1
|
Jiang S, Ding Y, Zhao G, Ye S, Liu S, Yin Y, Li Z, Zou X, Xie D, You C, Guo X. Species-specific RNA barcoding technology for rapid and accurate identification of four types of influenza virus. BMC Genomics 2025; 26:409. [PMID: 40295995 PMCID: PMC12036255 DOI: 10.1186/s12864-025-11602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The influenza virus (IV) is responsible for seasonal flu epidemics. Constant mutation of the virus results in new strains and widespread reinfections across the globe, bringing great challenges to disease prevention and control. Research has demonstrated that barcoding technology efficiently and cost-effectively differentiates closely related species on a large scale. We screened and validated species-specific RNA barcode segments based on the genetic relationships of four types of IVs, facilitating their precise identification in high-throughput sequencing viral samples. RESULTS Through the analysis of single nucleotide polymorphism, population genetic characteristics, and phylogenetic relationships in the training set, 7 IVA type, 29 IVB type, 40 IVC type, and 5 IVD type barcode segments were selected. In the testing set, the nucleotide-level recall rate for all barcode segments reached 96.86%, the average nucleotide-level specificity was approximately 55.27%, the precision rate was 100%, and the false omission rate was 0%, demonstrating high accuracy, specificity, and generalization capabilities for species identification. Ultimately, all four types of IVs were visualized in a combination of one-dimensional and two-dimensional codes and stored in an online database named Influenza Virus Barcode Database (FluBarDB, http://virusbarcodedatabase.top/database/index.html ). CONCLUSION This study validates the effective application of RNA barcoding technology in the detection of IVs and establishes criteria and procedures for selecting species-specific molecular markers. These advancements enhance the understanding of the genetic and epidemiological characteristics of IVs and enable rapid responses to viral genetic mutations.
Collapse
Affiliation(s)
- Shuai Jiang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yunyun Ding
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Gaili Zhao
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shucan Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zeqi Li
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Daolong Xie
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Changqiao You
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
2
|
Kornai D, Jiao X, Ji J, Flouri T, Yang Z. Hierarchical Heuristic Species Delimitation Under the Multispecies Coalescent Model with Migration. Syst Biol 2024; 73:1015-1037. [PMID: 39180155 PMCID: PMC11637770 DOI: 10.1093/sysbio/syae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024] Open
Abstract
The multispecies coalescent (MSC) model accommodates genealogical fluctuations across the genome and provides a natural framework for comparative analysis of genomic sequence data from closely related species to infer the history of species divergence and gene flow. Given a set of populations, hypotheses of species delimitation (and species phylogeny) may be formulated as instances of MSC models (e.g., MSC for 1 species versus MSC for 2 species) and compared using Bayesian model selection. This approach, implemented in the program bpp, has been found to be prone to over-splitting. Alternatively, heuristic criteria based on population parameters (such as population split times, population sizes, and migration rates) estimated from genomic data may be used to delimit species. Here, we develop hierarchical merge and split algorithms for heuristic species delimitation based on the genealogical divergence index (gdi) and implement them in a Python pipeline called hhsd. We characterize the behavior of the gdi under a few simple scenarios of gene flow. We apply the new approaches to a dataset simulated under a model of isolation by distance as well as 3 empirical datasets. Our tests suggest that the new approaches produced sensible results and were less prone to oversplitting. We discuss possible strategies for accommodating paraphyletic species in the hierarchical algorithm, as well as the challenges of species delimitation based on heuristic criteria.
Collapse
Affiliation(s)
- Daniel Kornai
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Xiyun Jiao
- Department of Statistics and Data Science, China Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Ji
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Titus BM, Gibbs HL, Simões N, Daly M. Topology Testing and Demographic Modeling Illuminate a Novel Speciation Pathway in the Greater Caribbean Sea Following the Formation of the Isthmus of Panama. Syst Biol 2024; 73:758-768. [PMID: 39041315 DOI: 10.1093/sysbio/syae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Recent genomic analyses have highlighted the prevalence of speciation with gene flow in many taxa and have underscored the importance of accounting for these reticulate evolutionary processes when constructing species trees and generating parameter estimates. This is especially important for deepening our understanding of speciation in the sea where fast-moving ocean currents, expanses of deep water, and periodic episodes of sea level rise and fall act as soft and temporary allopatric barriers that facilitate both divergence and secondary contact. Under these conditions, gene flow is not expected to cease completely while contemporary distributions are expected to differ from historical ones. Here, we conduct range-wide sampling for Pederson's cleaner shrimp (Ancylomenes pedersoni), a species complex from the Greater Caribbean that contains three clearly delimited mitochondrial lineages with both allopatric and sympatric distributions. Using mtDNA barcodes and a genomic ddRADseq approach, we combine classic phylogenetic analyses with extensive topology testing and demographic modeling (10 site frequency replicates × 45 evolutionary models × 50 model simulations/replicate = 22,500 simulations) to test species boundaries and reconstruct the evolutionary history of what was expected to be a simple case study. Instead, our results indicate a history of allopatric divergence, secondary contact, introgression, and endemic hybrid speciation that we hypothesize was driven by the final closure of the Isthmus of Panama and the strengthening of the Gulf Stream Current ~3.5 Ma. The history of this species complex recovered by model-based methods that allow reticulation differs from that recovered by standard phylogenetic analyses and is unexpected given contemporary distributions. The geologically and biologically meaningful insights gained by our model selection analyses illuminate what is likely a novel pathway of species formation not previously documented that resulted from one of the most biogeographically significant events in Earth's history.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, 1325 Science and Engineering Complex, Tuscaloosa, AL 35487, USA
- Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Nuno Simões
- Facultad de Ciencias, Universidad Nacional Autonoma de Mexico-Sisal, Puerto de abrigo s/n, Sisal, CP 97356 Yucatán, Mexico
- International Chair for Coastal and Marine Studies in Mexico, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University, 6300 Ocean Dr, Corpus Christi, TX 78412, USA
- Laboratorio Nacional de Resilencia Costera (LANRESC, CONACYT), 97356 Sisal, Yucata´n, Mexico
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA
| |
Collapse
|
4
|
Crossman CA, Fontaine MC, Frasier TR. A comparison of genomic diversity and demographic history of the North Atlantic and Southwest Atlantic southern right whales. Mol Ecol 2024; 33:e17099. [PMID: 37577945 DOI: 10.1111/mec.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne, low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 224), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Timothy R Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Ma XG, Ren YB, Sun H. Introgression and incomplete lineage sorting blurred phylogenetic relationships across the genomes of sclerophyllous oaks from southwest China. Cladistics 2024; 40:357-373. [PMID: 38197450 DOI: 10.1111/cla.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024] Open
Abstract
Resolving evolutionary relationships among closely related species with interspecific gene flow is challenging. Genome-scale data provide opportunities to clarify complex evolutionary relationships in closely related species and to observe variations in species relationships across the genomes of such species. The Himalayan-Hengduan subalpine oaks have a nearly completely sympatric distribution in southwest China and probably constitute a syngameon. In this study, we mapped resequencing data from different species in this group to the Quercus aquifolioides reference genome to obtain a high-quality filtered single nucleotide polymorphism (SNP) dataset. We also assembled their plastomes. We reconstructed their phylogenetic relationships, explored the level and pattern of introgression among these species and investigated gene tree variation in the genomes of these species using sliding windows. The same or closely related plastomes were found to be shared extensively among different species within a specific geographical area. Phylogenomic analyses of genome-wide SNP data found that most oaks in the Himalayan-Hengduan subalpine clade showed genetic coherence, but several species were found to be connected by introgression. The gene trees obtained using sliding windows showed that the phylogenetic relationships in the genomes of oaks are highly heterogeneous and therefore highly obscured. Our study found that all the oaks of the Himalayan-Hengduan subalpine clade from southwest China form a syngameon. The obscured phylogenetic relationships observed empirically across the genome are best explained by interspecific gene flow in conjunction with incomplete lineage sorting.
Collapse
Affiliation(s)
- Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue-Bo Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
6
|
Pang XX, Zhang DY. Detection of Ghost Introgression Requires Exploiting Topological and Branch Length Information. Syst Biol 2024; 73:207-222. [PMID: 38224495 PMCID: PMC11129598 DOI: 10.1093/sysbio/syad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Sánchez KI, Recknagel H, Elmer KR, Avila LJ, Morando M. Tracing evolutionary trajectories in the presence of gene flow in South American temperate lizards (Squamata: Liolaemus kingii group). Evolution 2024; 78:716-733. [PMID: 38262697 DOI: 10.1093/evolut/qpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
- Departamento de Biología y Ambiente, Universidad Nacional de la Patagonia San Juan Bosco, Sede Puerto Madryn, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
8
|
Leaché AD, Davis HR, Feldman CR, Fujita MK, Singhal S. Repeated patterns of reptile diversification in Western North America supported by the Northern Alligator Lizard (Elgaria coerulea). J Hered 2024; 115:57-71. [PMID: 37982433 PMCID: PMC10838131 DOI: 10.1093/jhered/esad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Understanding the processes that shape genetic diversity by either promoting or preventing population divergence can help identify geographic areas that either facilitate or limit gene flow. Furthermore, broadly distributed species allow us to understand how biogeographic and ecogeographic transitions affect gene flow. We investigated these processes using genomic data in the Northern Alligator Lizard (Elgaria coerulea), which is widely distributed in Western North America across diverse ecoregions (California Floristic Province and Pacific Northwest) and mountain ranges (Sierra Nevada, Coastal Ranges, and Cascades). We collected single-nucleotide polymorphism data from 120 samples of E. coerulea. Biogeographic analyses of squamate reptiles with similar distributions have identified several shared diversification patterns that provide testable predictions for E. coerulea, including deep genetic divisions in the Sierra Nevada, demographic stability of southern populations, and recent post-Pleistocene expansion into the Pacific Northwest. We use genomic data to test these predictions by estimating the structure, connectivity, and phylogenetic history of populations. At least 10 distinct populations are supported, with mixed-ancestry individuals situated at most population boundaries. A species tree analysis provides strong support for the early divergence of populations in the Sierra Nevada Mountains and recent diversification into the Pacific Northwest. Admixture and migration analyses detect gene flow among populations in the Lower Cascades and Northern California, and a spatial analysis of gene flow identified significant barriers to gene flow across both the Sierra Nevada and Coast Ranges. The distribution of genetic diversity in E. coerulea is uneven, patchy, and interconnected at population boundaries. The biogeographic patterns seen in E. coerulea are consistent with predictions from co-distributed species.
Collapse
Affiliation(s)
- Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, United States
| | - Hayden R Davis
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, United States
| | - Chris R Feldman
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, United States
| | - Matthew K Fujita
- Department of Biology, The University of Texas at Arlington, Arlington, TX, United States
| | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, CA, United States
| |
Collapse
|
9
|
Pyron RA, Kakkera A, Beamer DA, O'Connell KA. Discerning structure versus speciation in phylogeographic analysis of Seepage Salamanders (Desmognathus aeneus) using demography, environment, geography, and phenotype. Mol Ecol 2024; 33:e17219. [PMID: 38015012 DOI: 10.1111/mec.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Numerous mechanisms can drive speciation, including isolation by adaptation, distance, and environment. These forces can promote genetic and phenotypic differentiation of local populations, the formation of phylogeographic lineages, and ultimately, completed speciation. However, conceptually similar mechanisms may also result in stabilizing rather than diversifying selection, leading to lineage integration and the long-term persistence of population structure within genetically cohesive species. Processes that drive the formation and maintenance of geographic genetic diversity while facilitating high rates of migration and limiting phenotypic differentiation may thereby result in population genetic structure that is not accompanied by reproductive isolation. We suggest that this framework can be applied more broadly to address the classic dilemma of "structure" versus "species" when evaluating phylogeographic diversity, unifying population genetics, species delimitation, and the underlying study of speciation. We demonstrate one such instance in the Seepage Salamander (Desmognathus aeneus) from the southeastern United States. Recent studies estimated up to 6.3% mitochondrial divergence and four phylogenomic lineages with broad admixture across geographic hybrid zones, which could potentially represent distinct species supported by our species-delimitation analyses. However, while limited dispersal promotes substantial isolation by distance, microhabitat specificity appears to yield stabilizing selection on a single, uniform, ecologically mediated phenotype. As a result, climatic cycles promote recurrent contact between lineages and repeated instances of high migration through time. Subsequent hybridization is apparently not counteracted by adaptive differentiation limiting introgression, leaving a single unified species with deeply divergent phylogeographic lineages that nonetheless do not appear to represent incipient species.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Anvith Kakkera
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, Greenville, North Carolina, USA
| | - Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Deloitte Consulting LLP, Health and Data AI, Arlington, Virginia, USA
| |
Collapse
|
10
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. ANOMALOUS NETWORKS UNDER THE MULTISPECIES COALESCENT: THEORY AND PREVALENCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553582. [PMID: 37662314 PMCID: PMC10473666 DOI: 10.1101/2023.08.18.553582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of 32-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
- Department of Botany, University of Wisconsin - Madison, WI, 53706, USA
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
11
|
Sánchez KI, Diaz Huesa EG, Breitman MF, Avila LJ, Sites JW, Morando M. Complex Patterns of Diversification in the Gray Zone of Speciation: Model-Based Approaches Applied to Patagonian Liolaemid Lizards (Squamata: Liolaemus kingii clade). Syst Biol 2023; 72:739-752. [PMID: 37097104 DOI: 10.1093/sysbio/syad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
In this study we detangled the evolutionary history of the Patagonian lizard clade Liolaemus kingii, coupling dense geographic sampling and novel computational analytical approaches. We analyzed nuclear and mitochondrial data (restriction site-associated DNA sequencing and cytochrome b) to hypothesize and evaluate species limits, phylogenetic relationships, and demographic histories. We complemented these analyses with posterior predictive simulations to assess the fit of the genomic data to the multispecies coalescent model. We also employed a novel approach to time-calibrate a phylogenetic network. Our results show several instances of mito-nuclear discordance and consistent support for a reticulated history, supporting the view that the complex evolutionary history of the kingii clade is characterized by extensive gene flow and rapid diversification events. We discuss our findings in the contexts of the "gray zone" of speciation, phylogeographic patterns in the Patagonian region, and taxonomic outcomes. [Model adequacy; multispecies coalescent; multispecies network coalescent; phylogenomics; species delimitation.].
