1
|
Schrago CG, Mello B. Challenges in Assembling the Dated Tree of Life. Genome Biol Evol 2024; 16:evae229. [PMID: 39475308 PMCID: PMC11523137 DOI: 10.1093/gbe/evae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
The assembly of a comprehensive and dated Tree of Life (ToL) remains one of the most formidable challenges in evolutionary biology. The complexity of life's history, involving both vertical and horizontal transmission of genetic information, defies its representation by a simple bifurcating phylogeny. With the advent of genome and metagenome sequencing, vast amounts of data have become available. However, employing this information for phylogeny and divergence time inference has introduced significant theoretical and computational hurdles. This perspective addresses some key methodological challenges in assembling the dated ToL, namely, the identification and classification of homologous genes, accounting for gene tree-species tree mismatch due to population-level processes along with duplication, loss, and horizontal gene transfer, and the accurate dating of evolutionary events. Ultimately, the success of this endeavor requires new approaches that integrate knowledge databases with optimized phylogenetic algorithms capable of managing complex evolutionary models.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Francisco Barbosa F, Mermudes JRM, Russo CAM. Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda phylogeny. PeerJ 2024; 12:e16706. [PMID: 38213769 PMCID: PMC10782957 DOI: 10.7717/peerj.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
Recently, many studies have addressed the performance of phylogenetic tree-building methods (maximum parsimony, maximum likelihood, and Bayesian inference), focusing primarily on simulated data. However, for discrete morphological data, there is no consensus yet on which methods recover the phylogeny with better performance. To address this lack of consensus, we investigate the performance of different methods using an empirical dataset for hexapods as a model. As an empirical test of performance, we applied normalized indices to effectively measure accuracy (normalized Robinson-Foulds metric, nRF) and precision, which are measured via resolution, one minus Colless' consensus fork index (1-CFI). Additionally, to further explore phylogenetic accuracy and support measures, we calculated other statistics, such as the true positive rate (statistical power) and the false positive rate (type I error), and constructed receiver operating characteristic plots to visualize the relationship between these statistics. We applied the normalized indices to the reconstructed trees from the reanalyses of an empirical discrete morphological dataset from extant Hexapoda using a well-supported phylogenomic tree as a reference. Maximum likelihood and Bayesian inference applying the k-state Markov (Mk) model (without or with a discrete gamma distribution) performed better, showing higher precision (resolution). Additionally, our results suggest that most available tree topology tests are reliable estimators of the performance measures applied in this study. Thus, we suggest that likelihood-based methods and tree topology tests should be used more often in phylogenetic tree studies based on discrete morphological characters. Our study provides a fair indication that morphological datasets have robust phylogenetic signal.
Collapse
Affiliation(s)
| | | | - Claudia A. M. Russo
- Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Griffin CT, Wynd BM, Munyikwa D, Broderick TJ, Zondo M, Tolan S, Langer MC, Nesbitt SJ, Taruvinga HR. Africa's oldest dinosaurs reveal early suppression of dinosaur distribution. Nature 2022; 609:313-319. [PMID: 36045297 DOI: 10.1038/s41586-022-05133-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1-11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan 'disaster faunas' (refs. 12-14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging-there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15-18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19-21 and India19,22-including the earliest dinosaurs-should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa's oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA. .,Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. .,Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| | - Brenen M Wynd
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - Darlington Munyikwa
- National Museums and Monuments of Zimbabwe, Harare, Zimbabwe.,Department of Geology and Paleontology, Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe
| | | | - Michel Zondo
- Department of Geology and Paleontology, Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe
| | | | - Max C Langer
- Departamento de Biologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Hazel R Taruvinga
- Department of Geology and Paleontology, Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe.,School of Agriculture and Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| |
Collapse
|
4
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
5
|
What Is an “Arachnid”? Consensus, Consilience, and Confirmation Bias in the Phylogenetics of Chelicerata. DIVERSITY 2021. [DOI: 10.3390/d13110568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The basal phylogeny of Chelicerata is one of the opaquest parts of the animal Tree of Life, defying resolution despite application of thousands of loci and millions of sites. At the forefront of the debate over chelicerate relationships is the monophyly of Arachnida, which has been refuted by most analyses of molecular sequence data. A number of phylogenomic datasets have suggested that Xiphosura (horseshoe crabs) are derived arachnids, refuting the traditional understanding of arachnid monophyly. This result is regarded as controversial, not least by paleontologists and morphologists, due to the widespread perception that arachnid monophyly is unambiguously supported by morphological data. Moreover, some molecular datasets have been able to recover arachnid monophyly, galvanizing the belief that any result that challenges arachnid monophyly is artefactual. Here, we explore the problems of distinguishing phylogenetic signal from noise through a series of in silico experiments, focusing on datasets that have recently supported arachnid monophyly. We assess the claim that filtering by saturation rate is a valid criterion for recovering Arachnida. We demonstrate that neither saturation rate, nor the ability to assemble a molecular phylogenetic dataset supporting a given outcome with maximal nodal support, is a guarantor of phylogenetic accuracy. Separately, we review empirical morphological phylogenetic datasets to examine characters supporting Arachnida and the downstream implication of a single colonization of terrestrial habitats. We show that morphological support of arachnid monophyly is contingent upon a small number of ambiguous or incorrectly coded characters, most of these tautologically linked to adaptation to terrestrial habitats.
