1
|
Hynes T, Bowden-Jones H, Chamberlain S, Belin D. A roadmap for transformative translational research on gambling disorder in the UK. Neurosci Biobehav Rev 2025; 171:106071. [PMID: 39988286 DOI: 10.1016/j.neubiorev.2025.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The UK has one of the highest rates of recreational gambling in the world. Some vulnerable individuals progressively lose control over gambling and develop at-risk gambling or gambling disorder (GD), characterised by the compulsive pursuit of gambling. GD destroys lives and incurs massive costs to societies, yet only a few treatments are available. Failure to develop a wider range of interventions is in part due to a lack of funding that has slowed progress in the translational research necessary to understand the individual vulnerability to switch from controlled to compulsive gambling. Current preclinical models of GD do not operationalise the key clinical features of the human condition. The so-called "gambling tasks" for non-human mammals almost exclusively assess probabilistic decision-making, which is not real-world gambling. While they have provided insights into the psychological and neural mechanisms involved in the processing of gains and losses, these tasks have failed to capture those underlying real-world gambling and its compulsive manifestation in humans. Here, we highlight the strengths and weaknesses of current gambling-like behaviour tasks and suggest how their translational validity may be improved. We then propose a theoretical framework, the incentive habit theory of GD, which may prove useful for the operationalisation of the biobehavioural mechanisms of GD in preclinical models. We conclude with a list of recommendations for the development of next-generation preclinical models of GD and discuss how modern techniques in animal behavioural experimentation can be deployed in the context of GD preclinical research to bolster the translational pipeline.
Collapse
Affiliation(s)
- Tristan Hynes
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | - Henrietta Bowden-Jones
- Department of Psychiatry, University of Cambridge, UK; National Problem Gambling Clinic & National Centre for Gaming Disorders, London, UK; Department of Brain Sciences, University College London, London, UK
| | - Samuel Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK; NHS Southern Gambling Service, and NHS Specialist Clinic for Impulsive-Compulsive Conditions, Hampshire and Isle of Wight Healthcare NHS Foundation Trust, Southampton, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| |
Collapse
|
2
|
Lv K, Xu S, Sun Y, Zhou R, Xu H, He J, Xu C, Xu H, Xu J, Qian J. How individual BMI affected general cognitive ability in young adults: a moderated chain mediation model. Front Public Health 2025; 13:1559582. [PMID: 40182524 PMCID: PMC11965652 DOI: 10.3389/fpubh.2025.1559582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Objective With the rising global obesity rates, increasing research has been directed toward understanding how obesity affects cognitive ability in young adults. This study aims to explore the impact of body mass index (BMI) on general cognitive ability and how sleep quality and impulsive trait mediate this relationship. Methods A total of 1,205 young adults from Human Connectome Project(HCP) project were included, and questionnaires and cognitive assessment tools were conducted. Results BMI was negatively correlated with general cognitive ability, with sleep quality and impulsive trait acting as chain mediators between BMI and general cognitive ability. Additionally, gender moderated the effect of BMI on sleep quality, with this effect being more pronounced in female young adults. Conclusion This study not only provided new insights into the impact of BMI on general cognitive ability in young adults but also offered an important perspective on how sleep quality and impulsive trait influenced this process. These findings provide a scientific basis for preventive measures against obesity and cognitive impairment in young adults.
