electroporation, with the latter proving to be the more robust technique. Overall, the AutoBioTech platform excels at versatility due to the modularity of workflows and seamless transitions between modules. This will accelerate strain engineering of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Tobias
Michael Rosch
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Julia Tenhaef
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tim Stoltmann
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Till Redeker
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Dominic Kösters
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Niels Hollmann
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Karin Krumbach
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Wolfgang Wiechert
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Bott
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- The
Bioeconomy Science Center (BioSC), Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Susana Matamouros
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Stephan Noack
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
12
|
Leal-Alves C, Deng Z, Kermeci N, Shih SCC. Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms. LAB ON A CHIP 2024; 24:2834-2860. [PMID: 38712893 DOI: 10.1039/d3lc01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synthetic biology is the design and modification of biological systems for specific functions, integrating several disciplines like engineering, genetics, and computer science. The field of synthetic biology is to understand biological processes within host organisms through the manipulation and regulation of their genetic pathways and the addition of biocontrol circuits to enhance their production capabilities. This pursuit serves to address global challenges spanning diverse domains that are difficult to tackle through conventional routes of production. Despite its impact, achieving precise, dynamic, and high-throughput manipulation of biological processes is still challenging. Microfluidics offers a solution to those challenges, enabling controlled fluid handling at the microscale, offering lower reagent consumption, faster analysis of biochemical reactions, automation, and high throughput screening. In this review, we diverge from conventional focus on automating the synthetic biology design-build-test-learn cycle, and instead, focus on microfluidic platforms and their role in advancing synthetic biology through its integration with host organisms - bacterial cells, yeast, fungi, animal cells - and cell-free systems. The review illustrates how microfluidic devices have been instrumental in understanding biological systems by showcasing microfluidics as an essential tool to create synthetic genetic circuits, pathways, and organisms within controlled environments. In conclusion, we show how microfluidics expedite synthetic biology applications across diverse domains including but not limited to personalized medicine, bioenergy, and agriculture.
Collapse
Affiliation(s)
- Chiara Leal-Alves
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Zhiyang Deng
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Natalia Kermeci
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| | - Steve C C Shih
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| |
Collapse
|
13
|
Joshi J, Hanson AD. A pilot oral history of plant synthetic biology. PLANT PHYSIOLOGY 2024; 195:36-47. [PMID: 38163646 PMCID: PMC11060686 DOI: 10.1093/plphys/kiad585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
The whole field of synthetic biology (SynBio) is only about 20 years old, and plant SynBio is younger still. Nevertheless, within that short time, SynBio in general has drawn more scientific, philosophical, government, and private-sector interest than anything in biology since the recombinant DNA revolution. Plant SynBio, in particular, is now drawing more and more interest in relation to plants' potential to help solve planetary problems such as carbon capture and storage and replacing fossil fuels and feedstocks. As plant SynBio is so young and so fast-developing, we felt it was too soon to try to analyze its history. Instead, we set out to capture the essence of plant SynBio's origins and early development through interviews with 8 of the field's founders, representing 5 countries and 3 continents. We then distilled these founders' personal recollections and reflections into this review, centering the narrative on timelines for pivotal events, articles, funding programs, and quoting from interviews. We have archived the interview recordings and documented timeline entries. This work provides a resource for future historical scholarship.
Collapse
Affiliation(s)
- Jaya Joshi
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, 2550 Hull Road, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Bryant JA, Longmire C, Sridhar S, Janousek S, Kellinger M, Wright RC. TidyTron: Reducing lab waste using validated wash-and-reuse protocols for common plasticware in Opentrons OT-2 lab robots. SLAS Technol 2024; 29:100107. [PMID: 37696493 DOI: 10.1016/j.slast.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
Every year biotechnology labs generate a combined total of ∼5.5 million tons of plastic waste. As the global bioeconomy expands, biofoundries will inevitably increase plastic consumption in-step with synthetic biology scaling. Decontamination and reuse of single-use plastics could increase sustainability and reduce recurring costs of biological research. However, throughput and variable cleaning quality make manual decontamination impractical in most instances. Automating single-use plastic cleaning with liquid handling robots makes decontamination more practical by offering higher throughput and consistent cleaning quality. However, open-source, validated protocols using low-cost lab robotics for effective decontamination of plasticware-facilitating safe reuse-have not yet been developed. Here we introduce and validate TidyTron: a library of protocols for cleaning micropipette tips and microtiter plates that are contaminated with DNA, E. coli, and S. cerevisiae. We tested a variety of cleaning solutions, contact times, and agitation methods with the aim of minimizing time and cost, while maximizing cleaning stringency and sustainability. We tested and validated these cleaning procedures by comparing fresh (first-time usage) versus cleaned tips and plates for contamination with cells, DNA, or cleaning solutions. We assessed contamination by measuring colony forming units by plating, PCR efficiency and DNA concentration by qPCR, and event counts and debris by flow cytometry. Open source cleaning protocols are available at https://github.com/PlantSynBioLab/TidyTron and hosted on a graphical user interface at https://jbryantvt.github.io/TidyTron/.
Collapse
Affiliation(s)
- John A Bryant
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Cameron Longmire
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Sriya Sridhar
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Samuel Janousek
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Mason Kellinger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| |
Collapse
|
15
|
Son SH, Kang J, Shin Y, Lee C, Sung BH, Lee JY, Lee W. Sustainable production of natural products using synthetic biology: Ginsenosides. J Ginseng Res 2024; 48:140-148. [PMID: 38465212 PMCID: PMC10920010 DOI: 10.1016/j.jgr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024] Open
Abstract
Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jin Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - YuJin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - ChaeYoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
16
|
Vegh P, Donovan S, Rosser S, Stracquadanio G, Fragkoudis R. Biofoundry-Scale DNA Assembly Validation Using Cost-Effective High-Throughput Long-Read Sequencing. ACS Synth Biol 2024; 13:683-686. [PMID: 38329009 PMCID: PMC10877595 DOI: 10.1021/acssynbio.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Biofoundries are automated high-throughput facilities specializing in the design, construction, and testing of engineered/synthetic DNA constructs (plasmids), often from genetic parts. A critical step of this process is assessing the fidelity of the assembled DNA construct to the desired design. Current methods utilized for this purpose are restriction digest or PCR followed by fragment analysis and sequencing. The Edinburgh Genome Foundry (EGF) has recently established a single-molecule sequencing quality control step using the Oxford Nanopore sequencing technology, along with a companion Nextflow pipeline and a Python package, to perform in-depth analysis and generate a detailed report. Our software enables researchers working with plasmids, including biofoundry scientists, to rapidly analyze and interpret sequencing data. In conclusion, we have created a laboratory and software protocol that validates assembled, cloned, or edited plasmids, using Nanopore long-reads, which can serve as a useful resource for the genetics, synthetic biology, and sequencing communities.
Collapse
Affiliation(s)
- Peter Vegh
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Sophie Donovan
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Susan Rosser
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Giovanni Stracquadanio
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Rennos Fragkoudis
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
- Department
of Biochemistry and Biotechnology, University
of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
17
|
Grob A, Enrico Bena C, Di Blasi R, Pessina D, Sood M, Yunyue Z, Bosia C, Isalan M, Ceroni F. Mammalian cell growth characterisation by a non-invasive plate reader assay. Nat Commun 2024; 15:57. [PMID: 38167870 PMCID: PMC10761699 DOI: 10.1038/s41467-023-44396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Automated and non-invasive mammalian cell analysis is currently lagging behind due to a lack of methods suitable for a variety of cell lines and applications. Here, we report the development of a high throughput non-invasive method for tracking mammalian cell growth and performance based on plate reader measurements. We show the method to be suitable for both suspension and adhesion cell lines, and we demonstrate it can be adopted when cells are grown under different environmental conditions. We establish that the method is suitable to inform on effective drug treatments to be used depending on the cell line considered, and that it can support characterisation of engineered mammalian cells over time. This work provides the scientific community with an innovative approach to mammalian cell screening, also contributing to the current efforts towards high throughput and automated mammalian cell engineering.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay (INRAE), AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Daniele Pessina
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Matthew Sood
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Zhou Yunyue
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
18
|
Hillson NJ. A Procedural Framework for Benchmarking Biofoundry Capabilities. ACS Synth Biol 2023; 12:3778-3782. [PMID: 37943942 PMCID: PMC10729010 DOI: 10.1021/acssynbio.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Benchmarking compares the performance of a product or service with a competitor. In a biofoundry context, capability benchmarking enables more effective use of development resources and furthering business development efforts. Biofoundries considering benchmarking activities are immediately faced with many implementation questions and decisions. While differing circumstances between biofoundries may lead to different answers to those same questions, a common framework for the benchmarking process is desirable. Perhaps the framework described here, and developed for the United States Department of Energy Agile BioFoundry, will be useful to other biofoundries around the world.
Collapse
Affiliation(s)
- Nathan J. Hillson
- United
States Department of Energy Agile BioFoundry, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Stephenson A, Lastra L, Nguyen B, Chen YJ, Nivala J, Ceze L, Strauss K. Physical Laboratory Automation in Synthetic Biology. ACS Synth Biol 2023; 12:3156-3169. [PMID: 37935025 DOI: 10.1021/acssynbio.3c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic Biology has overcome many of the early challenges facing the field and is entering a systems era characterized by adoption of Design-Build-Test-Learn (DBTL) approaches. The need for automation and standardization to enable reproducible, scalable, and translatable research has become increasingly accepted in recent years, and many of the hardware and software tools needed to address these challenges are now in place or under development. However, the lack of connectivity between DBTL modules and barriers to access and adoption remain significant challenges to realizing the full potential of lab automation. In this review, we characterize and classify the state of automation in synthetic biology with a focus on the physical automation of experimental workflows. Though fully autonomous scientific discovery is likely a long way off, impressive progress has been made toward automating critical elements of experimentation by combining intelligent hardware and software tools. It is worth questioning whether total automation that removes humans entirely from the loop should be the ultimate goal, and considerations for appropriate automation versus total automation are discussed in this light while emphasizing areas where further development is needed in both contexts.
Collapse
Affiliation(s)
- Ashley Stephenson
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Microsoft Research, Redmond, Washington 98052, United States
| | - Lauren Lastra
- Microsoft Research, Redmond, Washington 98052, United States
| | - Bichlien Nguyen
- Microsoft Research, Redmond, Washington 98052, United States
| | - Yuan-Jyue Chen
- Microsoft Research, Redmond, Washington 98052, United States
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Luis Ceze
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Karin Strauss
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Microsoft Research, Redmond, Washington 98052, United States
| |
Collapse
|
20
|
Watkins A, McCarthy A, Holland C, Shapira P. Public biofoundries as innovation intermediaries: the integration of translation, sustainability, and responsibility. JOURNAL OF TECHNOLOGY TRANSFER 2023; 49:1259-1286. [PMID: 39183938 PMCID: PMC11341651 DOI: 10.1007/s10961-023-10039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 08/27/2024]
Abstract
The emergence and evolution of engineering biology, and its potential to address multiple global challenges is associated with the rise of biofoundries. These innovation intermediaries are facilities that employ advanced automation and computational analytics to accelerate engineering biology applications. Yet, for biofoundries to fully achieve their promise of generating applications that address grand societal challenges, they need to meet three key challenges: translation of research technology and its commercialization, attention to sustainability, and responsible innovation. Using web content analysis and interviews, this paper explores the functions and capabilities undertaken by existing public biofoundries, the extent to which they address these three challenges, and opportunities and models for enhancement. We also probe the roles undertaken by three other contrasting types of innovation intermediaries to identify practices and opportunities for integration and partnering with public biofoundries. We find that public biofoundries exhibit relatively strong capabilities for research translation, whereas efforts toward sustainability and responsibility are generally less prominent. For biofoundry enhancement, we propose an organisational model based on external partnering where public biofoundries are positioned as intermediaries within regional innovation systems. The framework put forward is reproducible and could be used in other contexts for assessing innovation intermediary organisational functions and capabilities toward meeting societal challenges.
Collapse
Affiliation(s)
- Andrew Watkins
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
- Institute for Manufacturing, University of Cambridge, Cambridge, CB3 0FS UK
| | - Adam McCarthy
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
| | - Claire Holland
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
| | - Philip Shapira
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345 USA
| |
Collapse
|
21
|
Milito A, Aschern M, McQuillan JL, Yang JS. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3833-3850. [PMID: 37025006 DOI: 10.1093/jxb/erad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
Abstract
Synthetic biology (SynBio) has attracted like no other recent development the attention not only of Life Science researchers and engineers but also of intellectuals, technology think-tanks, and private and public investors. This is largely due to its promise to propel biotechnology beyond its traditional realms in medicine, agriculture, and environment toward new territories historically dominated by the chemical and manufacturing industries─but now claimed to be amenable to complete biologization. For this to happen, it is crucial for the field to remain true to its foundational engineering drive, which relies on mathematics and quantitative tools to construct practical solutions to real-world problems. This article highlights several SynBio themes that, in our view, come with somewhat precarious promises that need to be tackled. First, SynBio must critically examine whether enough basic information is available to enable the design or redesign of life processes and turn biology from a descriptive science into a prescriptive one. Second, unlike circuit boards, cells are built with soft matter and possess inherent abilities to mutate and evolve, even without external cues. Third, the field cannot be presented as the one technical solution to many grave world problems and so must avoid exaggerated claims and hype. Finally, SynBio should pay heed to public sensitivities and involve social science in its development and growth, and thus change the technology narrative from sheer domination of the living world to conversation and win-win partnership.
Collapse
Affiliation(s)
- Andrew D. Hanson
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Víctor de Lorenzo
- Systems
Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
23
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
24
|
Averesch NJH, Berliner AJ, Nangle SN, Zezulka S, Vengerova GL, Ho D, Casale CA, Lehner BAE, Snyder JE, Clark KB, Dartnell LR, Criddle CS, Arkin AP. Microbial biomanufacturing for space-exploration-what to take and when to make. Nat Commun 2023; 14:2311. [PMID: 37085475 PMCID: PMC10121718 DOI: 10.1038/s41467-023-37910-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy. Each class requires a unique approach to integrate biomanufacturing into the existing mission-architecture and so faces unique challenges in technology development. These challenges stem directly from the resources available in a given mission-class-the degree to which feedstocks are derived from cargo and in situ resources-and the degree to which loop-closure is necessary. As mission duration and distance from Earth increase, the benefits of specialized, sustainable biomanufacturing processes also increase. Consequentially, we define specific design-scenarios and quantify the usefulness of in-space biomanufacturing, to guide techno-economics of space-missions. Especially materials emerged as a potentially pivotal target for biomanufacturing with large impact on up-mass cost. Subsequently, we outline the processes needed for development, testing, and deployment of requisite technologies. As space-related technology development often does, these advancements are likely to have profound implications for the creation of a resilient circular bioeconomy on Earth.
Collapse
Affiliation(s)
- Nils J H Averesch
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| | - Shannon N Nangle
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- Circe Bioscience Inc., Somerville, MA, USA.
| | - Spencer Zezulka
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- School of Information, University of California Berkeley, Berkeley, CA, USA
| | - Gretchen L Vengerova
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Davian Ho
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Cameran A Casale
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Benjamin A E Lehner
- Department of Bionanoscience, Delft University of Technology, Delft, South Holland, Netherlands
| | | | - Kevin B Clark
- Cures Within Reach, Chicago, IL, USA
- Champions Program, eXtreme Science and Engineering Discovery Environment (XSEDE), Urbana, IL, USA
| | - Lewis R Dartnell
- Department of Life Sciences, University of Westminster, London, UK
| | - Craig S Criddle
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
25
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
26
|
Holub M, Agena E. Biofoundries and citizen science can accelerate disease surveillance and environmental monitoring. Front Bioeng Biotechnol 2023; 10:1110376. [PMID: 36714630 PMCID: PMC9877229 DOI: 10.3389/fbioe.2022.1110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
A biofoundry is a highly automated facility for processing of biological samples. In that capacity it has a major role in accelerating innovation and product development in engineering biology by implementing design, build, test and learn (DBTL) cycles. Biofoundries bring public and private stakeholders together to share resources, develop standards and forge collaborations on national and international levels. In this paper we argue for expanding the scope of applications for biofoundries towards roles in biosurveillance and biosecurity. Reviewing literature on these topics, we conclude that this could be achieved in multiple ways including developing measurement standards and protocols, engaging citizens in data collection, closer collaborations with biorefineries, and processing of samples. Here we provide an overview of these roles that despite their potential utility have not yet been commonly considered by policymakers and funding agencies and identify roadblocks to their realization. This document should prove useful to policymakers and other stakeholders who wish to strengthen biosecurity programs in ways that synergize with bioeconomy.
Collapse
Affiliation(s)
- Martin Holub
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands,*Correspondence: Martin Holub,
| | - Ethan Agena
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Engineering Ag43 Signal Peptides with Bacterial Display and Selection. Methods Protoc 2022; 6:mps6010001. [PMID: 36648950 PMCID: PMC9844295 DOI: 10.3390/mps6010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Protein display, secretion, and export in prokaryotes are essential for utilizing microbial systems as engineered living materials, medicines, biocatalysts, and protein factories. To select for improved signal peptides for Escherichia coli protein display, we utilized error-prone polymerase chain reaction (epPCR) coupled with single-cell sorting and microplate titer to generate, select, and detect improved Ag43 signal peptides. Through just three rounds of mutagenesis and selection using green fluorescence from the 56 kDa sfGFP-beta-lactamase, we isolated clones that modestly increased surface display from 1.4- to 3-fold as detected by the microplate plate-reader and native SDS-PAGE assays. To establish that the functional protein was displayed extracellularly, we trypsinized the bacterial cells to release the surface displayed proteins for analysis. This workflow demonstrated a fast and high-throughput method leveraging epPCR and single-cell sorting to augment bacterial surface display rapidly that could be applied to other bacterial proteins.
Collapse
|
28
|
Wegner SA, Barocio-Galindo RM, Avalos JL. The bright frontiers of microbial metabolic optogenetics. Curr Opin Chem Biol 2022; 71:102207. [PMID: 36103753 DOI: 10.1016/j.cbpa.2022.102207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
Collapse
Affiliation(s)
| | | | - José L Avalos
- Department of Molecular Biology, USA; Department of Chemical and Biological Engineering, USA; The Andlinger Center for Energy and the Environment, USA; High Meadows Environmental Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
29
|
Kitahara Y, Itani A, Oda Y, Okamura M, Mizoshiri M, Shida Y, Nakamura T, Kasahara K, Ogasawara W. A real-time monitoring system for automatic morphology analysis of yeast cultivation in a jar fermenter. Appl Microbiol Biotechnol 2022; 106:4683-4693. [PMID: 35687157 DOI: 10.1007/s00253-022-12002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
The monitoring of microbial cultivation in real time and controlling their cultivation aid in increasing the production yield of useful material in a jar fermenter. Common sensors such as dissolved oxygen (DO) and pH can easily provide general-purpose indexes but do not reveal the physiological states of microbes because of the complexity of measuring them in culture conditions. It is well known from microscopic observations that the microbial morphology changes in response to the intracellular state or extracellular environment. Recently, studies have focused on rapid and quantitative image analysis techniques using machine learning or deep learning for gleaning insights into the morphological, physiological or gene expression information in microbes. During image analysis, it is necessary to retrieve high-definition images to analyze the microbial morphology in detail. In this study, we have developed a microfluidic device with a high-speed camera for the microscopic observation of yeast, and have constructed a system capable of generating their morphological information in real-time and at high definition. This system was connected to a jar fermenter, which enabled the automatic sampling for monitoring the cultivation. We successfully acquired high-definition images of over 10,000 yeast cells in about 2.2 s during ethanol fermentation automatically for over 168 h. We recorded 33,600 captures containing over 1,680,000 cell images. By analyzing these images, the morphological changes of yeast cells through ethanol fermentation could be captured, suggesting the expansion of the application of this system in controlling microbial fermentation using the morphological information generated. KEY POINTS: • Enables real-time visualization of microbes in a jar fermenter using microscopy. • Microfluidic device for acquiring high-definition images. • Generates a large amount of image data by using a high-speed camera.
Collapse
Affiliation(s)
- Yukina Kitahara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Ayaka Itani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Oda
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Makoto Okamura
- NRI System Techno Ltd, 134, Kobecho, Hodogaya-ku, Yokohama, Kanagawa, 240-0005, Japan
| | - Mizue Mizoshiri
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Toru Nakamura
- NRI System Techno Ltd, 134, Kobecho, Hodogaya-ku, Yokohama, Kanagawa, 240-0005, Japan
| | - Ken Kasahara
- Chitose Laboratory Corp, Biotechnology Research Center, 2-13-3 Nogawahoncho, Miyamae-ku, Kawasaki, Kanagawa, 216-0041, Japan
| | - Wataru Ogasawara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
30
|
Cheng L, Deng Z, Tao H, Song W, Xing B, Liu W, Kong L, Yuan S, Ma Y, Wu Y, Huang X, Peng Y, Wong NK, Liu Y, Wang Y, Shen Y, Li J, Xiao M. Harnessing stepping-stone hosts to engineer, select, and reboot synthetic bacteriophages in one pot. CELL REPORTS METHODS 2022; 2:100217. [PMID: 35637913 PMCID: PMC9142689 DOI: 10.1016/j.crmeth.2022.100217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Advances in synthetic genomics have led to a great demand for genetic manipulation. Trimming any process to simplify and accelerate streamlining of genetic code into life holds great promise for synthesizing and studying organisms. Here, we develop a simple but powerful stepping-stone strategy to promote genome refactoring of viruses in one pot, validated by successful cross-genus and cross-order rebooting of 90 phages infecting 4 orders of popular pathogens. Genomic sequencing suggests that rebooting outcome is associated with gene number and DNA polymerase availability within phage genomes. We integrate recombineering, screening, and rebooting processes in one pot and demonstrate genome assembly and genome editing of phages by stepping-stone hosts in an efficient and economic manner. Under this framework, in vitro assembly, yeast-based assembly, or genetic manipulation of native hosts are not required. As additional stepping-stone hosts are being developed, this framework will open doors for synthetic phages targeting more pathogens and commensals.
Collapse
Affiliation(s)
- Li Cheng
- BGI-Shenzhen, Shenzhen 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 100101, China
| | - Haoran Tao
- BGI-Shenzhen, Shenzhen 518083, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Bo Xing
- BGI-Shenzhen, Shenzhen 518083, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenfeng Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Lingxin Kong
- BGI-Shenzhen, Shenzhen 518083, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Shengjian Yuan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yayun Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - Nai-Kei Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518120, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
31
|
Gurdo N, Volke DC, Nikel PI. Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes. Trends Biotechnol 2022; 40:1148-1159. [DOI: 10.1016/j.tibtech.2022.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
|
32
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
33
|
Vickers CE, Freemont PS. Pandemic preparedness: synthetic biology and publicly funded biofoundries can rapidly accelerate response time. Nat Commun 2022; 13:453. [PMID: 35064129 PMCID: PMC8783017 DOI: 10.1038/s41467-022-28103-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Synthetic biology has played a key role in responding to the current pandemic. Biofoundries are critical synthetic biology infrastructure which should be available to all nations as a part of their independent bioengineering, biosecurity, and countermeasure response systems.
Collapse
Affiliation(s)
- Claudia E Vickers
- CSIRO Synthetic Biology Future Science Platform, CSIRO Land & Water, EcoSciences Precinct, Dutton Park, 4012, Australia. .,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, 4000, Australia. .,Griffith Institute for Drug Design, Griffith University, Nathan, 4111, Australia.
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, South Kensington, London, SW7 2AZ, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.,UK Innovation and Knowledge Centre for Synthetic Biology (SynbiCITE) and the London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus 80 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
34
|
de Lorenzo V. 15 years of microbial biotechnology: the time has come to think big-and act soon. Microb Biotechnol 2022; 15:240-246. [PMID: 34932877 PMCID: PMC8719810 DOI: 10.1111/1751-7915.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Our epoch is largely characterized by the growing realization and concern about the reality of climate change and environmental deterioration, the surge of global pandemics, the unacceptable inequalities between developed and underdeveloped countries and their unavoidable translation into messy immigration, overpopulation and food crises. While all of these issues have a fundamentally political core, they are not altogether removed from the fact that Earth is primarily a microbial planet and microorganisms are the key agents that make the biosphere (including ourselves) function as it does. It thus makes sense that we bring the microbial world-that is the environmental microbiome-to the necessary multi-tiered conversation (hopefully followed by action) on how to avoid future threats and how to make our globe a habitable common house. Beyond discussion on governance, such a dialogue has technical and scientific aspects that only frontline microbial biotechnology can help to tackle. Fortunately, the field has witnessed the onset of new conceptual and material tools that were missing when the journal started.