Collapse
|
6
|
Brady PL, Springer MS. The effects of fossil taxa, hypothetical predicted ancestors, and a molecular scaffold on pseudoextinction analyses of extant placental orders. PLoS One 2021; 16:e0257338. [PMID: 34534236 PMCID: PMC8448315 DOI: 10.1371/journal.pone.0257338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudoextinction analyses, which simulate extinction in extant taxa, use molecular phylogenetics to assess the accuracy of morphological phylogenetics. Previous pseudoextinction analyses have shown a failure of morphological phylogenetics to place some individual placental orders in the correct superordinal clade. Recent work suggests that the inclusion of hypothetical ancestors of extant placental clades, estimated by ancestral state reconstructions of morphological characters, may increase the accuracy of morphological phylogenetic analyses. However, these studies reconstructed direct hypothetical ancestors for each extant taxon based on a well-corroborated molecular phylogeny, which is not possible for extinct taxa that lack molecular data. It remains to be determined if pseudoextinct taxa, and by proxy extinct taxa, can be accurately placed when their immediate hypothetical ancestors are unknown. To investigate this, we employed molecular scaffolds with the largest available morphological data set for placental mammals. Each placental order was sequentially treated as pseudoextinct by exempting it from the molecular scaffold and recoding soft morphological characters as missing for all its constituent species. For each pseudoextinct data set, we omitted the pseudoextinct taxon and performed a parsimony ancestral state reconstruction to obtain hypothetical predicted ancestors. Each pseudoextinct order was then evaluated in seven parsimony analyses that employed combinations of fossil taxa, hypothetical predicted ancestors, and a molecular scaffold. In treatments that included fossils, hypothetical predicted ancestors, and a molecular scaffold, only 8 of 19 pseudoextinct placental orders (42%) retained the same interordinal placement as on the molecular scaffold. In treatments that included hypothetical predicted ancestors but not fossils or a scaffold, only four placental orders (21%) were recovered in positions that are congruent with the scaffold. These results indicate that hypothetical predicted ancestors do not increase the accuracy of pseudoextinct taxon placement when the immediate hypothetical ancestor of the taxon is unknown. Hypothetical predicted ancestors are not a panacea for morphological phylogenetics.
Collapse
Affiliation(s)
- Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States of America
| | - Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States of America
| |
Collapse
|
7
|
Barba-Montoya J, Tao Q, Kumar S. Molecular and morphological clocks for estimating evolutionary divergence times. BMC Ecol Evol 2021; 21:83. [PMID: 33980146 PMCID: PMC8117668 DOI: 10.1186/s12862-021-01798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference. RESULTS We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur as some intermediate nodes may show large time differences between these two types of data. CONCLUSIONS Our findings suggest that node- and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of intrinsic time structure in morphological and molecular data before any dating analysis using combined datasets.
Collapse
Affiliation(s)
- Jose Barba-Montoya
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA.