Collapse
Affiliation(s)
- KeZhen Lv
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - ShengJie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - YuQi Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Rui Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Hanyuan Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Junhao He
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Cheng Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jun Qian
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Ministry of Education College Student Mental Health and Comprehensive Quality Training Base, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Wong HK, Chaudhary S, Chen Y, Ide JS, Zhang S, Li CSR. Cingulate and Frontopolar Cortical Projections to the Cerebellar Vermis Support Prolonged Reaction Time in Identifying Negative Emotional Scenes in Women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25321160. [PMID: 39974090 PMCID: PMC11838963 DOI: 10.1101/2025.01.27.25321160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We previously observed sex differences in the association of individual anxiety and reaction time (RT) during identification of negative emotional scenes in a Hariri task. Prolonged RT in identifying negative (vs. neutral) images represents a behavioral marker of individual anxiety in women but not in men. However, the neural circuit that supports this behavioral observation remains unclear. Here, with a larger sample (64 men and 62 women), we employed whole-brain regression on individual differences in RT during matching negative vs. neutral images or RT (negative - neutral) and evaluated the results at a corrected threshold. Women but not men showed a significant correlation between individual anxiety and RT (negative - neutral), with a slope test confirming the sex difference. In women alone the cerebellar vermis showed activity in positive correlation with RT (negative - neutral). Further, Granger causality mapping (GCM) showed multiple brain regions, including the anterior cingulate cortex/frontopolar cortex (ACC/FPC), that provide inputs to the cerebellar vermis in women. Amongst these regions, only the ACC/FPC cluster showed activity (β) in significant correlation with both STAI State score and RT (negative - neutral) in women. GCM also identified a small cluster in the pons, suggesting that the cortical pontine cerebellar circuit may support prolonged RT during identification of negative emotions. Path analyses further characterized the inter-relationships amongst the neural markers, RT, and anxiety. These findings highlight a behavioral and circuit marker of anxiety state in neurotypical women. Studies with different behavioral paradigms are needed to characterize the behavioral and neural mechanisms of male anxiety.
Collapse
|
4
|
Li G, Zhong D, Zhang N, Dong J, Yan Y, Xu Q, Xu S, Yang L, Hao D, Li CSR. The inter-related effects of alcohol use severity and sleep deficiency on semantic processing in young adults. Neuroscience 2024; 555:116-124. [PMID: 39059740 DOI: 10.1016/j.neuroscience.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Both alcohol misuse and sleep deficiency are associated with deficits in semantic processing. However, alcohol misuse and sleep deficiency are frequently comorbid and their inter-related effects on semantic processing as well as the underlying neural mechanisms remain to be investigated. METHODS We curated the Human Connectome Project data of 973 young adults (508 women) to examine the neural correlates of semantic processing in link with the severity of alcohol use and sleep deficiency. The latter were each evaluated using the first principal component (PC1) of principal component analysis of all drinking metrics and the Pittsburgh Sleep Quality Index (PSQI). We employed path modeling to elucidate the interplay among clinical, behavioral, and neural variables. RESULTS Among women, we observed a significant negative correlation between the left precentral gyrus (PCG) and PSQI scores. Mediation analysis revealed that the left PCG activity fully mediated the relationship between PSQI scores and word comprehension in language tasks. In women alone also, the right middle frontal gyrus (MFG) exhibited a significant negative correlation with PC1. The best path model illustrated the associations among PC1, PSQI scores, PCG activity, and MFG activation during semantic processing in women. CONCLUSIONS Alcohol misuse may lead to reduced MFG activation while sleep deficiency hinder semantic processing by suppressing PCG activity in women. The pathway model underscores the influence of sleep quality and alcohol consumption severity on semantic processing in women, suggesting that sex differences in these effects need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Dong
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qixiao Xu
- Physical Education Department, Beijing University of Technology, Beijing, China
| | - Shuchun Xu
- Traditional Chinese Medicine Department, the University Hospital of Beijing University of Technology, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Li Y, Yang L, Hao D, Chen Y, Ye-Lin Y, Li CSR, Li G. Functional Networks of Reward and Punishment Processing and Their Molecular Profiles Predicting the Severity of Young Adult Drinking. Brain Sci 2024; 14:610. [PMID: 38928610 PMCID: PMC11201596 DOI: 10.3390/brainsci14060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol misuse is associated with altered punishment and reward processing. Here, we investigated neural network responses to reward and punishment and the molecular profiles of the connectivity features predicting alcohol use severity in young adults. We curated the Human Connectome Project data and employed connectome-based predictive modeling (CPM) to examine how functional connectivity (FC) features during wins and losses are associated with alcohol use severity, quantified by Semi-Structured Assessment for the Genetics of Alcoholism, in 981 young adults. We combined the CPM findings and the JuSpace toolbox to characterize the molecular profiles of the network connectivity features of alcohol use severity. The connectomics predicting alcohol use severity appeared specific, comprising less than 0.12% of all features, including medial frontal, motor/sensory, and cerebellum/brainstem networks during punishment processing and medial frontal, fronto-parietal, and motor/sensory networks during reward processing. Spatial correlation analyses showed that these networks were associated predominantly with serotonergic and GABAa signaling. To conclude, a distinct pattern of network connectivity predicted alcohol use severity in young adult drinkers. These "neural fingerprints" elucidate how alcohol misuse impacts the brain and provide evidence of new targets for future intervention.
