1
|
Whitcher C, Orrico VGD, Ron S, Lyra ML, Cassini CS, Ferreira RB, Nakamura DYM, Peloso PLV, Rada MA, Rivera-Correa M, Sturaro MJ, Valdujo PH, Haddad CFB, Grant T, Faivovich J, Lemmon A, Moriarty Lemmon E. Phylogenetics, biogeography, and life history evolution in the broadly distributed treefrog genus Dendropsophus (Anura: Hylidae: Hylinae). Mol Phylogenet Evol 2025; 204:108275. [PMID: 39725182 DOI: 10.1016/j.ympev.2024.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Dendropsophusis one of the most species-rich genera of hylid treefrogs. Recent studies integrating Sanger-generated mitochondrial and nuclear loci with phenomic characters (SP) have advanced understanding of this clade, but questions about its internal relationships and biogeographic history persist. To address these questions, we used anchored hybrid enrichment (AHE) to combine 432 nuclear loci for 78 taxa (72 % of species) with published data. Quantitatively, the impact of the AHE data was modest, with compositional differences in only three recognized clades and more than 80 % of the clades in the AHE + SP analyses also supported in the SP-only analyses. Nevertheless, the impact of AHE was crucial for resolving and increasing support for multiple nodes. We transferred one species of the formerD. ruschiigroup to theD. decipiensgroup and redefined theD. leucophyllatusgroup to avoid paraphyly. We estimated divergence times to reconstruct the clade's biogeographic history. We also examined evolution of oviposition sites and assessed its effect on lineage accumulation. Dendropsophuslikely originated ∼ 57 mya, predating the Andean uplift, with some taxa showing dispersal patterns less constrained by ecological changes than previously thought.
Collapse
Affiliation(s)
- Courtney Whitcher
- Florida State University, Department of Biological Science, Tallahassee, FL, USA.
| | - Victor G D Orrico
- Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Programa de Pós-Graduação em Zoologia, Brazil.
| | - Santiago Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, 12 de Octubre y Roca, Quito, Ecuador
| | - Mariana L Lyra
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP), Instituto de Biociências, Universidade Estadual Paulista, Avenida 24 A 1515, C.P. 199, Rio Claro, SP, Brazil; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| | - Carla S Cassini
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia - Campus Itapetinga, BA, Brazil.
| | - Rodrigo B Ferreira
- Programa de Pós-Graduação em Biologia Animal, (PPGBAN), Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Pedro L V Peloso
- California State University, Cal Poly Humboldt, Department of Biological Sciences, Arcata, CA, USA.
| | - Marco A Rada
- Universidade de São Paulo, Departamento de Zoologia, São Paulo, Brazil.
| | - Mauricio Rivera-Correa
- Laboratorio de Anfibios, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia; Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | | | - Paula H Valdujo
- The Biodiversity Consultancy, 3E Kings Parade CB2 1SJ, Cambridge, UK.
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP), Instituto de Biociências, Universidade Estadual Paulista, Avenida 24 A 1515, C.P. 199, Rio Claro, SP, Brazil.
| | - Taran Grant
- Universidade de São Paulo, Departamento de Zoologia, São Paulo, Brazil.
| | - Julian Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" -CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Alan Lemmon
- Florida State University, Department of Scientific Computing, Center for Anchored Phylogenomics, Tallahassee, FL, USA
| | - Emily Moriarty Lemmon
- Florida State University, Department of Biological Science, Center for Anchored Phylogenomics, Tallahssee, FL, USA
| |
Collapse
|
2
|
Vélez A, Sandoval SM. Size matters: individual variation in auditory sensitivity may influence sexual selection in Pacific treefrogs (Pseudacris regilla). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:771-784. [PMID: 38367051 DOI: 10.1007/s00359-024-01690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/19/2024]
Abstract
The matched filter hypothesis proposes a close match between senders and receivers and is supported by several studies on variation in signal properties and sensory-processing mechanisms among species and populations. Importantly, within populations, individual variation in sensory processing may affect how receivers perceive signals. Our main goals were to characterize hearing sensitivity of Pacific treefrogs (Pseudacris regilla), assess patterns of individual variation in hearing sensitivity, and evaluate how among-individual variation in hearing sensitivity and call frequency content affect auditory processing of communication signals. Overall, males and females are most sensitive to frequencies between 2.0 and 2.5 kHz, which matches the dominant frequency of the call, and have a second region of high sensitivity between 400 and 800 Hz that does not match the fundamental frequency of the call. We found high levels of among-individual variation in hearing sensitivity, primarily driven by subject size. Importantly, patterns of among-individual variation in hearing differ between males and females. Cross-correlation analyses reveal that among-individual variation in hearing sensitivity may lead to differences on how receivers, particularly females, perceive male calls. Our results suggest that individual variation in sensory processing may affect signal perception and influence the evolution of sexually selected traits.