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, U9120ACD, Argentina
| | - Emilce G Diaz Huesa
- Instituto de Diversidad y Evolución Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEAus-CONICET), Puerto Madryn, U9120ACD, Argentina
| | - María F Breitman
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, 36117, USA
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, U9120ACD, Argentina
| | - Jack W Sites
- Department of Biology, Austin Peay State University, Clarksville, 37044, USA
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, U9120ACD, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, U9120ACD, Argentina
| |
Collapse
|
12
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Huang J, Thawornwattana Y, Flouri T, Mallet J, Yang Z. Inference of Gene Flow between Species under Misspecified Models. Mol Biol Evol 2022; 39:6783212. [PMID: 36317198 PMCID: PMC9729068 DOI: 10.1093/molbev/msac237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Genomic sequence data provide a rich source of information about the history of species divergence and interspecific hybridization or introgression. Despite recent advances in genomics and statistical methods, it remains challenging to infer gene flow, and as a result, one may have to estimate introgression rates and times under misspecified models. Here we use mathematical analysis and computer simulation to examine estimation bias and issues of interpretation when the model of gene flow is misspecified in analysis of genomic datasets, for example, if introgression is assigned to the wrong lineages. In the case of two species, we establish a correspondence between the migration rate in the continuous migration model and the introgression probability in the introgression model. When gene flow occurs continuously through time but in the analysis is assumed to occur at a fixed time point, common evolutionary parameters such as species divergence times are surprisingly well estimated. However, the time of introgression tends to be estimated towards the recent end of the period of continuous gene flow. When introgression events are assigned incorrectly to the parental or daughter lineages, introgression times tend to collapse onto species divergence times, with introgression probabilities underestimated. Overall, our analyses suggest that the simple introgression model is useful for extracting information concerning between-specific gene flow and divergence even when the model may be misspecified. However, for reliable inference of gene flow it is important to include multiple samples per species, in particular, from hybridizing species.
Collapse
Affiliation(s)
| | | | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
14
|
Pang XX, Zhang DY. Impact of Ghost Introgression on Coalescent-based Species Tree Inference and Estimation of Divergence Time. Syst Biol 2022; 72:35-49. [PMID: 35799362 DOI: 10.1093/sysbio/syac047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
The species studied in any evolutionary investigation generally constitute a small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has rarely been studied and is poorly understood. Here, we use mathematical analysis and simulations to examine the robustness of species tree methods based on the multispecies coalescent model to introgression from a ghost or extant lineage. We found that many results originally obtained for introgression between extant species can easily be extended to ghost introgression, such as the strongly interactive effects of incomplete lineage sorting (ILS) and introgression on the occurrence of anomalous gene trees (AGTs). The relative performance of the summary species tree method (ASTRAL) and the full-likelihood method (*BEAST) varies under different introgression scenarios, with the former being more robust to gene flow between non-sister species whereas the latter performing better under certain conditions of ghost introgression. When an outgroup ghost (defined as a lineage that diverged before the most basal species under investigation) acts as the donor of the introgressed genes, the time of root divergence among the investigated species generally was overestimated, whereas ingroup introgression, as commonly perceived, can only lead to underestimation. In many cases of ingroup introgression that may or may not involve ghost lineages, the stronger the ILS, the higher the accuracy achieved in estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
16
|
Pyron RA, O’Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones. Ecol Evol 2022; 12:e8574. [PMID: 35222955 PMCID: PMC8848459 DOI: 10.1002/ece3.8574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Dusky Salamanders (genus Desmognathus) currently comprise only 22 described, extant species. However, recent mitochondrial and nuclear estimates indicate the presence of up to 49 candidate species based on ecogeographic sampling. Previous studies also suggest a complex history of hybridization between these lineages. Studies in other groups suggest that disregarding admixture may affect both phylogenetic inference and clustering-based species delimitation. With a dataset comprising 233 Anchored Hybrid Enrichment (AHE) loci sequenced for 896 Desmognathus specimens from all 49 candidate species, we test three hypotheses regarding (i) species-level diversity, (ii) hybridization and admixture, and (iii) misleading phylogenetic inference. Using phylogenetic and population-clustering analyses considering gene flow, we find support for at least 47 candidate species in the phylogenomic dataset, some of which are newly characterized here while others represent combinations of previously named lineages that are collapsed in the current dataset. Within these, we observe significant phylogeographic structure, with up to 64 total geographic genetic lineages, many of which hybridize either narrowly at contact zones or extensively across ecological gradients. We find strong support for both recent admixture between terminal lineages and ancient hybridization across internal branches. This signal appears to distort concatenated phylogenetic inference, wherein more heavily admixed terminal specimens occupy apparently artifactual early-diverging topological positions, occasionally to the extent of forming false clades of intermediate hybrids. Additional geographic and genetic sampling and more robust computational approaches will be needed to clarify taxonomy, and to reconstruct a network topology to display evolutionary relationships in a manner that is consistent with their complex history of reticulation.
Collapse
Affiliation(s)
- Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Kyle A. O’Connell
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Global Genome InitiativeNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Biomedical Data Science LabDeloitte Consulting LLPArlingtonVirginiaUSA
| | | | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | - David A. Beamer
- Department of Natural SciencesNash Community CollegeRocky MountNorth CarolinaUSA
| |
Collapse
|
17
|
Carstens BC, Smith ML, Duckett DJ, Fonseca EM, Thomé MTC. Assessing model adequacy leads to more robust phylogeographic inference. Trends Ecol Evol 2022; 37:402-410. [PMID: 35027224 DOI: 10.1016/j.tree.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) 'model selection', or the identification of an appropriate model for analysis; (ii) 'evaluation of analytical results', or the interpretation of the biological significance of the resulting parameter estimates, delimitations, and topologies; and (iii) 'model evaluation', or the use of statistical approaches to assess the fit of the model to the data. The field collectively invests most of its energy in point (ii) without considering the other points; we argue that attention to points (i) and (iii) is essential to phylogeographic inference.
Collapse
Affiliation(s)
- Bryan C Carstens
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA.
| | - Megan L Smith
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Drew J Duckett
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA
| | - Emanuel M Fonseca
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA
| | - M Tereza C Thomé
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Jiao X, Flouri T, Yang Z. Multispecies coalescent and its applications to infer species phylogenies and cross-species gene flow. Natl Sci Rev 2022; 8:nwab127. [PMID: 34987842 PMCID: PMC8692950 DOI: 10.1093/nsr/nwab127] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023] Open
Abstract
Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple species. It integrates the phylogenetic process of species divergences and the population genetic process of coalescent, and provides a powerful framework for a number of inference problems using genomic sequence data from multiple species, including estimation of species divergence times and population sizes, estimation of species trees accommodating discordant gene trees, inference of cross-species gene flow and species delimitation. In this review, we introduce the major features of the MSC model, discuss full-likelihood and heuristic methods of species tree estimation and summarize recent methodological advances in inference of cross-species gene flow. We discuss the statistical and computational challenges in the field and research directions where breakthroughs may be likely in the next few years.
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Thawornwattana Y, Seixas FA, Yang Z, Mallet J. OUP accepted manuscript. Syst Biol 2022; 71:1159-1177. [PMID: 35169847 PMCID: PMC9366460 DOI: 10.1093/sysbio/syac009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Introgressive hybridization plays a key role in adaptive evolution and species diversification in many groups of species. However, frequent hybridization and gene flow between species make estimation of the species phylogeny and key population parameters challenging. Here, we show that by accounting for phasing and using full-likelihood methods, introgression histories and population parameters can be estimated reliably from whole-genome sequence data. We employ the multispecies coalescent (MSC) model with and without gene flow to infer the species phylogeny and cross-species introgression events using genomic data from six members of the erato-sara clade of Heliconius butterflies. The methods naturally accommodate random fluctuations in genealogical history across the genome due to deep coalescence. To avoid heterozygote phasing errors in haploid sequences commonly produced by genome assembly methods, we process and compile unphased diploid sequence alignments and use analytical methods to average over uncertainties in heterozygote phase resolution. There is robust evidence for introgression across the genome, both among distantly related species deep in the phylogeny and between sister species in shallow parts of the tree. We obtain chromosome-specific estimates of key population parameters such as introgression directions, times and probabilities, as well as species divergence times and population sizes for modern and ancestral species. We confirm ancestral gene flow between the sara clade and an ancestral population of Heliconius telesiphe, a likely hybrid speciation origin for Heliconius hecalesia, and gene flow between the sister species Heliconius erato and Heliconius himera. Inferred introgression among ancestral species also explains the history of two chromosomal inversions deep in the phylogeny of the group. This study illustrates how a full-likelihood approach based on the MSC makes it possible to extract rich historical information of species divergence and gene flow from genomic data. [3s; bpp; gene flow; Heliconius; hybrid speciation; introgression; inversion; multispecies coalescent]
Collapse
Affiliation(s)
- Yuttapong Thawornwattana
- Correspondence to be sent to: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-mail: ; (Y.T. and J.M.); Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; E-mail: (Z.Y.)
| | - Fernando A Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ziheng Yang
- Correspondence to be sent to: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-mail: ; (Y.T. and J.M.); Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; E-mail: (Z.Y.)
| | - James Mallet
- Correspondence to be sent to: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-mail: ; (Y.T. and J.M.); Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; E-mail: (Z.Y.)
| |
Collapse
|
20
|
Baiakhmetov E, Ryzhakova D, Gudkova PD, Nobis M. Evidence for extensive hybridisation and past introgression events in feather grasses using genome-wide SNP genotyping. BMC PLANT BIOLOGY 2021; 21:505. [PMID: 34724894 PMCID: PMC8559405 DOI: 10.1186/s12870-021-03287-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/20/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND The proper identification of feather grasses in nature is often limited due to phenotypic variability and high morphological similarity between many species. Among plausible factors influencing this issue are hybridisation and introgression recently detected in the genus. Nonetheless, to date, only a bounded set of taxa have been investigated using integrative taxonomy combining morphological and molecular data. Here, we report the first large-scale study on five feather grass species across several hybrid zones in Russia and Central Asia. In total, 302 specimens were sampled in the field and classified based on the current descriptions of these taxa. They were then genotyped with high density genome-wide markers and measured based on a set of morphological characters to delimitate species and assess levels of hybridisation and introgression. Moreover, we tested species for past introgression and estimated divergence times between them. RESULTS Our findings demonstrated that 250 specimens represent five distinct species: S. baicalensis, S. capillata, S. glareosa, S. grandis and S. krylovii. The remaining 52 individuals provided evidence for extensive hybridisation between S. capillata and S. baicalensis, S. capillata and S. krylovii, S. baicalensis and S. krylovii, as well as to a lesser extent between S. grandis and S. krylovii, S. grandis and S. baicalensis. We detected past reticulation events between S. baicalensis, S. krylovii, S. grandis and inferred that diversification within species S. capillata, S. baicalensis, S. krylovii and S. grandis started ca. 130-96 kya. In addition, the assessment of genetic population structure revealed signs of contemporary gene flow between populations across species from the section Leiostipa, despite significant geographical distances between some of them. Lastly, we concluded that only 5 out of 52 hybrid taxa were properly identified solely based on morphology. CONCLUSIONS Our results support the hypothesis that hybridisation is an important mechanism driving evolution in Stipa. As an outcome, this phenomenon complicates identification of hybrid taxa in the field using morphological characters alone. Thus, integrative taxonomy seems to be the only reliable way to properly resolve the phylogenetic issue of Stipa. Moreover, we believe that feather grasses may be a suitable genus to study hybridisation and introgression events in nature.
Collapse
Affiliation(s)
- Evgenii Baiakhmetov
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia.
| | - Daria Ryzhakova
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia
- Department of Biology, Altai State University, Lenin 61 Ave., 656049, Barnaul, Russia
| | - Polina D Gudkova
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia
- Department of Biology, Altai State University, Lenin 61 Ave., 656049, Barnaul, Russia
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia.
| |
Collapse
|
21
|
Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. The evolution of insect biodiversity. Curr Biol 2021; 31:R1299-R1311. [PMID: 34637741 DOI: 10.1016/j.cub.2021.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insects comprise over half of all described animal species. Together with the Protura (coneheads), Collembola (springtails) and Diplura (two-pronged bristletails), insects form the Hexapoda, a terrestrial arthropod lineage characterised by possessing six legs. Exponential growth of genome-scale data for the hexapods has substantially altered our understanding of the origin and evolution of insect biodiversity. Phylogenomics has provided a new framework for reconstructing insect evolutionary history, resolving their position among the arthropods and some long-standing internal controversies such as the placement of the termites, twisted-winged insects, lice and fleas. However, despite the greatly increased size of phylogenomic datasets, contentious relationships among key insect clades remain unresolved. Further advances in insect phylogeny cannot rely on increased depth and breadth of genome and taxon sequencing. Improved modelling of the substitution process is fundamental to countering tree-reconstruction artefacts, while gene content, modelling of duplications and deletions, and comparative morphology all provide complementary lines of evidence to test hypotheses emerging from the analysis of sequence data. Finally, the integration of molecular and morphological data is key to the incorporation of fossil species within insect phylogeny. The emerging integrated framework of insect evolution will help explain the origins of insect megadiversity in terms of the evolution of their body plan, species diversity and ecology. Future studies of insect phylogeny should build upon an experimental, hypothesis-driven approach where the robustness of hypotheses generated is tested against increasingly realistic evolutionary models as well as complementary sources of phylogenetic evidence.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | - Chenyang Cai
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | | | - Jesus Lozano-Fernandez
- School of Biological Sciences, University of Bristol, Bristol, UK; Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige, Italy; Center Agriculture Food Environment, University of Trento, 38010 San Michele all Adige, Italy
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Michael S Engel
- Division of Entomology, Natural History Museum, University of Kansas, Lawrence, KS, USA; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, UK; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
22
|
Caeiro-Dias G, Rocha S, Couto A, Pereira C, Brelsford A, Crochet PA, Pinho C. Nuclear phylogenies and genomics of a contact zone establish the species rank of Podarcis lusitanicus (Squamata, Lacertidae). Mol Phylogenet Evol 2021; 164:107270. [PMID: 34352374 DOI: 10.1016/j.ympev.2021.107270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
Unravelling when divergent lineages constitute distinct species can be challenging, particularly in complex scenarios combining cryptic diversity and phylogenetic discordances between different types of molecular markers. Combining a phylogenetic approach with the study of contact zones can help to overcome such difficulties. The Podarcis hispanicus species complex has proven to be prosperous in independent evolutionary units, sometimes associated with cryptic diversity. Previous studies have revealed that one of the species of this complex, P. guadarramae, comprises two deeply divergent yet morphologically indistinguishable evolutionary units, currently regarded as subspecies (P. g. guadarramae and P. g. lusitanicus). In this study we used molecular data to address the systematics of the two lineages of Podarcis guadarramae and the closely related P. bocagei. Firstly, we reconstructed the species tree of these three and two additional taxa based on 30 nuclear loci using the multispecies coalescent with and without gene flow. Secondly, we used SNPs obtained from RADseq data to analyze the population structure across the distribution limits P. g. lusitanicus and P. g. guadarramae, and for comparison, a contact zone between P. bocagei and P. g. lusitanicus. Nuclear phylogenetic relationships between these three taxa are clearly difficult to determine due to the influence of gene flow, but our results give little support to the monophyly of P. guadarramae, potentially due to a nearly simultaneous divergence between them. Genetic structure and geographic cline analysis revealed that the two lineages of P. guadarramae replace each other abruptly across the sampled region and that gene flow is geographically restricted, implying the existence of strong reproductive isolation. Podarcis bocagei and P. g. lusitanicus show a similar degree of genetic differentiation and reproductive isolation, with very low levels of admixture in syntopy. These results support that all three forms are equally differentiated and reproductively isolated. In consequence, we conclude that the two former subspecies of Podarcis guadarramae constitute valid, yet cryptic species, that should be referred to as P. lusitanicus and P. guadarramae.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal.
| | - Sara Rocha
- CINBIO, Universidade de Vigo, 36310 Vigo, España; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Alvarina Couto
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal
| | - Carolina Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; Biology Department, University of California Riverside, CA, USA
| | | | - Catarina Pinho
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal
| |
Collapse
|
23
|
Gene flow in phylogenomics: Sequence capture resolves species limits and biogeography of Afromontane forest endemic frogs from the Cameroon Highlands. Mol Phylogenet Evol 2021; 163:107258. [PMID: 34252546 DOI: 10.1016/j.ympev.2021.107258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Puddle frogs of the Phrynobatrachus steindachneri species complex are a useful group for investigating speciation and phylogeography in Afromontane forests of the Cameroon Volcanic Line, western Central Africa. The species complex is represented by six morphologically relatively cryptic mitochondrial DNA lineages, only two of which are distinguished at the species level - southern P. jimzimkusi and Lake Oku endemic P. njiomock, leaving the remaining four lineages identified as 'P. steindachneri'. In this study, the six mtDNA lineages are subjected to genomic sequence capture analyses and morphological examination to delimit species and to study biogeography. The nuclear DNA data (387 loci; 571,936 aligned base pairs) distinguished all six mtDNA lineages, but the topological pattern and divergence depths supported only four main clades: P. jimzimkusi, P. njiomock, and only two divergent evolutionary lineages within the four 'P. steindachneri' mtDNA lineages. One of the two lineages is herein described as a new species, P. amieti sp. nov. Reticulate evolution (hybridization) was detected within the species complex with morphologically intermediate hybrid individuals placed between the parental species in phylogenomic analyses, forming a ladder-like phylogenetic pattern. The presence of hybrids is undesirable in standard phylogenetic analyses but is essential and beneficial in the network multispecies coalescent. This latter approach provided insight into the reticulate evolutionary history of these endemic frogs. Introgressions likely occurred during the Middle and Late Pleistocene climatic oscillations, due to the cyclic connections (likely dominating during cold glacials) and separations (during warm interglacials) of montane forests. The genomic phylogeographic pattern supports the separation of the southern (Mt. Manengouba to Mt. Oku) and northern mountains at the onset of the Pleistocene. Further subdivisions occurred in the Early Pleistocene, separating populations from the northernmost (Tchabal Mbabo, Gotel Mts.) and middle mountains (Mt. Mbam, Mt. Oku, Mambilla Plateau), as well as the microendemic lineage restricted to Lake Oku (Mt. Oku). This unique model system is highly threatened as all the species within the complex have exhibited severe population declines in the past decade, placing them on the brink of extinction. In addition, Mount Oku is identified to be of particular conservation importance because it harbors three species of this complex. We, therefore, urge for conservation actions in the Cameroon Highlands to preserve their diversity before it is too late.
Collapse
|
24
|
Vázquez-Miranda H, Barker FK. Autosomal, sex-linked and mitochondrial loci resolve evolutionary relationships among wrens in the genus Campylorhynchus. Mol Phylogenet Evol 2021; 163:107242. [PMID: 34224849 DOI: 10.1016/j.ympev.2021.107242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023]
Abstract
Although there is general consensus that sampling of multiple genetic loci is critical in accurate reconstruction of species trees, the exact numbers and the best types of molecular markers remain an open question. In particular, the phylogenetic utility of sex-linked loci is underexplored. Here, we sample all species and 70% of the named diversity of the New World wren genus Campylorhynchus using sequences from 23 loci, to evaluate the effects of linkage on efficiency in recovering a well-supported tree for the group. At a tree-wide level, we found that most loci supported fewer than half the possible clades and that sex-linked loci produced similar resolution to slower-coalescing autosomal markers, controlling for locus length. By contrast, we did find evidence that linkage affected the efficiency of recovery of individual relationships; as few as two sex-linked loci were necessary to resolve a selection of clades with long to medium subtending branches, whereas 4-6 autosomal loci were necessary to achieve comparable results. These results support an expanded role for sampling of the avian Z chromosome in phylogenetic studies, including target enrichment approaches. Our concatenated and species tree analyses represent significant improvements in our understanding of diversification in Campylorhynchus, and suggest a relatively complex scenario for its radiation across the Miocene/Pliocene boundary, with multiple invasions of South America.
Collapse
Affiliation(s)
- Hernán Vázquez-Miranda
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - F Keith Barker
- Department of Ecology, Evolution and Behavior, Bell Museum of Natural History, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
25
|
Onn Chan K, Hutter CR, Wood PL, Su YC, Brown RM. Gene Flow Increases Phylogenetic Structure and Inflates Cryptic Species Estimations: A Case Study on Widespread Philippine Puddle Frogs (Occidozyga laevis). Syst Biol 2021; 71:40-57. [PMID: 33964168 DOI: 10.1093/sysbio/syab034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
In cryptic amphibian complexes, there is a growing trend to equate high levels of genetic structure with hidden cryptic species diversity. Typically, phylogenetic structure and distance-based approaches are used to demonstrate the distinctness of clades and justify the recognition of new cryptic species. However, this approach does not account for gene flow, spatial, and environmental processes that can obfuscate phylogenetic inference and bias species delimitation. As a case study, we sequenced genome-wide exons and introns to evince the processes that underlie the diversification of Philippine Puddle Frogs-a group that is widespread, phenotypically conserved, and exhibits high levels of geographically-based genetic structure. We showed that widely adopted tree- and distance-based approaches inferred up to 20 species, compared to genomic analyses that inferred an optimal number of five distinct genetic groups. Using a suite of clustering, admixture, and phylogenetic network analyses, we demonstrate extensive admixture among the five groups and elucidate two specific ways in which gene flow can cause overestimations of species diversity: (1) admixed populations can be inferred as distinct lineages characterized by long branches in phylograms; and (2) admixed lineages can appear to be genetically divergent, even from their parental populations when simple measures of genetic distance are used. We demonstrate that the relationship between mitochondrial and genome-wide nuclear p-distances is decoupled in admixed clades, leading to erroneous estimates of genetic distances and, consequently, species diversity. Additionally, genetic distance was also biased by spatial and environmental processes. Overall, we showed that high levels of genetic diversity in Philippine Puddle Frogs predominantly comprise metapopulation lineages that arose through complex patterns of admixture, isolation-by-distance, and isolation-by-environment as opposed to species divergence. Our findings suggest that speciation may not be the major process underlying the high levels of hidden diversity observed in many taxonomic groups and that widely-adopted tree- and distance-based methods overestimate species diversity in the presence of gene flow.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L Wood
- Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, Alabama 36849, USA
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
26
|
Ferreira MS, Jones MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM, Melo-Ferreira J. The Legacy of Recurrent Introgression during the Radiation of Hares. Syst Biol 2021; 70:593-607. [PMID: 33263746 PMCID: PMC8048390 DOI: 10.1093/sysbio/syaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1-4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus; phylogenomics.].
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Zelalem Tolesa
- Department of Biology, Hawassa University, Hawassa, Ethiopia
| | - Franz Suchentrunk
- Department for Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pierre Boursot
- Institut des Sciences de l’Évolution Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, France
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
- Office of Research and Creative Scholarship, University of Montana, Missoula, Montana, United States of America; Jeffrey M. Good and José Melo-Ferreira shared the senior authorship
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Wang G, Zhang X, Herre EA, McKey D, Machado CA, Yu WB, Cannon CH, Arnold ML, Pereira RAS, Ming R, Liu YF, Wang Y, Ma D, Chen J. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat Commun 2021; 12:718. [PMID: 33531484 PMCID: PMC7854680 DOI: 10.1038/s41467-021-20957-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Ficus (figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast genomes for 15 species representing all major clades of Ficus. Multiple analyses of these genomic data suggest that hybridization events have occurred throughout Ficus evolutionary history. Furthermore, cophylogenetic reconciliation analyses detect significant incongruence among all nuclear, chloroplast, and mitochondrial-based phylogenies, none of which correspond with any published phylogenies of the associated pollinator wasps. These findings are most consistent with frequent host-switching by the pollinators, leading to fig hybridization, even between distantly related clades. Here, we suggest that these pollinator host-switches and fig hybridization events are a dominant feature of fig/wasp coevolutionary history, and by generating novel genomic combinations in the figs have likely contributed to the remarkable diversity exhibited by this mutualism.
Collapse
Affiliation(s)
- Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Doyle McKey
- CEFE, University of Montpellier, CNRS, University Paul Valery Montpellier 3, EPHE, IRD, Montpellier, France
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | | | | | - Rodrigo A S Pereira
- Department of Biology, FFCLRP, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yi-Fei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China.
| |
Collapse
|
28
|
Jiao X, Yang Z. Defining Species When There is Gene Flow. Syst Biol 2020; 70:108-119. [PMID: 32617579 DOI: 10.1093/sysbio/syaa052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Whatever one's definition of species, it is generally expected that individuals of the same species should be genetically more similar to each other than they are to individuals of another species. Here, we show that in the presence of cross-species gene flow, this expectation may be incorrect. We use the multispecies coalescent model with continuous-time migration or episodic introgression to study the impact of gene flow on genetic differences within and between species and highlight a surprising but plausible scenario in which different population sizes and asymmetrical migration rates cause a genetic sequence to be on average more closely related to a sequence from another species than to a sequence from the same species. Our results highlight the extraordinary impact that even a small amount of gene flow may have on the genetic history of the species. We suggest that contrasting long-term migration rate and short-term hybridization rate, both of which can be estimated using genetic data, may be a powerful approach to detecting the presence of reproductive barriers and to define species boundaries.[Gene flow; introgression; migration; multispecies coalescent; species concept; species delimitation.].
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|