Collapse
Affiliation(s)
- Yashuang Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
| | - Yiyao Ye-Lin
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Chiang-Shan Ray Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| |
Collapse
|
6
|
Li G, Chen Y, Chaudhary S, Li CS, Hao D, Yang L, Li CSR. Sleep dysfunction mediates the relationship between hypothalamic-insula connectivity and anxiety-depression symptom severity bidirectionally in young adults. Neuroimage 2023; 279:120340. [PMID: 37611815 DOI: 10.1016/j.neuroimage.2023.120340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The hypothalamus plays a crucial role in regulating sleep-wake cycle and motivated behavior. Sleep disturbance is associated with impairment in cognitive and affective functions. However, how hypothalamic dysfunction may contribute to inter-related sleep, cognitive, and emotional deficits remain unclear. METHODS We curated the Human Connectome Project dataset and investigated how hypothalamic resting state functional connectivities (rsFC) were associated with sleep dysfunction, as evaluated by the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective mood states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated with a corrected threshold. We examined the inter-relationship amongst hypothalamic rsFC, PSQI score, and clinical measures with mediation analyses. RESULTS In whole-brain regressions with age and drinking severity as covariates, men showed higher hypothalamic rsFC with the right insula in correlation with PSQI score. No clusters were identified in women at the same threshold. Both hypothalamic-insula rsFC and PSQI score were significantly correlated with anxiety and depression scores in men. Further, mediation analyses showed that PSQI score mediated the relationship between hypothalamic-insula rsFC and anxiety/depression symptom severity bidirectionally in men. CONCLUSIONS Sleep dysfunction is associated with negative emotions and hypothalamic rsFC with the right insula, a core structure of the interoceptive circuits. Notably, anxiety-depression symptom severity and altered hypothalamic-insula rsFC are related bidirectionally by poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states that need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Clara S Li
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Smith College, Northampton MA, USA
| | - Dongmei Hao
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lin Yang
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven CT, USA; Wu Tsai Institute, Yale University, New Haven CT, USA
| |
Collapse
|
7
|
Lv C, Xiao Z, Sun Y, Zhang R, Feng T, Turel O, He Q. Gender-specific resting-state rDMPFC-centric functional connectivity underpinnings of intertemporal choice. Cereb Cortex 2023; 33:10066-10075. [PMID: 37526227 DOI: 10.1093/cercor/bhad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
Although studies have observed gender differences in intertemporal choice, the neural bases of these differences require further research. The current study used resting state functional connectivity (rsFC) to explore the gender-specific neural basis of intertemporal choice in three independent samples (n1 = 86, n2 = 297, n3 = 172). Behaviorally, three samples (S1, S2, and S3) consistently demonstrated that men had larger delay discounting rate (log k) than women. Then, whole-brain functional connectivity analyses were performed for different genders in S2 and S3 using the right dorsomedial prefrontal cortex (rDMPFC) as a region of interest. By subtracting the common rsFC patterns of different genders, we identified gender-specific log k-related rsFC patterns with significant gender differences in S2. This was verified in an independent sample (S3). Specifically, in women, log k was found to be positively correlated with the rsFC between rDMPFC and anterior cingulate cortex/right orbitofrontal cortex. In contrast, in men, log k was negatively correlated with rsFC between rDMPFC and left orbitofrontal cortex/right precuneus. These gender differences were confirmed by slope tests. The findings highlight how gender may differ when engaging in intertemporal choice. They improve the understanding of gender differences in decision impulsivity and its underlying neural bases.