Collapse
Affiliation(s)
- Alejandro Vélez
- Department of Psychology, University of Tennessee, Knoxville, TN, USA.
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA.
| | - Sam Moreno Sandoval
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| |
Collapse
|
3
|
Karimi N, Krieg CP, Spalink D, Lemmon AR, Lemmon EM, Eifler E, Hernández AI, Chan PW, Rodríguez A, Landis JB, Strickler SR, Specht CD, Givnish TJ. Chromosomal evolution, environmental heterogeneity, and migration drive spatial patterns of species richness in Calochortus (Liliaceae). Proc Natl Acad Sci U S A 2024; 121:e2305228121. [PMID: 38394215 PMCID: PMC10927571 DOI: 10.1073/pnas.2305228121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.
Collapse
Affiliation(s)
- Nisa Karimi
- Science and Conservation Division, Missouri Botanical Garden, St. Louis, MO63110
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | | | - Daniel Spalink
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77845
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL32306
| | | | - Evan Eifler
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Adriana I. Hernández
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY14853
| | - Patricia W. Chan
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Aarón Rodríguez
- Departamento de Botánica y Zoología, Universidad de la Guadalajara, Zapopan, Jalisco45200, Mexico
| | - Jacob B. Landis
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- Departamento de Botánica y Zoología, Universidad de la Guadalajara, Zapopan, Jalisco45200, Mexico
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY14853
| | - Thomas J. Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
4
|
Espeland M, Chazot N, Condamine FL, Lemmon AR, Lemmon EM, Pringle E, Heath A, Collins S, Tiren W, Mutiso M, Lees DC, Fisher S, Murphy R, Woodhall S, Tropek R, Ahlborn SS, Cockburn K, Dobson J, Bouyer T, Kaliszewska ZA, Baker CCM, Talavera G, Vila R, Gardiner AJ, Williams M, Martins DJ, Sáfián S, Edge DA, Pierce NE. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecol Evol 2023; 13:e10046. [PMID: 37193112 PMCID: PMC10182571 DOI: 10.1002/ece3.10046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.
Collapse
Affiliation(s)
- Marianne Espeland
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Nicolas Chazot
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Fabien L. Condamine
- CNRSUMR 5554 Institut des Sciences de l'Evolution de MontpellierMontpellierFrance
| | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | | | | | - Alan Heath
- Lepidopterists' Society of AfricaKnysnaSouth Africa
| | | | | | | | - David C. Lees
- Department of Life SciencesNatural History MuseumLondonUK
| | | | | | | | - Robert Tropek
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzechia
- Institute of Entomology, Biology CentreCzech Academy of SciencesCeske BudejoviceCzechia
| | - Svenja S. Ahlborn
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
| | | | | | | | - Zofia A. Kaliszewska
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Christopher C. M. Baker
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)BarcelonaSpain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
| | | | | | - Dino J. Martins
- Turkana Basin InstituteStony Brook UniversityStony BrookNew YorkUSA
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest ProtectionUniversity of SopronSopronHungary
| | | | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Anderson CB, Ospina O, Beerli P, Lemmon AR, Banker SE, Hassinger AB, Dye M, Kortyna ML, Lemmon EM. The population genetics of speciation by cascade reinforcement. Ecol Evol 2023; 13:e9773. [PMID: 36789346 PMCID: PMC9905665 DOI: 10.1002/ece3.9773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Species interactions drive diverse evolutionary outcomes. Speciation by cascade reinforcement represents one example of how species interactions can contribute to the proliferation of species. This process occurs when the divergence of mating traits in response to selection against interspecific hybridization incidentally leads to reproductive isolation among populations of the same species. Here, we investigated the population genetic outcomes of cascade reinforcement in North American chorus frogs (Hylidae: Pseudacris). Specifically, we estimated the frequency of hybridization among three taxa, assessed genetic structure within the focal species, P. feriarum, and ascertained the directionality of gene flow within P. feriarum across replicated contact zones via coalescent modeling. Through field observations and preliminary experimental crosses, we assessed whether hybridization is possible under natural and laboratory conditions. We found that hybridization occurs among P. feriarum and two conspecifics at a low rate in multiple contact zones, and that gene flow within the former species is unidirectional from