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Thorn KM, Hutchinson MN, Lee MSY, Brown NJ, Camens AB, Worthy TH. A new species of Proegernia from the Namba Formation in South Australia and the early evolution and environment of Australian egerniine skinks. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201686. [PMID: 33972861 PMCID: PMC8074667 DOI: 10.1098/rsos.201686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The diverse living Australian lizard fauna contrasts greatly with their limited Oligo-Miocene fossil record. New Oligo-Miocene fossil vertebrates from the Namba Formation (south of Lake Frome, South Australia) were uncovered from multiple expeditions from 2007 to 2018. Abundant disarticulated material of small vertebrates was concentrated in shallow lenses along the palaeolake edges, now exposed on the western of Lake Pinpa also known from Billeroo Creek 2 km northeast. The fossiliferous lens within the Namba Formation hosting the abundant aquatic (such as fish, platypus Obdurodon and waterfowl) and diverse terrestrial (such as possums, dasyuromorphs and scincids) vertebrates and is hereafter recognized as the Fish Lens. The stratigraphic provenance of these deposits in relation to prior finds in the area is also established. A new egerniine scincid taxon Proegernia mikebulli sp. nov. described herein, is based on a near-complete reconstructed mandible, maxilla, premaxilla and pterygoid. Postcranial scincid elements were also recovered with this material, but could not yet be confidently associated with P. mikebulli. This new taxon is recovered as the sister species to P. palankarinnensis, in a tip-dated total-evidence phylogenetic analysis, where both are recovered as stem Australian egerniines. These taxa also help pinpoint the timing of the arrival of scincids to Australia, with egerniines the first radiation to reach the continent.
Collapse
Affiliation(s)
- K. M. Thorn
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia
- South Australian Museum, North Terrace, Adelaide 5000, South Australia
| | - M. N. Hutchinson
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia
- South Australian Museum, North Terrace, Adelaide 5000, South Australia
| | - M. S. Y. Lee
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia
- South Australian Museum, North Terrace, Adelaide 5000, South Australia
| | - N. J. Brown
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia
| | - A. B. Camens
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia
| | - T. H. Worthy
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia
| |
Collapse
|
9
|
Neumann JS, Desalle R, Narechania A, Schierwater B, Tessler M. Morphological Characters Can Strongly Influence Early Animal Relationships Inferred from Phylogenomic Data Sets. Syst Biol 2021; 70:360-375. [PMID: 32462193 PMCID: PMC7875439 DOI: 10.1093/sysbio/syaa038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom: the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets ($\sim $45,000-400,000 characters in size with $\sim $15-100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data sets ($\sim $15-275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their "equivalent" under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2-10$\times $ in both likelihood and parsimony can in some cases "flip" which phylum is inferred to be the SOM. This typically results in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater taxon sampling improves phylogenetic stability, with some of the larger molecular data sets ($>$200,000 characters and up to $\sim $100 taxa) showing node stability even with $\geqq100\times $ upweighting of morphological data. Accordingly, our analyses have three strong messages. 1) The assumption that genomic data will automatically "swamp out" morphological data is not always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon sampling is increased. 3) The patterns of "flipping points" (i.e., the weighting of morphological data it takes to change the inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology; Phylogenomics; Weighting.].
Collapse
Affiliation(s)
- Johannes S Neumann
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Rob Desalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Bernd Schierwater
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- ITZ, Division of Ecology and Evolution, Tierärztliche Hochschule Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Michael Tessler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
10
|
Turner AH, Montanari S, Norell MA. A New Dromaeosaurid from the Late Cretaceous Khulsan Locality of Mongolia. AMERICAN MUSEUM NOVITATES 2021. [DOI: 10.1206/3965.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Alan H. Turner
- Division of Paleontology, American Museum of Natural History, New York, and Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York
| | - Shaena Montanari
- Division of Paleontology, American Museum of Natural History, New York; currently Walter Cronkite School of Journalism and Mass Communication at Arizona State University, Phoenix Arizona
| | - Mark A. Norell
- Division of Paleontology, American Museum of Natural History, New York
| |
Collapse
|
11
|
Guindon S. Rates and Rocks: Strengths and Weaknesses of Molecular Dating Methods. Front Genet 2020; 11:526. [PMID: 32536940 PMCID: PMC7267027 DOI: 10.3389/fgene.2020.00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
I present here an in-depth, although non-exhaustive, review of two topics in molecular dating. Clock models, which describe the evolution of the rate of evolution, are considered first. Some of the shortcomings of popular approaches-uncorrelated clock models in particular-are presented and discussed. Autocorrelated models are shown to be more reasonable from a biological perspective. Some of the most recent autocorrelated models also rely on a coherent treatment of instantaneous and average substitution rates while previous models are based on implicit approximations. Second, I provide a brief overview of the processes involved in collecting and preparing fossil data. I then review the main techniques that use this data for calibrating the molecular clock. I argue that, in its current form, the fossilized birth-death process relies on assumptions about the mechanisms underlying fossilization and the data collection process that may negatively impact the date estimates. Node-dating approaches make better use of the data available, even though they rest on paleontologists' intervention to prepare raw fossil data. Altogether, this study provides indications that may help practitioners in selecting appropriate methods for molecular dating. It will also hopefully participate in defining the contour of future methodological developments in the field.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CNRS and Université Montpellier (UMR 5506), Montpellier, France
| |
Collapse
|
12
|
Casali DDM, Dos Santos Júnior JE, Miranda FR, Santos FR, Perini FA. Total-evidence phylogeny and divergence times of Vermilingua (Mammalia: Pilosa). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1729894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel de melo Casali
- Laboratório de Evolução de Mamíferos, Departamento de Zoologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
- Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - José EustáQuio Dos Santos Júnior
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
- Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - Flávia Regina Miranda
- Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
- Pós-Graduação em Ciência Animal, Universidade Estadual de Santa Cruz, R. Coronel Pessoa, 183, Ilhéus, Bahia, 45654-971, Cx. Postal 707, Brazil
| | - Fabrício Rodrigues Santos
- Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
- Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - Fernando Araújo Perini
- Laboratório de Evolução de Mamíferos, Departamento de Zoologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
- Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
13
|
Luo A, Duchêne DA, Zhang C, Zhu CD, Ho SYW. A Simulation-Based Evaluation of Tip-Dating Under the Fossilized Birth-Death Process. Syst Biol 2020; 69:325-344. [PMID: 31132125 PMCID: PMC7175741 DOI: 10.1093/sysbio/syz038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/25/2022] Open
Abstract
Bayesian molecular dating is widely used to study evolutionary timescales. This procedure usually involves phylogenetic analysis of nucleotide sequence data, with fossil-based calibrations applied as age constraints on internal nodes of the tree. An alternative approach is tip-dating, which explicitly includes fossil data in the analysis. This can be done, for example, through the joint analysis of molecular data from present-day taxa and morphological data from both extant and fossil taxa. In the context of tip-dating, an important development has been the fossilized birth-death process, which allows non-contemporaneous tips and sampled ancestors while providing a model of lineage diversification for the prior on the tree topology and internal node times. However, tip-dating with fossils faces a number of considerable challenges, especially, those associated with fossil sampling and evolutionary models for morphological characters. We conducted a simulation study to evaluate the performance of tip-dating using the fossilized birth-death model. We simulated fossil occurrences and the evolution of nucleotide sequences and morphological characters under a wide range of conditions. Our analyses of these data show that the number and the maximum age of fossil occurrences have a greater influence than the degree of among-lineage rate variation or the number of morphological characters on estimates of node times and the tree topology. Tip-dating with the fossilized birth-death model generally performs well in recovering the relationships among extant taxa but has difficulties in correctly placing fossil taxa in the tree and identifying the number of sampled ancestors. The method yields accurate estimates of the ages of the root and crown group, although the precision of these estimates varies with the probability of fossil occurrence. The exclusion of morphological characters results in a slight overestimation of node times, whereas the exclusion of nucleotide sequences has a negative impact on inference of the tree topology. Our results provide an overview of the performance of tip-dating using the fossilized birth-death model, which will inform further development of the method and its application to key questions in evolutionary biology.
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Acosta LE. A relictual troglomorphic harvestman discovered in a volcanic cave of western Argentina: Otilioleptes marcelae, new genus, new species, and Otilioleptidae, new family (Arachnida, Opiliones, Gonyleptoidea). PLoS One 2019; 14:e0223828. [PMID: 31644592 PMCID: PMC6808334 DOI: 10.1371/journal.pone.0223828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
The troglomorphic harvestman Otilioleptes marcelae gen. nov., sp. nov. from the basaltic cave Doña Otilia, Payunia region, Mendoza Province, Argentina, is described. Its systematic affinities were studied through cladistic and Bayesian analyses that included representatives of Gonyleptoidea; it was determined to represent a new monotypic family, Otilioleptidae fam. nov., occupying a basal position within the clade Laminata. This species shows accentuated troglomorphic traits, typical for troglobitic harvestmen: elongated appendages, depigmentation, reduction of eyes and fading of scutal sulci. Additionally, it almost lacks sexual dimorphism, the distal portion of coxa IV is not completely fused to the stigmatic segment, and penis morphology is remarkably divergent with other Laminata; these features cannot be attributed to cave adaptation and may reflect early lineage divergence. Otilioleptes marcelae is the first troglobitic gonyleptoid known from a lava tube. The xeric environments around the cave (Patagonian ecoregion) and the paleoenvironmental history of the area suggest the relictual character of O. marcelae. Scattered evidence supports a long time evolutionary scenario and a presumable relationship with the Chilean opiliofauna (especially with genus Osornogyndes). A comparative overview of all known troglobitic gonyleptoids is provided. The urgent need to protect this new species and its unique cave environment is emphasized.
Collapse
Affiliation(s)
- Luis E. Acosta
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica II, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| |
Collapse
|
15
|
King B. Which morphological characters are influential in a Bayesian phylogenetic analysis? Examples from the earliest osteichthyans. Biol Lett 2019; 15:20190288. [PMID: 31311486 PMCID: PMC6684994 DOI: 10.1098/rsbl.2019.0288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
There has been much recent debate about which method is best for reconstructing the tree of life from morphological datasets. However, little attention has been paid to which characters, if any, are responsible for topological differences between trees recovered from competing methods on empirical datasets. Indeed, a simple procedure for finding characters supporting conflicting tree topologies is available in a parsimony framework, but an equivalent procedure in a model-based framework is lacking. Here, I introduce such a procedure and apply it to the problem of the 'psarolepid' osteichthyans. The 'psarolepids', which include the earliest known osteichthyans, are weakly supported as stem osteichthyans under parsimony but strongly supported as sarcopterygians in Bayesian analysis. The Bayesian result is driven by just two characters, both of which relate to the intracranial joint of sarcopterygians. Important characters that support a stem osteichthyan affinity for 'psarolepids', such as the absence of tooth enamel, have virtually no effect in a Bayesian framework. This is because of a bias towards characters with relatively complete sampling, a bias that has previously been reported for molecular data. This has important implications for Bayesian analysis of morphological datasets in general, as characters from different body parts commonly have different levels of coding completeness. Methods to critically appraise character support for conflicting phylogenetic hypotheses, such as that used here, should form an important part of phylogenetic analyses.
Collapse
Affiliation(s)
- Benedict King
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Sookias RB. Exploring the effects of character construction and choice, outgroups and analytical method on phylogenetic inference from discrete characters in extant crocodilians. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Phylogenies for fossil taxa must be inferred from morphology, but accuracy of inference is questionable. Here, morphological characters for extant crocodilians are investigated to assess how to improve inference accuracy. The homoplasy of characters is assessed against a DNA-based phylogenetic tree. Cranial characters are significantly less homoplastic, but this result is perhaps confounded by research effort. Meristic characters are significantly more homoplastic and should be used with caution. Characters were reassessed first hand and documented. Those characters passing tests of robust construction are significantly less homoplastic. Suggestions are made for means to improve coding of discrete characters. Phylogenies inferred using only robust characters and a reassessed matrix, including corrected scorings, were not overall closer to the DNA tree, but did often place the gharial (Gavialis) in a position agreeing with or closer to it. The effects of the choice of analytical method were modest, but Bayesian analysis of the reassessed matrix placed Gavialis and Mecistops (slender-snouted crocodile) in DNA-concordant positions. Use of extant rather than extinct outgroups, even with the original matrix, placed Gavialis in a more DNA-concordant position, as did factoring out 3D skull shape. The morphological case for placement of Gavialis outside other extant crocodilians is arguably overstated, with many characters linked to skull shape.