Collapse
Affiliation(s)
- Chenyu Lv
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yachen Sun
- Mental Health Education in Primary and Secondary School Magazine, Kaiming Press, Beijing 100029, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China
| |
Collapse
|
8
|
Li G, Li Y, Zhang Z, Chen Y, Li B, Hao D, Yang L, Yang Y, Li X, Li CSR. Sex differences in externalizing and internalizing traits and ventral striatal responses to monetary loss. J Psychiatr Res 2023; 162:11-20. [PMID: 37062201 PMCID: PMC10225357 DOI: 10.1016/j.jpsychires.2023.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Ventral striatum (VS) processes rewarding and punishing stimuli. Women and men vary in externalizing and internalizing traits, which may influence neural responses to reward and punishment. To investigate sex differences in how individual traits influence VS responses to reward and punishment, we curated the data of the Human Connectome Project and identified 981 (473 men) subjects evaluated by the Achenbach Adult Self-Report Syndrome Scales. We processed the imaging data with published routines and extracted VS response (β) to win and to loss vs. baseline in a gambling task for correlation with externalizing and internalizing symptom severity. Men vs. women showed more severe externalizing symptoms and higher VS response to monetary losses (VS-loss β) but not to wins. Men but not women showed a significant, positive correlation between VS-loss β and externalizing traits, and the sex difference was confirmed by a slope test. The correlations of VS-loss vs. externalizing and of VS-win vs. externalizing and those of VS-loss vs. externalizing and of VS-loss vs. internalizing traits both differed significantly in slope, confirming its specificity, in men. Further, the sex-specific relationship between VS-loss β and externalizing trait did not extend to activities during exposure to negative emotion in the face matching task. To conclude, VS responses to loss but not to win and their correlation with externalizing rather than internalizing symptom severity showed sex differences in young adults. The findings highlight the relationship of externalizing traits and VS response to monetary loss and may have implications for psychological models of externalizing behaviors in men.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Yashuang Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhao Zhang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yimin Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Xuwen Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Cabeen RP, Toga AW, Allman JM. Mapping frontoinsular cortex from diffusion microstructure. Cereb Cortex 2023; 33:2715-2733. [PMID: 35753692 PMCID: PMC10016069 DOI: 10.1093/cercor/bhac237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited. We delineated FI by jointly modeling cortical surface geometry and its coincident diffusion microstructure parameters. We found that neurite orientation dispersion in cortical gray matter can be used to map FI in specific individuals, and the derived measures reflect a range of behavioral factors in young adults from the Human Connectome Project (N=1052). FI volume was larger in the left hemisphere than the right (31%), and the percentage volume of FI was larger in women than men (15.3%). FI volume was associated with measures of decision-making (delay discounting, substance abuse), emotion (negative intrusive thinking and perception of hostility), and social behavior (theory of mind and working memory for faces). The common denominator is that larger FI size is related to greater self-control and social awareness.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
10
|
Thome J, Pinger M, Halli P, Durstewitz D, Sommer WH, Kirsch P, Koppe G. A Model Guided Approach to Evoke Homogeneous Behavior During Temporal Reward and Loss Discounting. Front Psychiatry 2022; 13:846119. [PMID: 35800024 PMCID: PMC9253427 DOI: 10.3389/fpsyt.2022.846119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background The tendency to devaluate future options as a function of time, known as delay discounting, is associated with various factors such as psychiatric illness and personality. Under identical experimental conditions, individuals may therefore strongly differ in the degree to which they discount future options. In delay discounting tasks, this inter-individual variability inevitably results in an unequal number of discounted trials per subject, generating difficulties in linking delay discounting to psychophysiological and neural correlates. Many studies have therefore focused on assessing delay discounting adaptively. Here, we extend these approaches by developing an adaptive paradigm which aims at inducing more comparable and homogeneous discounting frequencies across participants on a dimensional scale. Method The proposed approach probabilistically links a (common) discounting function to behavior to obtain a probabilistic model, and then exploits the model to obtain a formal condition which defines how to construe experimental trials so as to induce any desired discounting probability. We first infer subject-level models on behavior on a non-adaptive delay discounting task and then use these models to generate adaptive trials designed to evoke graded relative discounting frequencies of 0.3, 0.5, and 0.7 in each participant. We further compare and evaluate common models in the field through out-of-sample prediction error estimates, to iteratively improve the trial-generating model and paradigm. Results The developed paradigm successfully increases discounting behavior during both reward and loss discounting. Moreover, it evokes graded relative choice frequencies in line with model-based expectations (i.e., 0.3, 0.5, and 0.7) suggesting that we can successfully homogenize behavior. Our model comparison analyses indicate that hyperboloid models are superior in predicting unseen discounting behavior to more conventional hyperbolic and exponential models. We report out-of-sample error estimates as well as commonalities and differences between reward and loss discounting, demonstrating for instance lower discounting rates, as well as differences in delay perception in loss discounting. Conclusion The present work proposes a model-based framework to evoke graded responses linked to cognitive function at a single subject level. