1
|
Magalhães FDM, Oliveira EF, Garda AA, Burbrink FT, Gehara M. Genomic data support reticulate evolution in whiptail lizards from the Brazilian Caatinga. Mol Phylogenet Evol 2025; 204:108280. [PMID: 39725181 DOI: 10.1016/j.ympev.2024.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Species relationships have traditionally been represented by phylogenetic trees, but not all evolutionary histories fit into bifurcating divergence models. Introgressive hybridization challenges this assumption by sometimes [or maybe often] leading to mitochondrial introgression, wherein one species' mitochondrial genome is entirely replaced by another's (mitochondrial capture). Such processes result in mitonuclear discrepancies, complicating species delimitation and phylogenetic inference. In our study, we used ultraconserved elements (UCE) and mitogenomic data to investigate the evolutionary history of the Ameivula ocellifera complex, a group of South American whiptail lizards widely distributed in semiarid environments of the Caatinga Domain in Brazil. We examine mitonuclear discordances, assessing reticulate evolution, evaluating species limits, and testing for adaptive mitochondrial capture that could explain higher introgression in the mitochondrial genome compared to nuclear DNA. Our findings support the occurrence of an ancient reticulation event during the diversification of these lizards, driven by introgressive hybridization, leading to mitochondrial capture, and explaining mitonuclear discrepancies. Overall, we did not find clear evidence of positive selection across mitochondrial protein-coding genes suggesting adaptive mitochondrial capture of individuals with introgressed mtDNA. Thus, the genetic diversification and mitogenome evolution could be neutral, with selection against hybridization in the autosomal loci only, or even mediated by mitonuclear incompatibilities. Analyses of mtDNA genomes alongside network and species delimitation methods were crucial for identifying and validating individuals with introgressed mtDNA as a distinct species, demonstrating the potential of genome sampling, and using innovative analytical techniques for elucidating speciation processes in the presence of introgressive hybridization.
Collapse
Affiliation(s)
- Felipe de M Magalhães
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA; Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - Eliana F Oliveira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Adrian A Garda
- Laboratório de Anfíbios e Répteis (LAR), Departamento de Botânica e Zoologia da Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
2
|
Weinell JL, Burbrink FT, Das S, Brown RM. Novel phylogenomic inference and 'Out of Asia' biogeography of cobras, coral snakes and their allies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240064. [PMID: 39113776 PMCID: PMC11303032 DOI: 10.1098/rsos.240064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/10/2024]
Abstract
Estimation of evolutionary relationships among lineages that rapidly diversified can be challenging, and, in such instances, inaccurate or unresolved phylogenetic estimates can lead to erroneous conclusions regarding historical geographical ranges of lineages. One example underscoring this issue has been the historical challenge posed by untangling the biogeographic origin of elapoid snakes, which includes numerous dangerously venomous species as well as species not known to be dangerous to humans. The worldwide distribution of this lineage makes it an ideal group for testing hypotheses related to historical faunal exchanges among the many continents and other landmasses occupied by contemporary elapoid species. We developed a novel suite of genomic resources, included worldwide sampling, and inferred a robust estimate of evolutionary relationships, which we leveraged to quantitatively estimate geographical range evolution through the deep-time history of this remarkable radiation. Our phylogenetic and biogeographical estimates of historical ranges definitively reject a lingering former 'Out of Africa' hypothesis and support an 'Out of Asia' scenario involving multiple faunal exchanges between Asia, Africa, Australasia, the Americas and Europe.
Collapse
Affiliation(s)
- Jeffrey L. Weinell
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Lawrence, KS66045, USA
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY10024, USA
| | - Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY10024, USA
| | - Sunandan Das
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Rafe M. Brown
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Lawrence, KS66045, USA
| |
Collapse
|
3
|
Mo YK, Hahn MW, Smith ML. Applications of machine learning in phylogenetics. Mol Phylogenet Evol 2024; 196:108066. [PMID: 38565358 DOI: 10.1016/j.ympev.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Machine learning has increasingly been applied to a wide range of questions in phylogenetic inference. Supervised machine learning approaches that rely on simulated training data have been used to infer tree topologies and branch lengths, to select substitution models, and to perform downstream inferences of introgression and diversification. Here, we review how researchers have used several promising machine learning approaches to make phylogenetic inferences. Despite the promise of these methods, several barriers prevent supervised machine learning from reaching its full potential in phylogenetics. We discuss these barriers and potential paths forward. In the future, we expect that the application of careful network designs and data encodings will allow supervised machine learning to accommodate the complex processes that continue to confound traditional phylogenetic methods.
Collapse
Affiliation(s)
- Yu K Mo
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Megan L Smith
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
4
|
Pierson TW, Kozak KH, Glenn TC, Fitzpatrick BM. River Drainage Reorganization and Reticulate Evolution in the Two-Lined Salamander (Eurycea bislineata) Species Complex. Syst Biol 2024; 73:26-35. [PMID: 37879625 DOI: 10.1093/sysbio/syad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
The origin and eventual loss of biogeographic barriers can create alternating periods of allopatry and secondary contact, facilitating gene flow among distinct metapopulations and generating reticulate evolutionary histories that are not adequately described by a bifurcating evolutionary tree. One such example may exist in the two-lined salamander (Eurycea bislineata) species complex, where discordance among morphological and molecular datasets has created a "vexing taxonomic challenge." Previous phylogeographic analyses of mitochondrial DNA (mtDNA) suggested that the reorganization of Miocene paleodrainages drove vicariance and dispersal, but the inherent limitations of a single-locus dataset precluded the evaluation of subsequent gene flow. Here, we generate triple-enzyme restriction site-associated DNA sequencing (3RAD) data for > 100 individuals representing all major mtDNA lineages and use a suite of complementary methods to demonstrate that discordance among earlier datasets is best explained by a reticulate evolutionary history influenced by river drainage reorganization. Systematics of such groups should acknowledge these complex histories and relationships that are not strictly hierarchical. [Amphibian; hybridization; introgression; Plethodontidae; stream capture.].
Collapse
Affiliation(s)
- Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Kenneth H Kozak
- Bell Museum and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Travis C Glenn
- Department of Environmental Health Science and Institute of Bioinformatics, University of Georgia, Athens, GA 30609, USA
| | - Benjamin M Fitzpatrick
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Musher LJ, Del-Rio G, Marcondes RS, Brumfield RT, Bravo GA, Thom G. Geogenomic Predictors of Genetree Heterogeneity Explain Phylogeographic and Introgression History: A Case Study in an Amazonian Bird (Thamnophilus aethiops). Syst Biol 2024; 73:36-52. [PMID: 37804132 DOI: 10.1093/sysbio/syad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift, recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination, whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained a convolutional neural network to classify our data into alternative diversification models and estimate demographic parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss. Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting, albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture; geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation; speciation; species tree.].
Collapse
Affiliation(s)
- Lukas J Musher
- Department of Ornithology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Glaucia Del-Rio
- Cornell Laboratory of Ornithology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Rafael S Marcondes
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Robb T Brumfield
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gustavo A Bravo
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá 111311, Colombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory Thom
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Nuñez LP, Gray LN, Weisrock DW, Burbrink FT. The Phylogenomic and Biogeographic History of the Gartersnakes, Watersnakes, and Allies (Natricidae: Thamnophiini). Mol Phylogenet Evol 2023:107844. [PMID: 37301486 DOI: 10.1016/j.ympev.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
North American Thamnophiini (gartersnakes, watersnakes, brownsnakes, and swampsnakes) are an ecologically and phenotypically diverse temperate clade of snakes representing 61 species across 10 genera. In this study, we estimate phylogenetic trees using ∼3,700 ultraconserved elements (UCEs) for 76 specimens representing 75% of all Thamnophiini species. We infer phylogenies using multispecies coalescent methods and time calibrate them using the fossil record. We also conducted ancestral area estimation to identify how major biogeographic boundaries in North America affect broadscale diversification in the group. While most nodes exhibited strong statistical support, analysis of concordant data across gene trees reveals substantial heterogeneity. Ancestral area estimation demonstrated that the genus Thamnophis was the only taxon in this subfamily to cross the Western Continental Divide, even as other taxa dispersed southward toward the tropics. Additionally, levels of gene tree discordance are overall higher in transition zones between bioregions, including the Rocky Mountains. Therefore, the Western Continental Divide may be a significant transition zone structuring the diversification of Thamnophiini during the Neogene and Pleistocene. Here we show that despite high levels of discordance across gene trees, we were able to infer a highly resolved and well-supported phylogeny for Thamnophiini, which allows us to understand broadscale patterns of diversity and biogeography.
Collapse
Affiliation(s)
- Leroy P Nuñez
- Department of Herpetology, American Museum of Natural History, New York, NY, USA; Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA.
| | - Levi N Gray
- Fort Collins Science Center, United States Geological Survey, Guam, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
7
|
Harrington S, Burbrink F. Complex cycles of divergence and migration shape lineage structure in the common kingsnake species complex. JOURNAL OF BIOGEOGRAPHY 2023; 50:341-351. [PMID: 36817740 PMCID: PMC9937589 DOI: 10.1111/jbi.14536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
Aim The Nearctic is a complex patchwork of habitats and geologic features that form barriers to gene flow resulting in phylogeographic structure and speciation in many lineages. Habitats are rarely stable over geologic time, and the Nearctic has undergone major climatic changes in the past few million years. We use the common kingsnake species complex to study how climate, geography, and history influence lineage formation over a large, complex landscape. Location Nearctic/North America. Taxon Common kingsnake, Lampropeltis getula, species complex. Methods We analyzed genome-wide sequence data from 51 snakes spanning the majority of the species complex's range. We used population clustering, generalized dissimilarity modeling, and coalescent methods to identify the number of genetic clusters within the L. getula complex, infer the environmental correlates of genetic differentiation, and estimate models of divergence and gene flow among lineages. Results We identified three major lineages within the L. getula complex and further continuous spatial structure within lineages. The most important ecological correlates of genetic distance in the complex are related to aridity and precipitation, consistent with lineage breaks at the Great Plains/Desert ecotone and the Cochise Filter Barrier. Lineages are estimated to have undergone multiple rounds of isolation and secondary contact, with highly asymmetric migration occurring at present. Main conclusions Changing climates combined with a large and geologically complex landscape have resulted in a mosaic of discrete and spatially continuous genetic structure. Multiple rounds of isolation and secondary contact as climate fluctuated over the past ~4.4 My have likely driven the evolution of discrete lineages that maintain high levels of gene flow. Continuous structure is strongly shaped by aridity and precipitation, suggesting roles for major precipitation gradients in helping to maintain lineage identity in the face of gene flow when lineages are in geographic contact.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Frank Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| |
Collapse
|
8
|
Tominaga A, Yoshikawa N, Matsui M, Nagata N, Sato Y. The emergence of a cryptic lineage and cytonuclear discordance through past hybridization in the Japanese fire-bellied newt, Cynops pyrrhogaster (Amphibia: Urodela). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Discrepancies in geographic variation patterns between nuclear DNA and mitochondrial DNA (mtDNA) are the result of the complicated differentiation processes in organisms and are the key to understanding their true evolutionary processes. The genetic differentiation of the northern and Southern-Izu lineages of the Japanese newt, Cynops pyrrhogaster, was investigated through their single nucleotide polymorphism variations obtained via multiplexed ISSR genotyping by sequencing (MIG-seq). We found three genetic groups (Tohoku, N-Kanto and S-Kanto), that were not detected by mtDNA variations, in the northern lineage. N-Kanto has intermediate genetic characteristics between Tohoku and S-Kanto. The genetic groups are now moderately isolated from each other and have unique genetic characteristics. An estimation of the evolutionary history using the approximate Bayesian computation (ABC) approach suggested that Tohoku diverged from the common ancestor of S-Kanto and S-Izu. Then, S-Kanto and S-Izu split, and the recent hybridization between Tohoku and S-Kanto gave rise to N-Kanto. The origin of N-Kanto through the hybridization is relatively young and seems to be related to changes in the distributions of Tohoku and S-Kanto as a result of climatic oscillation in the Pleistocene. We conclude that the mitochondrial genome of S-Kanto was captured in Tohoku and that the original mitochondrial genome of Tohoku was entirely removed through hybridization.
Collapse
Affiliation(s)
- Atsushi Tominaga
- Faculty of Education, University of the Ryukyus , Senbaru 1, Nishihara, Okinawa 903-0213 , Japan
| | - Natsuhiko Yoshikawa
- National Museum of Nature and Science , 4-1-1 Amakubo, Tsukuba, Ibaraki 305 - 0005 , Japan
| | - Masafumi Matsui
- Graduate School of Human and Environmental Studies, Kyoto University , Yoshida Nihonmatsu-cho, Sakyo, Kyoto 606 - 8501 , Japan
| | - Nobuaki Nagata
- National Museum of Nature and Science , 4-1-1 Amakubo, Tsukuba, Ibaraki 305 - 0005 , Japan
| | - Yukuto Sato
- Faculty of Medicine, University of the Ryukyus , Uehara 207, Nishihara, Okinawa 903 - 0215 , Japan
| |
Collapse
|
9
|
Lutteropp S, Scornavacca C, Kozlov AM, Morel B, Stamatakis A. NetRAX: accurate and fast maximum likelihood phylogenetic network inference. BIOINFORMATICS (OXFORD, ENGLAND) 2022; 38:3725-3733. [PMID: 35713506 DOI: 10.1101/2021.08.30.458194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 05/26/2023]
Abstract
MOTIVATION Phylogenetic networks can represent non-treelike evolutionary scenarios. Current, actively developed approaches for phylogenetic network inference jointly account for non-treelike evolution and incomplete lineage sorting (ILS). Unfortunately, this induces a very high computational complexity and current tools can only analyze small datasets. RESULTS We present NetRAX, a tool for maximum likelihood (ML) inference of phylogenetic networks in the absence of ILS. Our tool leverages state-of-the-art methods for efficiently computing the phylogenetic likelihood function on trees, and extends them to phylogenetic networks via the notion of 'displayed trees'. NetRAX can infer ML phylogenetic networks from partitioned multiple sequence alignments and returns the inferred networks in Extended Newick format. On simulated data, our results show a very low relative difference in Bayesian Information Criterion (BIC) score and a near-zero unrooted softwired cluster distance to the true, simulated networks. With NetRAX, a network inference on a partitioned alignment with 8000 sites, 30 taxa and 3 reticulations completes within a few minutes on a standard laptop. AVAILABILITY AND IMPLEMENTATION Our implementation is available under the GNU General Public License v3.0 at https://github.com/lutteropp/NetRAX. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany
| | - Céline Scornavacca
- Institut des Sciences de l'Évolution Université de Montpellier, CNRS, IRD, EPHE Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Alexey M Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76128, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76128, Germany
| |
Collapse
|
10
|
Smith BT, Merwin J, Provost KL, Thom G, Brumfield RT, Ferreira M, Mauck Iii WM, Moyle RG, Wright T, Joseph L. Phylogenomic analysis of the parrots of the world distinguishes artifactual from biological sources of gene tree discordance. Syst Biol 2022; 72:228-241. [PMID: 35916751 DOI: 10.1093/sysbio/syac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/22/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within datasets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower quality samples. Most instances of topological conflict and non-monophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many datasets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Jon Merwin
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| | - Kaiya L Provost
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gregory Thom
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mateus Ferreira
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima, Av. Cap. Ene Garcez, 2413, Boa Vista, RR, Brazil
| | - William M Mauck Iii
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA
| | - Timothy Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Leo Joseph
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
11
|
Lutteropp S, Scornavacca C, Kozlov AM, Morel B, Stamatakis A. NetRAX: Accurate and Fast Maximum Likelihood Phylogenetic Network Inference. Bioinformatics 2022; 38:3725-3733. [PMID: 35713506 PMCID: PMC9344847 DOI: 10.1093/bioinformatics/btac396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Motivation Phylogenetic networks can represent non-treelike evolutionary scenarios. Current, actively developed approaches for phylogenetic network inference jointly account for non-treelike evolution and incomplete lineage sorting (ILS). Unfortunately, this induces a very high computational complexity and current tools can only analyze small datasets. Results We present NetRAX, a tool for maximum likelihood (ML) inference of phylogenetic networks in the absence of ILS. Our tool leverages state-of-the-art methods for efficiently computing the phylogenetic likelihood function on trees, and extends them to phylogenetic networks via the notion of ‘displayed trees’. NetRAX can infer ML phylogenetic networks from partitioned multiple sequence alignments and returns the inferred networks in Extended Newick format. On simulated data, our results show a very low relative difference in Bayesian Information Criterion (BIC) score and a near-zero unrooted softwired cluster distance to the true, simulated networks. With NetRAX, a network inference on a partitioned alignment with 8000 sites, 30 taxa and 3 reticulations completes within a few minutes on a standard laptop. Availability and implementation Our implementation is available under the GNU General Public License v3.0 at https://github.com/lutteropp/NetRAX. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany
| | - Céline Scornavacca
- Institut des Sciences de l'Évolution Université de Montpellier, CNRS, IRD, EPHE Place Eugène Bataillon 34095, Montpellier Cedex 05, France
| | - Alexey M Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany.,Institute for Theoretical Informatics,Karlsruhe Institute of Technology, Karlsruhe, 76128, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany.,Institute for Theoretical Informatics,Karlsruhe Institute of Technology, Karlsruhe, 76128, Germany
| |
Collapse
|
12
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
13
|
Borowiec ML, Dikow RB, Frandsen PB, McKeeken A, Valentini G, White AE. Deep learning as a tool for ecology and evolution. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marek L. Borowiec
- Entomology, Plant Pathology and Nematology University of Idaho Moscow ID USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer Smithsonian Institution Washington DC USA
| | - Paul B. Frandsen
- Data Science Lab, Office of the Chief Information Officer Smithsonian Institution Washington DC USA
- Department of Plant and Wildlife Sciences Brigham Young University Provo UT USA
| | - Alexander McKeeken
- Entomology, Plant Pathology and Nematology University of Idaho Moscow ID USA
| | | | - Alexander E. White
- Data Science Lab, Office of the Chief Information Officer Smithsonian Institution Washington DC USA
- Department of Botany, National Museum of Natural History Smithsonian Institution Washington DC USA
| |
Collapse
|
14
|
Pyron RA, O’Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones. Ecol Evol 2022; 12:e8574. [PMID: 35222955 PMCID: PMC8848459 DOI: 10.1002/ece3.8574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Dusky Salamanders (genus Desmognathus) currently comprise only 22 described, extant species. However, recent mitochondrial and nuclear estimates indicate the presence of up to 49 candidate species based on ecogeographic sampling. Previous studies also suggest a complex history of hybridization between these lineages. Studies in other groups suggest that disregarding admixture may affect both phylogenetic inference and clustering-based species delimitation. With a dataset comprising 233 Anchored Hybrid Enrichment (AHE) loci sequenced for 896 Desmognathus specimens from all 49 candidate species, we test three hypotheses regarding (i) species-level diversity, (ii) hybridization and admixture, and (iii) misleading phylogenetic inference. Using phylogenetic and population-clustering analyses considering gene flow, we find support for at least 47 candidate species in the phylogenomic dataset, some of which are newly characterized here while others represent combinations of previously named lineages that are collapsed in the current dataset. Within these, we observe significant phylogeographic structure, with up to 64 total geographic genetic lineages, many of which hybridize either narrowly at contact zones or extensively across ecological gradients. We find strong support for both recent admixture between terminal lineages and ancient hybridization across internal branches. This signal appears to distort concatenated phylogenetic inference, wherein more heavily admixed terminal specimens occupy apparently artifactual early-diverging topological positions, occasionally to the extent of forming false clades of intermediate hybrids. Additional geographic and genetic sampling and more robust computational approaches will be needed to clarify taxonomy, and to reconstruct a network topology to display evolutionary relationships in a manner that is consistent with their complex history of reticulation.
Collapse
Affiliation(s)
- Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Kyle A. O’Connell
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Global Genome InitiativeNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Biomedical Data Science LabDeloitte Consulting LLPArlingtonVirginiaUSA
| | | | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | - David A. Beamer
- Department of Natural SciencesNash Community CollegeRocky MountNorth CarolinaUSA
| |
Collapse
|
15
|
Burbrink FT, Bernstein JM, Kuhn A, Gehara M, Ruane S. Ecological Divergence and the History of Gene Flow in the Nearctic Milksnakes (Lampropeltis triangulum Complex). Syst Biol 2021; 71:839-858. [PMID: 35043210 DOI: 10.1093/sysbio/syab093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Many phylogeographic studies on species with large ranges have found genetic-geographic structure associated with changes in habitat and physical barriers preventing or reducing gene flow. These interactions with geographic space, contemporary and historical climate, and biogeographic barriers have complex effects on contemporary population genetic structure and processes of speciation. While allopatric speciation at biogeographic barriers is considered the primary mechanism for generating species, more recently it has been shown that parapatric modes of divergence may be equally or even more common. With genomic data and better modeling capabilities, we can more clearly define causes of speciation in relation to biogeography and migration between lineages, the location of hybrid zones with respect to the ecology of parental lineages, and differential introgression of genes between taxa. Here, we examine the origins of three Nearctic milksnakes (Lampropeltis elapsoides, Lampropeltis triangulum and Lampropeltis gentilis) using genome-scale data to better understand species diversification. Results from artificial neural networks show that a mix of a strong biogeographic barrier, environmental changes, and physical space has affected genetic structure in these taxa. These results underscore conspicuous environmental changes that occur as the sister taxa L. triangulum and L. gentilis diverged near the Great Plains into the forested regions of the Eastern Nearctic. This area has been recognized as a region for turnover for many vertebrate species, but as we show here the contemporary boundary does not isolate these sister species. These two species likely formed in the mid-Pleistocene and have remained partially reproductively isolated over much of this time, showing differential introgression of loci. We also demonstrate that when L. triangulum and L. gentilis are each in contact with the much older L. elapsoides, some limited gene flow has occurred. Given the strong agreement between nuclear and mtDNA genomes, along with estimates of ecological niche, we suggest that all three lineages should continue to be recognized as unique species. Furthermore, this work emphasizes the importance of considering complex modes of divergence and differential allelic introgression over a complex landscape when testing mechanisms of speciation. [Cline; delimitation; Eastern Nearctic; Great Plains; hybrids; introgression; speciation.].
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Justin M Bernstein
- Department of Biological Sciences, Rutgers University Newark, 195 University Ave, Newark, NJ 07102, USA
| | - Arianna Kuhn
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University Newark, 195 University Ave, Newark, NJ 07102, USA
| | - Sara Ruane
- Department of Earth and Environmental Sciences, Rutgers University Newark, 195 University Ave, Newark, NJ 07102, USA.,Amphibian and Reptile Collection, Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Dr, Chicago, IL 60605, USA
| |
Collapse
|
16
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
17
|
Chafin TK, Douglas MR, Bangs MR, Martin BT, Mussmann SM, Douglas ME. Taxonomic Uncertainty and the Anomaly Zone: Phylogenomics Disentangle a Rapid Radiation to Resolve Contentious Species (Gila robusta Complex) in the Colorado River. Genome Biol Evol 2021; 13:evab200. [PMID: 34432005 PMCID: PMC8449829 DOI: 10.1093/gbe/evab200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed "threatened" status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and >22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the "anomaly zone" of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.
Collapse
Affiliation(s)
- Tyler K Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Max R Bangs
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bradley T Martin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Global Campus, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven M Mussmann
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish & Wildlife Service, Dexter, New Mexico, USA
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
18
|
Zhang D, Rheindt FE, She H, Cheng Y, Song G, Jia C, Qu Y, Alström P, Lei F. Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation Because of Ancient Gene Flow. Syst Biol 2021; 70:961-975. [PMID: 33787929 PMCID: PMC8357342 DOI: 10.1093/sysbio/syab024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phylogenetic trees based on genome-wide sequence data may not always represent the true evolutionary history for a variety of reasons. One process that can lead to incorrect reconstruction of species phylogenies is gene flow, especially if interspecific gene flow has affected large parts of the genome. We investigated phylogenetic relationships within a clade comprising eight species of passerine birds (Phylloscopidae, Phylloscopus, leaf warblers) using one de novo genome assembly and 78 resequenced genomes. On the basis of hypothesis-exclusion trials based on D-statistics, phylogenetic network analysis, and demographic inference analysis, we identified ancient gene flow affecting large parts of the genome between one species and the ancestral lineage of a sister species pair. This ancient gene flow consistently caused erroneous reconstruction of the phylogeny when using large amounts of genome-wide sequence data. In contrast, the true relationships were captured when smaller parts of the genome were analyzed, showing that the "winner-takes-all democratic majority tree" is not necessarily the true species tree. Under this condition, smaller amounts of data may sometimes avoid the effects of gene flow due to stochastic sampling, as hidden reticulation histories are more likely to emerge from the use of larger data sets, especially whole-genome data sets. In addition, we also found that genomic regions affected by ancient gene flow generally exhibited higher genomic differentiation but a lower recombination rate and nucleotide diversity. Our study highlights the importance of considering reticulation in phylogenetic reconstructions in the genomic era.[Bifurcation; introgression; recombination; reticulation; Phylloscopus.].
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala, Sweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
19
|
Esquerré D, Keogh JS, Demangel D, Morando M, Avila LJ, Sites JW, Ferri-Yáñez F, Leaché AD. Rapid radiation and rampant reticulation: Phylogenomics of South American Liolaemus lizards. Syst Biol 2021; 71:286-300. [PMID: 34259868 DOI: 10.1093/sysbio/syab058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023] Open
Abstract
Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction-site associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.
Collapse
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, Utah, USA
| | - Francisco Ferri-Yáñez
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC & Laboratorio Internacional en Cambio Global CSIC-PUC (LINCGlobal), Calle José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Evans CL, Greenhill SJ, Watts J, List JM, Botero CA, Gray RD, Kirby KR. The uses and abuses of tree thinking in cultural evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200056. [PMID: 33993767 PMCID: PMC8126464 DOI: 10.1098/rstb.2020.0056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Modern phylogenetic methods are increasingly being used to address questions about macro-level patterns in cultural evolution. These methods can illuminate the unobservable histories of cultural traits and identify the evolutionary drivers of trait change over time, but their application is not without pitfalls. Here, we outline the current scope of research in cultural tree thinking, highlighting a toolkit of best practices to navigate and avoid the pitfalls and 'abuses' associated with their application. We emphasize two principles that support the appropriate application of phylogenetic methodologies in cross-cultural research: researchers should (1) draw on multiple lines of evidence when deciding if and which types of phylogenetic methods and models are suitable for their cross-cultural data, and (2) carefully consider how different cultural traits might have different evolutionary histories across space and time. When used appropriately phylogenetic methods can provide powerful insights into the processes of evolutionary change that have shaped the broad patterns of human history. This article is part of the theme issue 'Foundations of cultural evolution'.
Collapse
Affiliation(s)
- Cara L. Evans
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Simon J. Greenhill
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- ARC Centre of Excellence for the Dynamics of Language, ANU College of Asia and the Pacific, Australian National University, Canberra 2700, Australia
| | - Joseph Watts
- Religion Programme, University of Otago, Dunedin 9016, New Zealand
- Centre for Research on Evolution, Belief and Behaviour, University of Otago, Dunedin 9016, New Zealand
| | - Johann-Mattis List
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Carlos A. Botero
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - Russell D. Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
| | - Kathryn R. Kirby
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| |
Collapse
|
21
|
Cai R, Ané C. Assessing the fit of the multi-species network coalescent to multi-locus data. Bioinformatics 2021; 37:634-641. [PMID: 33027508 DOI: 10.1093/bioinformatics/btaa863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION With growing genome-wide molecular datasets from next-generation sequencing, phylogenetic networks can be estimated using a variety of approaches. These phylogenetic networks include events like hybridization, gene flow or horizontal gene transfer explicitly. However, the most accurate network inference methods are computationally heavy. Methods that scale to larger datasets do not calculate a full likelihood, such that traditional likelihood-based tools for model selection are not applicable to decide how many past hybridization events best fit the data. We propose here a goodness-of-fit test to quantify the fit between data observed from genome-wide multi-locus data, and patterns expected under the multi-species coalescent model on a candidate phylogenetic network. RESULTS We identified weaknesses in the previously proposed TICR test, and proposed corrections. The performance of our new test was validated by simulations on real-world phylogenetic networks. Our test provides one of the first rigorous tools for model selection, to select the adequate network complexity for the data at hand. The test can also work for identifying poorly inferred areas on a network. AVAILABILITY AND IMPLEMENTATION Software for the goodness-of-fit test is available as a Julia package at https://github.com/cecileane/QuartetNetworkGoodnessFit.jl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruoyi Cai
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA.,Department of Botany, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Arcila D, Hughes LC, Meléndez-Vazquez F, Baldwin CC, White W, Carpenter K, Williams JT, Santos MD, Pogonoski J, Miya M, Ortí G, Betancur-R R. Testing the utility of alternative metrics of branch support to address the ancient evolutionary radiation of tunas, stromateoids, and allies (Teleostei: Pelagiaria). Syst Biol 2021; 70:1123-1144. [PMID: 33783539 DOI: 10.1093/sysbio/syab018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/13/2021] [Indexed: 12/19/2022] Open
Abstract
The use of high-throughput sequencing technologies to produce genome-scale datasets was expected to settle some long-standing controversies across the Tree of Life, particularly in areas where short branches occur at deep timescales. Instead, these datasets have often yielded many well-supported but conflicting topologies, and highly variable gene-tree distributions. A variety of branch-support metrics beyond the nonparametric bootstrap are now available to assess how robust a phylogenetic hypothesis may be, as well as new methods to quantify gene-tree discordance. We applied multiple branch support metrics to an ancient group of marine fishes (Teleostei: Pelagiaria) whose interfamilial relationships have proven difficult to resolve due to a rapid accumulation of lineages very early in its history. We analyzed hundreds of loci including published UCE data and newly generated exonic data along with their flanking regions to represent all 16 extant families for more than 150 out of 284 valid species in the group. Branch support was lower for interfamilial relationships (except the SH-like aLRT and aBayes methods) regardless of the type of marker used. Several nodes that were highly supported with bootstrap had very low site and gene-tree concordance, revealing underlying conflict. Despite this conflict, we were able to identify four consistent interfamilial clades, each comprised of two or three families. Combining exons with their flanking regions also produced increased branch lengths in the deep branches of the pelagiarian tree. Our results demonstrate the limitations of employing current metrics of branch support and species-tree estimation when assessing the confidence of ancient evolutionary radiations and emphasize the necessity to embrace alternative measurements to explore phylogenetic uncertainty and discordance in phylogenomic datasets.
Collapse
Affiliation(s)
- Dahiana Arcila
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, U.S.A.,Department of Biology, University of Oklahoma, Norman, Oklahoma, U.S.A
| | - Lily C Hughes
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, U.S.A.,Department of Organismal Biology and Anatomy, The University of Chicago, Illinois, Chicago, U.S.A.,Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | - Fernando Meléndez-Vazquez
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, U.S.A.,Department of Biology, University of Oklahoma, Norman, Oklahoma, U.S.A
| | - Carole C Baldwin
- Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | - William White
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Hobart, Tasmania, Australia
| | - Kent Carpenter
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, U.S.A
| | - Jeffrey T Williams
- Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | | | - John Pogonoski
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Hobart, Tasmania, Australia
| | - Masaki Miya
- Natural History Museum and Institute, Chiba, Aoba-cho, Chuo-ku, Chiba, Japan
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, U.S.A.,Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | | |
Collapse
|
23
|
Moore AJ, Messick JA, Kadereit JW. Range and niche expansion through multiple interspecific hybridization: a genotyping by sequencing analysis of Cherleria (Caryophyllaceae). BMC Ecol Evol 2021; 21:40. [PMID: 33691632 PMCID: PMC7945309 DOI: 10.1186/s12862-020-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cherleria (Caryophyllaceae) is a circumboreal genus that also occurs in the high mountains of the northern hemisphere. In this study, we focus on a clade that diversified in the European High Mountains, which was identified using nuclear ribosomal (nrDNA) sequence data in a previous study. With the nrDNA data, all but one species was monophyletic, with little sequence variation within most species. Here, we use genotyping by sequencing (GBS) data to determine whether the nrDNA data showed the full picture of the evolution in the genomes of these species. RESULTS The overall relationships found with the GBS data were congruent with those from the nrDNA study. Most of the species were still monophyletic and many of the same subclades were recovered, including a clade of three narrow endemic species from Greece and a clade of largely calcifuge species. The GBS data provided additional resolution within the two species with the best sampling, C. langii and C. laricifolia, with structure that was congruent with geography. In addition, the GBS data showed significant hybridization between several species, including species whose ranges did not currently overlap. CONCLUSIONS The hybridization led us to hypothesize that lineages came in contact on the Balkan Peninsula after they diverged, even when those lineages are no longer present on the Balkan Peninsula. Hybridization may also have helped lineages expand their niches to colonize new substrates and different areas. Not only do genome-wide data provide increased phylogenetic resolution of difficult nodes, they also give evidence for a more complex evolutionary history than what can be depicted by a simple, branching phylogeny.
Collapse
Affiliation(s)
- Abigail J. Moore
- Department of Microbiology and Plant Biology and Oklahoma Biological Survey, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019 USA
| | - Jennifer A. Messick
- Department of Biology, University of Central Oklahoma, Howell Hall, Room 220, Edmond, OK 73034 USA
| | - Joachim W. Kadereit
- Fachbereich Biologie, Institut Für Organismische Und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Anselm-Franz-von-Bentzel-Weg 9a, 55099 Mainz, Germany
| |
Collapse
|
24
|
Šlechtová V, Musilova Z, Tan HH, Kottelat M, Bohlen J. One northward, one southward: Contrasting biogeographical history in two benthic freshwater fish genera across Southeast Asia (Teleostei: Cobitoidea: Nemacheilus, Pangio). Mol Phylogenet Evol 2021; 161:107139. [PMID: 33711445 DOI: 10.1016/j.ympev.2021.107139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Southeast Asia is one of the world's biodiversity hotspots, and the high level of diversity and endemism was reached by colonisation events as well as internal diversification. We investigate the phylogenetic relationships and biogeographic history of the loach genus Nemacheilus, which is widely distributed and common across freshwaters of Southeast Asia. In addition we present the ancestral range reconstruction of the related loach genus Pangio that commonly occurs in the same region as Nemacheilus. Our results reveal that the species currently classified as Nemacheilus in fact are a polyphyletic assemblage; most species are now retaining in a monophyletic Nemacheilus sensu stricto and five species belong to different lineages. We further indicate the existence of hidden diversity within Nemacheilus in the form of several undescribed species. Three major clades (Selangoricus, Masyae and Ornatus) are found within the genus Nemacheilus sensu stricto. These clades generally correspond to the species groups formerly defined on the basis of their pigmentation pattern. The biogeographic analyses show that Nemacheilus most likely originated in mainland Southeast Asia and subsequently expanded in a southward direction to Borneo, Sumatra and Java and the southern Malay Peninsula. In contrast, the genus Pangio originated in Sundaland, from where it extended several times northwards into Indochina and to northern India. Our results demonstrate that small freshwater fishes with restricted dispersal ability are very helpful for the reconstruction of biogeographic history. The contrasting biogeographic history of these two groups of small, benthic and related fish show how complex and case-specific the processes that lead to the biodiversity richness of Southeast Asia are.
Collapse
Affiliation(s)
- Vendula Šlechtová
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Maurice Kottelat
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore; Rue des Rauraques 6, 2800 Delémont, Switzerland
| | - Jörg Bohlen
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| |
Collapse
|
25
|
Rivera JA, Rich HN, Michelle Lawing A, Rosenberg MS, Martins EP. Occurrence data uncover patterns of allopatric divergence and interspecies interactions in the evolutionary history of Sceloporus lizards. Ecol Evol 2021; 11:2796-2813. [PMID: 33767837 PMCID: PMC7981219 DOI: 10.1002/ece3.7237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
As shown from several long-term and time-intensive studies, closely related, sympatric species can impose strong selection on one another, leading to dramatic examples of phenotypic evolution. Here, we use occurrence data to identify clusters of sympatric Sceloporus lizard species and to test whether Sceloporus species tend to coexist with other species that differ in body size, as we would expect when there is competition between sympatric congeners. We found that Sceloporus species can be grouped into 16 unique bioregions. Bioregions that are located at higher latitudes tend to be larger and have fewer species, following Rapoport's rule and the latitudinal diversity gradient. Species richness was positively correlated with the number of biomes and elevation heterogeneity of each bioregion. Additionally, most bioregions show signs of phylogenetic underdispersion, meaning closely related species tend to occur in close geographic proximity. Finally, we found that although Sceloporus species that are similar in body size tend to cluster geographically, small-bodied Sceloporus species are more often in sympatry with larger-bodied Sceloporus species than expected by chance alone, whereas large-bodied species cluster with each other geographically and phylogenetically. These results suggest that community composition in extant Sceloporus species is the result of allopatric evolution, as closely related species move into different biomes, and interspecies interactions, with sympatry between species of different body sizes. Our phyloinformatic approach offers unique and detailed insights into how a clade composed of ecologically and morphologically disparate species are distributed over large geographic space and evolutionary time.
Collapse
Affiliation(s)
| | | | - A. Michelle Lawing
- Department of Ecosystem and Science ManagementTexas A&M UniversityCollege StationTXUSA
| | - Michael S. Rosenberg
- Center for the Study of Biological ComplexityVirginia Commonwealth UniversityRichmondVAUSA
| | | |
Collapse
|
26
|
Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. Mol Phylogenet Evol 2021; 160:107109. [PMID: 33609712 DOI: 10.1016/j.ympev.2021.107109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/20/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
Mud snakes (Serpentes: Homalopsidae) are a family of 55 described, mainly aquatic, species primarily distributed throughout mainland Southeast Asia and the Indo-Australian Archipelago. Although they have been the focus of prior research, the basic relationships amongst genera and species remain poorly known. We used a combined mitochondrial and nuclear gene dataset to infer their phylogenetic relationships, using the highest levels of taxon and geographic sampling for any homalopsid phylogeny to date (62% generic and 62% species coverage; 140 individuals). Our results recover two reciprocally monophyletic groups: the fangless Brachyorrhos and its sister clade comprised of all rear-fanged homalopsids. Most genera and interspecific relationships were monophyletic and strongly supported, but intergeneric relationships and intraspecific population structure lack support. We find evidence of both undescribed diversity as well as cases of taxonomic inflation within several species. Tree-based species delimitation approaches (mPTP) support potential new candidate species as distinct from their conspecifics and also suggest that many named taxa may not be distinct species. Divergence date estimation and lineage-through-time analyses indicate lower levels of speciation in the Eocene, with a subsequent burst in diversification in the Miocene. Homalopsids may have diversified most rapidly during the Pliocene and Pleistocene, possibly in relation to tectonic shifts and sea-level fluctuations that took place in Sundaland and the Sahul Shelf. Our analyses provide new insights on homalopsid taxonomy, a baseline phylogeny for the family, and further biogeographic implications demonstrating how dynamic tectonics and Quaternary sea level changes may have shaped a widespread, diverse family of snakes.
Collapse
|
27
|
Smith BT, Gehara M, Harvey MG. The demography of extinction in eastern North American birds. Proc Biol Sci 2021; 288:20201945. [PMID: 33529556 DOI: 10.1098/rspb.2020.1945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species are being lost at an unprecedented rate during the Anthropocene. Progress has been made in clarifying how species traits influence their propensity to go extinct, but the role historical demography plays in species loss or persistence is unclear. In eastern North America, five charismatic landbirds went extinct last century, and the causes of their extinctions have been heavily debated. Although these extinctions are most often attributed to post-colonial human activity, other factors such as declining ancestral populations prior to European colonization could have made these species particularly susceptible. We used population genomic data from these extinct birds and compared them with those from four codistributed extant species. We found extinct species harboured lower genetic diversity and effective population sizes than extant species, but both extinct and non-extinct birds had similar demographic histories of population expansion. These demographic patterns are consistent with population size changes associated with glacial-interglacial cycles. The lack of support for overall population declines during the Pleistocene corroborates the view that, although species that went extinct may have been vulnerable due to low diversity or small population size, their disappearance was driven by human activities in the Anthropocene.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University Newark, 195 University Avenue, Newark, NJ 07102, USA
| | - Michael G Harvey
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
28
|
Pavón-Vázquez CJ, Brennan IG, Keogh JS. A Comprehensive Approach to Detect Hybridization Sheds Light on the Evolution of Earth's Largest Lizards. Syst Biol 2021; 70:877-890. [PMID: 33512509 DOI: 10.1093/sysbio/syaa102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Hybridization between species occurs more frequently in vertebrates than traditionally thought but distinguishing ancient hybridization from other phenomena that generate similar evolutionary patterns remains challenging. Here, we used a comprehensive workflow to discover evidence of ancient hybridization between the Komodo dragon (Varanus komodoensis) from Indonesia and a common ancestor of an Australian group of monitor lizards known colloquially as sand monitors. Our data comprises >300 nuclear loci, mitochondrial genomes, phenotypic data, fossil and contemporary records, and past/present climatic data. We show that the four sand monitor species share more nuclear alleles with V. komodoensis than expected given a bifurcating phylogeny, likely as a result of hybridization between the latter species and a common ancestor of sand monitors. Sand monitors display phenotypes that are intermediate between their closest relatives and V. komodoensis. Biogeographic analyses suggest that V. komodoensis and ancestral sand monitors co-occurred in northern Australia. In agreement with the fossil record, this provides further evidence that the Komodo dragon once inhabited the Australian continent. Our study shows how different sources of evidence can be used to thoroughly characterize evolutionary histories that deviate from a treelike pattern, that hybridization can have long-lasting effects on phenotypes and that detecting hybridization can improve our understanding of evolutionary and biogeographic patterns.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ian G Brennan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
29
|
Jiang X, Edwards SV, Liu L. The Multispecies Coalescent Model Outperforms Concatenation Across Diverse Phylogenomic Data Sets. Syst Biol 2021; 69:795-812. [PMID: 32011711 PMCID: PMC7302055 DOI: 10.1093/sysbio/syaa008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022] Open
Abstract
A statistical framework of model comparison and model validation is essential to resolving the debates over concatenation and coalescent models in phylogenomic data analysis. A set of statistical tests are here applied and developed to evaluate and compare the adequacy of substitution, concatenation, and multispecies coalescent (MSC) models across 47 phylogenomic data sets collected across tree of life. Tests for substitution models and the concatenation assumption of topologically congruent gene trees suggest that a poor fit of substitution models, rejected by 44% of loci, and concatenation models, rejected by 38% of loci, is widespread. Logistic regression shows that the proportions of GC content and informative sites are both negatively correlated with the fit of substitution models across loci. Moreover, a substantial violation of the concatenation assumption of congruent gene trees is consistently observed across six major groups (birds, mammals, fish, insects, reptiles, and others, including other invertebrates). In contrast, among those loci adequately described by a given substitution model, the proportion of loci rejecting the MSC model is 11%, significantly lower than those rejecting the substitution and concatenation models. Although conducted on reduced data sets due to computational constraints, Bayesian model validation and comparison both strongly favor the MSC over concatenation across all data sets; the concatenation assumption of congruent gene trees rarely holds for phylogenomic data sets with more than 10 loci. Thus, for large phylogenomic data sets, model comparisons are expected to consistently and more strongly favor the coalescent model over the concatenation model. We also found that loci rejecting the MSC have little effect on species tree estimation. Our study reveals the value of model validation and comparison in phylogenomic data analysis, as well as the need for further improvements of multilocus models and computational tools for phylogenetic inference. [Bayes factor; Bayesian model validation; coalescent prior; congruent gene trees; independent prior; Metazoa; posterior predictive simulation.]
Collapse
Affiliation(s)
- Xiaodong Jiang
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA.,Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, USA
| |
Collapse
|
30
|
Blair C, Ané C. Phylogenetic Trees and Networks Can Serve as Powerful and Complementary Approaches for Analysis of Genomic Data. Syst Biol 2020; 69:593-601. [PMID: 31432090 DOI: 10.1093/sysbio/syz056] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/15/2019] [Indexed: 11/14/2022] Open
Abstract
Genomic data have had a profound impact on nearly every biological discipline. In systematics and phylogenetics, the thousands of loci that are now being sequenced can be analyzed under the multispecies coalescent model (MSC) to explicitly account for gene tree discordance due to incomplete lineage sorting (ILS). However, the MSC assumes no gene flow post divergence, calling for additional methods that can accommodate this limitation. Explicit phylogenetic network methods have emerged, which can simultaneously account for ILS and gene flow by representing evolutionary history as a directed acyclic graph. In this point of view, we highlight some of the strengths and limitations of phylogenetic networks and argue that tree-based inference should not be blindly abandoned in favor of networks simply because they represent more parameter rich models. Attention should be given to model selection of reticulation complexity, and the most robust conclusions regarding evolutionary history are likely obtained when combining tree- and network-based inference.
Collapse
Affiliation(s)
- Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin - Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Statistics, University of Wisconsin - Madison, 1300 University Ave, Madison, WI 53706, USA
| |
Collapse
|
31
|
Rancilhac L, Irisarri I, Angelini C, Arntzen JW, Babik W, Bossuyt F, Künzel S, Lüddecke T, Pasmans F, Sanchez E, Weisrock D, Veith M, Wielstra B, Steinfartz S, Hofreiter M, Philippe H, Vences M. Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Mol Phylogenet Evol 2020; 155:106967. [PMID: 33031928 DOI: 10.1016/j.ympev.2020.106967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/09/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.
Collapse
Affiliation(s)
- Loïs Rancilhac
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | | | - Jan W Arntzen
- Naturalis Biodiversity Center, 2300 RA Leiden, the Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels Belgium
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstr. 2, 35394 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Michael Veith
- Biogeography Department, Trier University, 54286 Trier, Germany
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, the Netherlands
| | - Sebastian Steinfartz
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstrasse 33, 04103, Leipzig, Germany
| | - Michael Hofreiter
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, 2 route du CNRS, 09200 Moulis, France
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|
32
|
Pyron RA, O'Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Phylogenomic data reveal reticulation and incongruence among mitochondrial candidate species in Dusky Salamanders (Desmognathus). Mol Phylogenet Evol 2020; 146:106751. [DOI: 10.1016/j.ympev.2020.106751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
33
|
Keuler R, Garretson A, Saunders T, Erickson RJ, St Andre N, Grewe F, Smith H, Lumbsch HT, Huang JP, St Clair LL, Leavitt SD. Genome-scale data reveal the role of hybridization in lichen-forming fungi. Sci Rep 2020; 10:1497. [PMID: 32001749 PMCID: PMC6992703 DOI: 10.1038/s41598-020-58279-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Advancements in molecular genetics have revealed that hybridization may be common among plants, animals, and fungi, playing a role in evolutionary dynamics and speciation. While hybridization has been well-documented in pathogenic fungi, the effects of these processes on speciation in fungal lineages with different life histories and ecological niches are largely unexplored. Here we investigated the potential influence of hybridization on the emergence of morphologically and reproductively distinct asexual lichens. We focused on vagrant forms (growing obligately unattached to substrates) within a clade of rock-dwelling, sexually reproducing species in the Rhizoplaca melanophthalma (Lecanoraceae, Ascomycota) species complex. We used phylogenomic data from both mitochondrial and nuclear genomes to infer evolutionary relationships and potential patterns of introgression. We observed multiple instances of discordance between the mitochondrial and nuclear trees, including the clade comprising the asexual vagrant species R. arbuscula, R. haydenii, R. idahoensis, and a closely related rock-dwelling lineage. Despite well-supported phylogenies, we recovered strong evidence of a reticulated evolutionary history using a network approach that incorporates both incomplete lineage sorting and hybridization. These data suggest that the rock-dwelling western North American subalpine endemic R. shushanii is potentially the result of a hybrid speciation event, and introgression may have also played a role in other taxa, including vagrant species R. arbuscula, R. haydenii and R. idahoensis. We discuss the potential roles of hybridization in terms of generating asexuality and novel morphological traits in lichens. Furthermore, our results highlight the need for additional study of reticulate phylogenies when investigating species boundaries and evolutionary history, even in cases with well-supported topologies inferred from genome-scale data.