Collapse
Affiliation(s)
- Roland B Sookias
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße, Berlin, Germany
| |
Collapse
|
17
|
Rasmussen DT, Friscia AR, Gutierrez M, Kappelman J, Miller ER, Muteti S, Reynoso D, Rossie JB, Spell TL, Tabor NJ, Gierlowski-Kordesch E, Jacobs BF, Kyongo B, Macharwas M, Muchemi F. Primitive Old World monkey from the earliest Miocene of Kenya and the evolution of cercopithecoid bilophodonty. Proc Natl Acad Sci U S A 2019; 116:6051-6056. [PMID: 30858323 PMCID: PMC6442627 DOI: 10.1073/pnas.1815423116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Old World monkeys (Cercopithecoidea) are a highly successful primate radiation, with more than 130 living species and the broadest geographic range of any extant group except humans. Although cercopithecoids are highly variable in habitat use, social behavior, and diet, a signature dental feature unites all of its extant members: bilophodonty (bi: two, loph: crest, dont: tooth), or the presence of two cross-lophs on the molars. This feature offers an adaptable Bauplan that, with small changes to its individual components, permits its members to process vastly different kinds of food. Old World monkeys diverged from apes perhaps 30 million years ago (Ma) according to molecular estimates, and the molar lophs are sometimes incompletely developed in fossil species, suggesting a mosaic origin for this key adaptation. However, critical aspects of the group's earliest evolution remain unknown because the cercopithecoid fossil record before ∼18 Ma consists of only two isolated teeth, one from Uganda and one from Tanzania. Here we describe a primitive Old World monkey from Nakwai, Kenya, dated at ∼22 Ma, that offers direct evidence for the initial key steps in the evolution of the cercopithecoid dentition. The simple dentition and absence of bilophodonty in the Nakwai monkey indicate that the initial radiation of Old World monkeys was first characterized by a reorganization of basic molar morphology, and a reliance on cusps rather than lophs suggests frugivorous diets and perhaps hard object feeding. Bilophodonty evolved later, likely in response to the inclusion of leaves in the diet.
Collapse
Affiliation(s)
- D Tab Rasmussen
- Department of Anthropology, Washington University, St. Louis, MO 63130-4899
| | - Anthony R Friscia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7246
| | - Mercedes Gutierrez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - John Kappelman
- Department of Anthropology, The University of Texas,Austin, TX 78712;
- Department of Geological Sciences, The University of Texas, Austin, TX 78712
| | - Ellen R Miller
- Department of Anthropology, Wake Forest University, Winston Salem, NC 27109-7807
| | - Samuel Muteti
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| | - Dawn Reynoso
- Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010
| | - James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794
| | - Terry L Spell
- Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010
| | - Neil J Tabor
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275-0395
| | | | - Bonnie F Jacobs
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275-0395
| | - Benson Kyongo
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| | - Mathew Macharwas
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| | - Francis Muchemi
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| |
Collapse
|
18
|
Goloboff PA, Arias JS. Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion. Cladistics 2019; 35:695-716. [DOI: 10.1111/cla.12380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Pablo A. Goloboff
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas Fundación Miguel Lillo Miguel Lillo 251 4000 S.M. de Tucumán Argentina
| | - J. Salvador Arias
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas Fundación Miguel Lillo Miguel Lillo 251 4000 S.M. de Tucumán Argentina
| |
Collapse
|
19
|
Sharma PP. Integrating morphology and phylogenomics supports a terrestrial origin of insect flight. Proc Natl Acad Sci U S A 2019; 116:2796-2798. [PMID: 30696764 PMCID: PMC6386717 DOI: 10.1073/pnas.1822087116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
20
|
Caldas IV, Schrago CG. Data partitioning and correction for ascertainment bias reduce the uncertainty of placental mammal divergence times inferred from the morphological clock. Ecol Evol 2019; 9:2255-2262. [PMID: 30847109 PMCID: PMC6392387 DOI: 10.1002/ece3.4921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/17/2023] Open
Abstract
Bayesian estimates of divergence times based on the molecular clock yield uncertainty of parameter estimates measured by the width of posterior distributions of node ages. For the relaxed molecular clock, previous works have reported that some of the uncertainty inherent to the variation of rates among lineages may be reduced by partitioning data. Here we test this effect for the purely morphological clock, using placental mammals as a case study. We applied the uncorrelated lognormal relaxed clock to morphological data of 40 extant mammalian taxa and 4,533 characters, taken from the largest published matrix of discrete phenotypic characters. The morphologically derived timescale was compared to divergence times inferred from molecular and combined data. We show that partitioning data into anatomical units significantly reduced the uncertainty of divergence time estimates for morphological data. For the first time, we demonstrate that ascertainment bias has an impact on the precision of morphological clock estimates. While analyses including molecular data suggested most divergences between placental orders occurred near the K-Pg boundary, the partitioned morphological clock recovered older interordinal splits and some younger intraordinal ones, including significantly later dates for the radiation of bats and rodents, which accord to the short-fuse hypothesis.
Collapse
Affiliation(s)
- Ian V. Caldas
- Department of GeneticsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Carlos G. Schrago
- Department of GeneticsFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|