1
|
Chan B, Nuismer SL, Alqirbi H, Nichols J, Remien CH, Davison AJ, Jarvis MA, Redwood AJ. Fine-tuning the evolutionary stability of recombinant herpesviral transmissible vaccines. Proc Biol Sci 2024; 291:20241827. [PMID: 39532136 PMCID: PMC11557244 DOI: 10.1098/rspb.2024.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Spillover of infectious diseases from wild animal populations constitutes a long-standing threat to human health for which few globally viable solutions have been developed. The use of oral baits laden with conventional vaccines distributed en masse represents one success story but is costly and practicable primarily for rabies risk reduction in North American and European carnivores. Efforts to expand vaccination to control pathogens within less accessible wildlife populations have raised interest in a new kind of vaccine capable of spreading pathogen-specific immunity through autonomous spread. However, such 'transmissible' vaccines raise concerns about the irrevocable release of genetically modified viruses into the environment. Herein, we explore the feasibility of an intrinsic strategy for transgene control within these vaccines based on the genetic destabilizing effect of cis-acting sequences flanking the heterologous transgene of interest. While suitable for the control of transgene stability within all types of DNA-viral vectored vaccines, this strategy has particular applicability to transmissible vaccines. Using a combination of experiments, mathematical modelling and whole-genome sequencing, we show that the rate of transgene loss can be controlled by varying the lengths of the direct repeat sequences. This opens a way for fine-tuning the lifespan of a transmissible vaccine in the wild.
Collapse
Affiliation(s)
- Baca Chan
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA6009, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA6009, Australia
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID83844, USA
| | - Hujaz Alqirbi
- School of Biomedical Sciences, University of Plymouth, PlymouthPL4 8AA, UK
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, UK
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID83844, USA
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, UK
| | - Michael A. Jarvis
- School of Biomedical Sciences, University of Plymouth, PlymouthPL4 8AA, UK
- The Vaccine Group, Plymouth, DevonPL6 6BU, UK
| | - Alec J. Redwood
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA6009, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA6009, Australia
| |
Collapse
|
2
|
Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, McGuffie MJ, Mishler DM, Barrick JE. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat Commun 2024; 15:6242. [PMID: 39048554 PMCID: PMC11269670 DOI: 10.1038/s41467-024-50639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized. We measured how 301 BioBrick plasmids affected Escherichia coli growth and found that 59 (19.6%) were burdensome, primarily because they depleted the limited gene expression resources of host cells. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be unclonable. We made this model available online for education ( https://barricklab.org/burden-model ) and added our burden measurements to the iGEM Registry. Our results establish a fundamental limit on what DNA constructs and genetic modifications can be successfully engineered into cells.
Collapse
Affiliation(s)
- Noor Radde
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Genevieve A Mortensen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Diya Bhat
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Shireen Shah
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joseph J Clements
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dennis M Mishler
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
- The Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Arbel-Groissman M, Menuhin-Gruman I, Naki D, Bergman S, Tuller T. Fighting the battle against evolution: designing genetically modified organisms for evolutionary stability. Trends Biotechnol 2023; 41:1518-1531. [PMID: 37442714 DOI: 10.1016/j.tibtech.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
4
|
Ingram D, Stan GB. Modelling genetic stability in engineered cell populations. Nat Commun 2023; 14:3471. [PMID: 37308512 DOI: 10.1038/s41467-023-38850-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Predicting the evolution of engineered cell populations is a highly sought-after goal in biotechnology. While models of evolutionary dynamics are far from new, their application to synthetic systems is scarce where the vast combination of genetic parts and regulatory elements creates a unique challenge. To address this gap, we here-in present a framework that allows one to connect the DNA design of varied genetic devices with mutation spread in a growing cell population. Users can specify the functional parts of their system and the degree of mutation heterogeneity to explore, after which our model generates host-aware transition dynamics between different mutation phenotypes over time. We show how our framework can be used to generate insightful hypotheses across broad applications, from how a device's components can be tweaked to optimise long-term protein yield and genetic shelf life, to generating new design paradigms for gene regulatory networks that improve their functionality.
Collapse
Affiliation(s)
- Duncan Ingram
- Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Guy-Bart Stan
- Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Griffiths ME, Meza DK, Haydon DT, Streicker DG. Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine. Proc Natl Acad Sci U S A 2023; 120:e2216667120. [PMID: 36877838 PMCID: PMC10089182 DOI: 10.1073/pnas.2216667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Transmissible vaccines are an emerging biotechnology that hold prospects to eliminate pathogens from wildlife populations. Such vaccines would genetically modify naturally occurring, nonpathogenic viruses ("viral vectors") to express pathogen antigens while retaining their capacity to transmit. The epidemiology of candidate viral vectors within the target wildlife population has been notoriously challenging to resolve but underpins the selection of effective vectors prior to major investments in vaccine development. Here, we used spatiotemporally replicated deep sequencing to parameterize competing epidemiological mechanistic models of Desmodus rotundus betaherpesvirus (DrBHV), a proposed vector for a transmissible vaccine targeting vampire bat-transmitted rabies. Using 36 strain- and location-specific time series of prevalence collected over 6 y, we found that lifelong infections with cycles of latency and reactivation, combined with a high R0 (6.9; CI: 4.39 to 7.85), are necessary to explain patterns of DrBHV infection observed in wild bats. These epidemiological properties suggest that DrBHV may be suited to vector a lifelong, self-boosting, and transmissible vaccine. Simulations showed that inoculating a single bat with a DrBHV-vectored rabies vaccine could immunize >80% of a bat population, reducing the size, frequency, and duration of rabies outbreaks by 50 to 95%. Gradual loss of infectious vaccine from vaccinated individuals is expected but can be countered by inoculating larger but practically achievable proportions of bat populations. Parameterizing epidemiological models using accessible genomic data brings transmissible vaccines one step closer to implementation.
Collapse
Affiliation(s)
- Megan E. Griffiths
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Diana K. Meza
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel T. Haydon
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel G. Streicker
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| |
Collapse
|