Collapse
|
35
|
Raman K, Sinha H, Vickers CE, Nikel PI. Synthetic biology beyond borders. Microb Biotechnol 2021; 14:2254-2256. [PMID: 34792854 PMCID: PMC8601182 DOI: 10.1111/1751-7915.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Karthik Raman
- Department of BiotechnologyCentre for Integrative Biology and Systems Medicine (IBSE)Indian Institute of Technology MadrasChennaiIndia
| | - Himanshu Sinha
- Department of BiotechnologyCentre for Integrative Biology and Systems Medicine (IBSE)Indian Institute of Technology MadrasChennaiIndia
| | - Claudia E. Vickers
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organization (CSIRO)Dutton ParkAustralia
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
36
|
Panda B, Dhar PK. Building Biofoundry India: challenges and path forward. Synth Biol (Oxf) 2021; 6:ysab015. [PMID: 34712840 PMCID: PMC8546612 DOI: 10.1093/synbio/ysab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Biofoundry is a place where biomanufacturing meets automation. The highly modular structure of a biofoundry helps accelerate the design–build–test–learn workflow to deliver products fast and in a streamlined fashion. In this perspective, we describe our efforts to build Biofoundry India, where we see the facility add a substantial value in supporting research, innovation and entrepreneurship. We describe three key areas of our focus, harnessing the potential of non-expressing parts of the sequenced genomes, using deep learning in pathway reconstruction and synthesising enzymes and metabolites. Toward the end, we describe specific challenges in building such facility in India and the path to mitigate some of those working with the other biofoundries worldwide.
Collapse
Affiliation(s)
- Binay Panda
- Biofoundry India, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pawan K Dhar
- Biofoundry India, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
37
|
Dudley QM, Cai YM, Kallam K, Debreyne H, Carrasco Lopez JA, Patron NJ. Biofoundry-assisted expression and characterization of plant proteins. Synth Biol (Oxf) 2021; 6:ysab029. [PMID: 34693026 PMCID: PMC8529701 DOI: 10.1093/synbio/ysab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
Many goals in synthetic biology, including the elucidation and refactoring of biosynthetic pathways and the engineering of regulatory circuits and networks, require knowledge of protein function. In plants, the prevalence of large gene families means it can be particularly challenging to link specific functions to individual proteins. However, protein characterization has remained a technical bottleneck, often requiring significant effort to optimize expression and purification protocols. To leverage the ability of biofoundries to accelerate design-built-test-learn cycles, we present a workflow for automated DNA assembly and cell-free expression of plant proteins that accelerates optimization and enables rapid screening of enzyme activity. First, we developed a phytobrick-compatible Golden Gate DNA assembly toolbox containing plasmid acceptors for cell-free expression using Escherichia coli or wheat germ lysates as well as a set of N- and C-terminal tag parts for detection, purification and improved expression/folding. We next optimized automated assembly of miniaturized cell-free reactions using an acoustic liquid handling platform and then compared tag configurations to identify those that increase expression. We additionally developed a luciferase-based system for rapid quantification that requires a minimal 11-amino acid tag and demonstrate facile removal of tags following synthesis. Finally, we show that several functional assays can be performed with cell-free protein synthesis reactions without the need for protein purification. Together, the combination of automated assembly of DNA parts and cell-free expression reactions should significantly increase the throughput of experiments to test and understand plant protein function and enable the direct reuse of DNA parts in downstream plant engineering workflows.
Collapse
Affiliation(s)
- Quentin M Dudley
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Hubert Debreyne
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | | | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| |
Collapse
|
38
|
Kim J, Silva-Rocha R, de Lorenzo V. Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity. Int Microbiol 2021; 24:507-519. [PMID: 34269947 DOI: 10.1007/s10123-021-00194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Any descriptive language is necessarily metaphoric and interpretative. Two somewhat overlapping-but not identical-languages have been thoroughly employed in the last decade to address the issue of regulatory complexity in biological systems: the terminology of network theory and the jargon of electric circuitry. These approaches have found many formal equivalences between the layout of extant genetic circuits and the architecture of man-made counterparts. However, these languages still fail to describe accurately key features of biological objects, in particular the diversity of signal-transfer molecules and the diffusion that is inherent to any biochemical system. Furthermore, current formalisms associated with networks and circuits can hardly face the problem of multi-scale regulatory complexity-from single molecules to entire ecosystems. We argue that the language of economic theory might be instrumental not only to portray accurately many features of regulatory networks, but also to unveil aspects of the biological complexity problem that remain opaque to other types of analyses. The main perspective opened by the economic metaphor when applied to control of microbiological activities is a focus on metabolism, not gene selfishness, as the necessary background to make sense of regulatory phenomena. As an example, we analyse and reinterpret the widespread phenomenon of catabolite repression with the formal frame of the consumer's choice theory.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|