allopatry into sympatry with these other species in three of four contact zones studied. We found evidence of substantial genetic structuring within P. feriarum including a divergent western allopatric cluster, a behaviorally-distinct sympatric South Carolina cluster, and several genetically-overlapping clusters from the remainder of the distribution. Furthermore, we found sub-structuring between reinforced and nonreinforced populations in the two most intensely-sampled contact zones. Our literature review indicated that P. feriarum hybridizes with at least five heterospecifics at the periphery of its range providing a mechanism for further intraspecific diversification. This work strengthens the evidence for cascade reinforcement in this clade, revealing the geographic and genetic landscape upon which this process can contribute to the proliferation of species.
Collapse
Affiliation(s)
- Carlie B Anderson
- Department of Biological Science Florida State University Tallahassee Florida USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics Moffitt Cancer Center Tampa Florida USA
| | - Peter Beerli
- Department of Scientific Computing Florida State University Tallahassee Florida USA
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida USA
| | - Sarah E Banker
- Department of Biological Science Florida State University Tallahassee Florida USA
- Pfizer Clinical Pharmacogenomics Group Groton Connecticut USA
| | - Alyssa Bigelow Hassinger
- Department of Biological Science Florida State University Tallahassee Florida USA
- Varigen Biosciences Middleton Wisconsin USA
| | - Mysia Dye
- Department of Biological Science Florida State University Tallahassee Florida USA
| | - Michelle L Kortyna
- Department of Biological Science Florida State University Tallahassee Florida USA
| | | |
Collapse
|
6
|
Ospina OE, Lemmon AR, Dye M, Zdyrski C, Holland S, Stribling D, Kortyna ML, Lemmon EM. Neurogenomic divergence during speciation by reinforcement of mating behaviors in chorus frogs (Pseudacris). BMC Genomics 2021; 22:711. [PMID: 34600496 PMCID: PMC8487493 DOI: 10.1186/s12864-021-07995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Species interactions can promote mating behavior divergence, particularly when these interactions are costly due to maladaptive hybridization. Selection against hybridization can indirectly cause evolution of reproductive isolation within species, a process termed cascade reinforcement. This process can drive incipient speciation by generating divergent selection pressures among populations that interact with different species assemblages. Theoretical and empirical studies indicate that divergent selection on gene expression networks has the potential to increase reproductive isolation among populations. After identifying candidate synaptic transmission genes derived from neurophysiological studies in anurans, we test for divergence of gene expression in a system undergoing cascade reinforcement, the Upland Chorus Frog (Pseudacris feriarum). RESULTS Our analyses identified seven candidate synaptic transmission genes that have diverged between ancestral and reinforced populations of P. feriarum, including five that encode synaptic vesicle proteins. Our gene correlation network analyses revealed four genetic modules that have diverged between these populations, two possessing a significant concentration of neurotransmission enrichment terms: one for synaptic membrane components and the other for metabolism of the neurotransmitter nitric oxide. We also ascertained that a greater number of genes have diverged in expression by geography than by sex. Moreover, we found that more genes have diverged within females as compared to males between populations. Conversely, we observed no difference in the number of differentially-expressed genes within the ancestral compared to the reinforced population between the sexes. CONCLUSIONS This work is consistent with the idea that divergent selection on mating behaviors via cascade reinforcement contributed to evolution of gene expression in P. feriarum. Although our study design does not allow us to fully rule out the influence of environment and demography, the fact that more genes diverged in females than males points to a role for cascade reinforcement. Our discoveries of divergent candidate genes and gene networks related to neurotransmission support the idea that neural mechanisms of acoustic mating behaviors have diverged between populations, and agree with previous neurophysiological studies in frogs. Increasing support for this hypothesis, however, will require additional experiments under common garden conditions. Our work points to the importance of future replicated and tissue-specific studies to elucidate the relative contribution of gene expression divergence to the evolution of reproductive isolation during incipient speciation.
Collapse
Affiliation(s)
- Oscar E Ospina
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
- Present address: Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 13131 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL, 32306, USA
| | - Mysia Dye
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
| | - Christopher Zdyrski
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
- Present address: Genetics and Genomics Program, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Sean Holland
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
| | - Daniel Stribling
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
- Present address: Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Michelle L Kortyna
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
| | - Emily Moriarty Lemmon
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA.
| |
Collapse
|
7
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
8
|
Zhou W, Soghigian J, Xiang QYJ. A New Pipeline for Removing Paralogs in Target Enrichment Data. Syst Biol 2021; 71:410-425. [PMID: 34146111 PMCID: PMC8974407 DOI: 10.1093/sysbio/syab044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Target enrichment (such as Hyb-Seq) is a well-established high throughput sequencing
method that has been increasingly used for phylogenomic studies. Unfortunately, current
widely used pipelines for analysis of target enrichment data do not have a vigorous
procedure to remove paralogs in target enrichment data. In this study, we develop a
pipeline we call Putative Paralogs Detection (PPD) to better address putative paralogs
from enrichment data. The new pipeline is an add-on to the existing HybPiper pipeline, and
the entire pipeline applies criteria in both sequence similarity and heterozygous sites at
each locus in the identification of paralogs. Users may adjust the thresholds of sequence
identity and heterozygous sites to identify and remove paralogs according to the level of
phylogenetic divergence of their group of interest. The new pipeline also removes highly
polymorphic sites attributed to errors in sequence assembly and gappy regions in the
alignment. We demonstrated the value of the new pipeline using empirical data generated
from Hyb-Seq and the Angiosperms353 kit for two woody genera Castanea
(Fagaceae, Fagales) and Hamamelis (Hamamelidaceae, Saxifragales).
Comparisons of data sets showed that the PPD identified many more putative paralogs than
the popular method HybPiper. Comparisons of tree topologies and divergence times showed
evident differences between data from HybPiper and data from our new PPD pipeline. We
further evaluated the accuracy and error rates of PPD by BLAST mapping of putative
paralogous and orthologous sequences to a reference genome sequence of Castanea
mollissima. Compared to HybPiper alone, PPD identified substantially more
paralogous gene sequences that mapped to multiple regions of the reference genome (31
genes for PPD compared with 4 genes for HybPiper alone). In conjunction with HybPiper,
paralogous genes identified by both pipelines can be removed resulting in the construction
of more robust orthologous gene data sets for phylogenomic and divergence time analyses.
Our study demonstrates the value of Hyb-Seq with data derived from the Angiosperms353
probe set for elucidating species relationships within a genus, and argues for the
importance of additional steps to filter paralogous genes and poorly aligned regions
(e.g., as occur through assembly errors), such as our new PPD pipeline described in this
study. [Angiosperms353; Castanea; divergence time;
Hamamelis; Hyb-Seq, paralogs, phylogenomics.]
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27965, USA
| | - John Soghigian
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27965, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27965, USA
| |
Collapse
|
9
|
Warwick AR, Barrow LN, Smith ML, Means DB, Lemmon AR, Lemmon EM. Signatures of north-eastern expansion and multiple refugia: genomic phylogeography of the Pine Barrens tree frog, Hyla andersonii (Anura: Hylidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Range fragmentation poses challenges for species persistence over time and can be caused by both historical and contemporary processes. We combined genomic data, phylogeographical model testing and palaeoclimatic niche modelling to infer the evolutionary history of the Pine Barrens tree frog (Hyla andersonii), a seepage bog specialist, in eastern North America to gain a better understanding of the historical context of its fragmented distribution. We sampled H. andersonii populations across the three disjunct regions of the species range: Alabama/Florida (AF), the Carolinas (CL) and New Jersey (NJ). Phylogenetic relationships within H. andersonii were consistent between the nuclear species tree and mitochondrial analyses, indicating divergence between AF and CL/NJ (Atlantic clade) ~0.9 Mya and divergence of the NJ clade ~0.15 Mya. Several predictions of north-eastern expansion along the Atlantic coast were supported by phylogeographical analyses. Model testing using genome-wide single nucleotide polymorphism data and species distribution models both provided evidence for multiple disjunct refugia. This comprehensive phylogeographical study of H. andersonii demonstrates a long history of range fragmentation within an endemic coastal plain species and highlights the influence of historical climate change on the current distribution of species and their genetic diversity.
Collapse
Affiliation(s)
- Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Lisa N Barrow
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Megan L Smith
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - D Bruce Means
- Coastal Plains Institute and Land Conservancy, Tallahassee, FL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
10
|
Jadin RC, Orlofske SA, Jezkova T, Blair C. Single-locus species delimitation and ecological niche modelling provide insights into the evolution, historical distribution and taxonomy of the Pacific chorus frogs. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
The Pacific chorus frogs are a complex of three wide-ranging species (i.e. Hyliola hypochondriaca, Hyliola regilla, Hyliola sierra) whose current taxonomy remains unresolved. We conducted species delimitation analyses of these taxa using fragments of the cytochrome b and 12S–16S mtDNA genes to assess the species diversity. Importantly, we included samples from new locations throughout the range to better understand species distributions and identify potential contact zones among clades. Our analyses revealed three slightly parapatric but distinct species-level clades. Molecular dating revealed that these species began diverging in the Pleistocene c. 1.4 Mya with H. hypochondriaca and H. sierra diverging more recently c. 0.8 Mya. We found that populations from western Montana and Idaho originated recently from populations to the southwest that belong to H. sierra, rather than from H. regilla populations directly to the west. Population sizes of each species expanded c. 130–80 Kya with H. hypochondriaca exhibiting a more pronounced expansion beginning c. 100 Kya than the more gradual expansion of the other two species. The climatic niche models suggest that distributions of the three species were similar during the last interglacial (LIG) as they are today. During the Last Glacial Maximum (LGM), H. hypochondriaca and H. sierra occupied a larger range than they do today whereas H. regilla occupied a smaller refugium, shifted south from the current distribution. This study highlights the continued effectiveness of utilizing single-locus data sets for species delimitation and biogeographic analyses.
Collapse
Affiliation(s)
- Robert C Jadin
- Department of Biology and Museum of Natural History, University of Wisconsin, Stevens Point, WI, USA
- Department of Biology, University of Wisconsin, Eau Claire, WI, USA
| | - Sarah A Orlofske
- Department of Biology and Museum of Natural History, University of Wisconsin, Stevens Point, WI, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, NY, USA
- Biology PhD Program, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
11
|
Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol Ecol Resour 2021; 21:1118-1140. [PMID: 33453072 DOI: 10.1111/1755-0998.13327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.
Collapse
Affiliation(s)
- Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia
| | - Monica Ruibal
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
12
|
Ospina OE, Tieu L, Apodaca JJ, Lemmon EM. Hidden Diversity in the Mountain Chorus Frog (Pseudacris brachyphona) and the Diagnosis of a New Species of Chorus Frog in the Southeastern United States. COPEIA 2020. [DOI: 10.1643/ch2020009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Oscar E. Ospina
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida 32306; (EML) . Send reprint requests to this address
| | - Lynee Tieu
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida 32306; (EML) . Send reprint requests to this address
| | - Joseph J. Apodaca
- Tangled Bank Conservation, 128 Bingham Road, Suite 1150, Asheville, North Carolina 28806;
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida 32306; (EML) . Send reprint requests to this address
| |
Collapse
|