Collapse
Affiliation(s)
- Rachel Keuler
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Alexis Garretson
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Theresa Saunders
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Robert J Erickson
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Nathan St Andre
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Felix Grewe
- Grainger Bioinformatics Center, Science & Education, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Hayden Smith
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - H Thorsten Lumbsch
- Grainger Bioinformatics Center, Science & Education, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, 128 Academia Rd, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Larry L St Clair
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
- M. L. Bean Life Science Museum, Brigham Young University, 1115 MLBM, Provo, UT, 84602, USA
| | - Steven D Leavitt
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA.
- M. L. Bean Life Science Museum, Brigham Young University, 1115 MLBM, Provo, UT, 84602, USA.
| |
Collapse
|
34
|
Campillo LC, Barley AJ, Thomson RC. Model-Based Species Delimitation: Are Coalescent Species Reproductively Isolated? Syst Biol 2019; 69:708-721. [DOI: 10.1093/sysbio/syz072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
A large and growing fraction of systematists define species as independently evolving lineages that may be recognized by analyzing the population genetic history of alleles sampled from individuals belonging to those species. This has motivated the development of increasingly sophisticated statistical models rooted in the multispecies coalescent process. Specifically, these models allow for simultaneous estimation of the number of species present in a sample of individuals and the phylogenetic history of those species using only DNA sequence data from independent loci. These methods hold extraordinary promise for increasing the efficiency of species discovery but require extensive validation to ensure that they are accurate and precise. Whether the species identified by these methods correspond to the species that would be recognized by alternative species recognition criteria (such as measurements of reproductive isolation) is currently an open question and a subject of vigorous debate. Here, we perform an empirical test of these methods by making use of a classic model system in the history of speciation research, flies of the genus Drosophila. Specifically, we use the uniquely comprehensive data on reproductive isolation that is available for this system, along with DNA sequence data, to ask whether Drosophila species inferred under the multispecies coalescent model correspond to those recognized by many decades of speciation research. We found that coalescent based and reproductive isolation-based methods of inferring species boundaries are concordant for 77% of the species pairs. We explore and discuss potential explanations for these discrepancies. We also found that the amount of prezygotic isolation between two species is a strong predictor of the posterior probability of species boundaries based on DNA sequence data, regardless of whether the species pairs are sympatrically or allopatrically distributed. [BPP; Drosophila speciation; genetic distance; multispecies coalescent.]
Collapse
Affiliation(s)
- Luke C Campillo
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Anthony J Barley
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| |
Collapse
|
35
|
Burbrink FT, Grazziotin FG, Pyron RA, Cundall D, Donnellan S, Irish F, Keogh JS, Kraus F, Murphy RW, Noonan B, Raxworthy CJ, Ruane S, Lemmon AR, Lemmon EM, Zaher H. Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships. Syst Biol 2019; 69:502-520. [DOI: 10.1093/sysbio/syz062] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards, snakes, and amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. In this study, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome-scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites (PIS), phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of PIS), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; among the three toxicoferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Av. Vital Brasil, 1500—Butantã, São Paulo—SP 05503-900, Brazil
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - David Cundall
- Department of Biological Sciences, 1 W. Packer Avenue, Lehigh University, Bethlehem, PA 18015, USA
| | - Steve Donnellan
- South Australian Museum, North Terrace, Adelaide SA 5000, Australia
- School of Biological Sciences, University of Adelaide, SA 5005 Australia
| | - Frances Irish
- Department of Biological Sciences, Moravian College, 1200 Main St, Bethlehem, PA 18018, US
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Fred Kraus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert W Murphy
- Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
| | - Brice Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Sara Ruane
- Department of Biological Sciences, 206 Boyden Hall, Rutgers University, 195 University Avenue, Newark, NJ 07102, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4102, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil CEP 04263-000, Brazil
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR 7207 CNRS/MNHN/Sorbonne Université, Muséum national d’Histoire naturelle, 8 rue Buffon, CP 38, 75005 Paris, France
| |
Collapse
|
36
|
French CM, Deutsch MS, Chávez G, Almora CE, Brown JL. Speciation with introgression: Phylogeography and systematics of the Ameerega petersi group (Dendrobatidae). Mol Phylogenet Evol 2019; 138:31-42. [DOI: 10.1016/j.ympev.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
|
37
|
Lamichhaney S, Card DC, Grayson P, Tonini JFR, Bravo GA, Näpflin K, Termignoni-Garcia F, Torres C, Burbrink F, Clarke JA, Sackton TB, Edwards SV. Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180248. [PMID: 31154982 PMCID: PMC6560268 DOI: 10.1098/rstb.2018.0248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Evolutionary convergence has been long considered primary evidence of adaptation driven by natural selection and provides opportunities to explore evolutionary repeatability and predictability. In recent years, there has been increased interest in exploring the genetic mechanisms underlying convergent evolution, in part, owing to the advent of genomic techniques. However, the current 'genomics gold rush' in studies of convergence has overshadowed the reality that most trait classifications are quite broadly defined, resulting in incomplete or potentially biased interpretations of results. Genomic studies of convergence would be greatly improved by integrating deep 'vertical', natural history knowledge with 'horizontal' knowledge focusing on the breadth of taxonomic diversity. Natural history collections have and continue to be best positioned for increasing our comprehensive understanding of phenotypic diversity, with modern practices of digitization and databasing of morphological traits providing exciting improvements in our ability to evaluate the degree of morphological convergence. Combining more detailed phenotypic data with the well-established field of genomics will enable scientists to make progress on an important goal in biology: to understand the degree to which genetic or molecular convergence is associated with phenotypic convergence. Although the fields of comparative biology or comparative genomics alone can separately reveal important insights into convergent evolution, here we suggest that the synergistic and complementary roles of natural history collection-derived phenomic data and comparative genomics methods can be particularly powerful in together elucidating the genomic basis of convergent evolution among higher taxa. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, University of Texas Arlington, Arlington, TX 76019, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - João F. R. Tonini
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Kathrin Näpflin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Torres
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | - Frank Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY 10024, USA
| | - Julia A. Clarke
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | | | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Adams RH, Schield DR, Castoe TA. Recent Advances in the Inference of Gene Flow from Population Genomic Data. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40610-019-00120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Zhang LN, Ma PF, Zhang YX, Zeng CX, Zhao L, Li DZ. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol Phylogenet Evol 2019; 137:222-235. [PMID: 31112779 DOI: 10.1016/j.ympev.2019.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/18/2022]
Abstract
With the development of sequencing technologies, the use of multiple nuclear genes has become conventional for resolving difficult phylogenies. However, this technique also presents challenges due to gene-tree discordance, as a result of incomplete lineage sorting (ILS) and reticulate evolution. Although alleles can show sequence variation within individuals, which contain information regarding the evolution of organisms, they continue to be ignored in almost all phylogenetic analyses using randomly phased genome sequences. Here, we tried to incorporate alleles from multiple nuclear loci to study the phylogeny of the economically important bamboo genus Phyllostachys (Poaceae, Bambusoideae). Obtaining a total of 3926 sequences, we documented extensive allelic variation for 61 genes from 39 sampled species. Using datasets consisting of selected alleles, we demonstrated substantial discordance among phylogenetic relationships inferred from different alleles, as well as between concatenation and coalescent methods. Furthermore, ILS and hybridization were suggested to be underlying causes of the discordant phylogenetic signals. Taking these possible causes for conflicting phylogenetic results into consideration, we recovered the monophyly of Phyllostachys and its two morphology-defined sections. Our study also suggests that alleles deserve more attention in phylogenetic studies, since ignoring them can yield highly supported but spurious phylogenies. Meanwhile, alleles are helpful for unraveling complex evolutionary processes, particularly hybridization.
Collapse
Affiliation(s)
- Li-Na Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Xiao Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Chun-Xia Zeng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
40
|
Burbrink FT, Ruane S, Kuhn A, Rabibisoa N, Randriamahatantsoa B, Raselimanana AP, Andrianarimalala MSM, Cadle JE, Lemmon AR, Lemmon EM, Nussbaum RA, Jones LN, Pearson R, Raxworthy CJ. The Origins and Diversification of the Exceptionally Rich Gemsnakes (Colubroidea: Lamprophiidae: Pseudoxyrhophiinae) in Madagascar. Syst Biol 2019; 68:918-936. [DOI: 10.1093/sysbio/syz026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Processes leading to spectacular diversity of both form and species on islands have been well-documented under island biogeography theory, where distance from source and island size are key factors determining immigration and extinction resistance. But far less understood are the processes governing in situ diversification on the world’s mega islands, where large and isolated land masses produced morphologically distinct radiations from related taxa on continental regions. Madagascar has long been recognized as a natural laboratory due to its isolation, lack of influence from adjacent continents, and diversification of spectacular vertebrate radiations. However, only a handful of studies have examined rate shifts of in situ diversification for this island. Here, we examine rates of diversification in the Malagasy snakes of the family Pseudoxyrhophiinae (gemsnakes) to understand if rates of speciation were initially high, enhanced by diversification into distinct biomes, and associated with key dentition traits. Using a genomic sequence-capture data set for 366 samples, we determine that all previously described and newly discovered species are delimitable and therefore useful candidates for understanding diversification trajectories through time. Our analysis detected no shifts in diversification rate between clades or changes in biome or dentition type. Remarkably, we demonstrate that rates of diversification of the gemsnake radiation, which originated in Madagascar during the early Miocene, remained steady throughout the Neogene. However, we do detect a significant slowdown in diversification during the Pleistocene. We also comment on the apparent paradox where most living species originated in the Pleistocene, despite diversification rates being substantially higher during the earlier 15 myr.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Sara Ruane
- Department of Biological Sciences, 206 Boyden Hall, Rutgers University-Newark, 195 University Ave, Newark, NJ 07102, USA
| | - Arianna Kuhn
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
- Department of Biology, The Graduate School and University Center, The City University of New York, 365 Fifth Ave., New York, NY 10016, USA
| | - Nirhy Rabibisoa
- Mention Sciences de la Vie et de l’Environnement, Faculté des Sciences, de Technologies et de l’Environnement, Université de Mahajanga, Campus Universitaire d’Ambondrona, BP 652, Mahajanga 401, Madagascar
| | - Bernard Randriamahatantsoa
- Mention Sciences de la Vie et de l’Environnement, Faculté des Sciences, de Technologies et de l’Environnement, Université de Mahajanga, Campus Universitaire d’Ambondrona, BP 652, Mahajanga 401, Madagascar
| | - Achille P Raselimanana
- Mention: Zoologie et Biodiversité Animale, Faculté des Sciences, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar
| | - Mamy S M Andrianarimalala
- Mention: Zoologie et Biodiversité Animale, Faculté des Sciences, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar
| | - John E Cadle
- Department of Biology, East Georgia State College, Swainsboro, GA 30401, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4102, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Ronald A Nussbaum
- Division of Reptiles and Amphibians, Museum of Zoology, Research Museums Center, 3600 Varsity Drive, University of Michigan, Ann Arbor, MI 48108, USA
| | - Leonard N Jones
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Richard Pearson
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| |
Collapse
|
41
|
Myers EA, Bryson RW, Hansen RW, Aardema ML, Lazcano D, Burbrink FT. Exploring Chihuahuan Desert diversification in the gray-banded kingsnake, Lampropeltis alterna (Serpentes: Colubridae). Mol Phylogenet Evol 2019; 131:211-218. [DOI: 10.1016/j.ympev.2018.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
|
42
|
Rancilhac L, Goudarzi F, Gehara M, Hemami MR, Elmer KR, Vences M, Steinfarz S. Phylogeny and species delimitation of near Eastern Neurergus newts (Salamandridae) based on genome-wide RADseq data analysis. Mol Phylogenet Evol 2019; 133:189-197. [PMID: 30659915 DOI: 10.1016/j.ympev.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
Abstract
We reconstruct the molecular phylogeny of Near Eastern mountain brook newts of the genus Neurergus (family Salamandridae) based on newly determined RADseq data, and compare the outcomes of concatenation-based phylogenetic reconstruction with species-tree inference. Furthermore, we test the current taxonomy of Neurergus (with four species: Neurergus strauchii, N. crocatus, N. kaiseri, and N. derjugini) against coalescent-based species-delimitation approaches of our genome-wide genetic data set. While the position of N. strauchii as sister species to all other Neurergus species was consistent in all of our analyses, the phylogenetic relationships between the three remaining species changed depending on the applied method. The concatenation approach, as well as quartet-based species-tree inference, supported a topology with N. kaiseri as the closest relative to N. derjugini, while full-coalescent species-tree inference approaches supported N. crocatus as sister species of N. derjugini. Investigating the individual signal of gene trees highlighted an extensive variation among gene histories, most likely resulting from incomplete lineage sorting. Coalescent-based species-delimitation models suggest that the current taxonomy might underestimate the species richness within Neurergus and supports seven species. Based on the current sampling, our analysis suggests that N. strauchii, N. derjugini and N. kaiseri might each be subdivided into further species. However, as amphibian species are known to be composed of deep conspecific lineages that do not always warrant species status, these results need to be cautiously interpreted in an integrative taxonomic framework. We hypothesize that the rather shallow divergences detected within N. kaiseri and N. derjugini likely reflect an ongoing speciation process and thus require further investigation. On the contrary, the much deeper genetic divergence found between the two morphologically and geographically differentiated subspecies of N. strauchii leads us to propose that N. s. barani should be considered a distinct species, Neurergus barani Öz, 1994.
Collapse
Affiliation(s)
- Loïs Rancilhac
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstrasse 4, 38106 Braunschweig, Germany.
| | - Forough Goudarzi
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstrasse 4, 38106 Braunschweig, Germany; Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Marcelo Gehara
- American Museum of Natural History, Department of Herpetology, Central Park West at 79th St, New York, NY 10024, USA
| | - Mahmoud-Reza Hemami
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstrasse 4, 38106 Braunschweig, Germany
| | - Sebastian Steinfarz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstrasse 4, 38106 Braunschweig, Germany
| |
Collapse
|
43
|
Degnan JH. Modeling Hybridization Under the Network Multispecies Coalescent. Syst Biol 2018; 67:786-799. [PMID: 29846734 PMCID: PMC6101600 DOI: 10.1093/sysbio/syy040] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Simultaneously modeling hybridization and the multispecies coalescent is becoming increasingly common, and inference of species networks in this context is now implemented in several software packages. This article addresses some of the conceptual issues and decisions to be made in this modeling, including whether or not to use branch lengths and issues with model identifiability. This article is based on a talk given at a Spotlight Session at Evolution 2017 meeting in Portland, Oregon. This session included several talks about modeling hybridization and gene flow in the presence of incomplete lineage sorting. Other talks given at this meeting are also included in this special issue of Systematic Biology.
Collapse
Affiliation(s)
- James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|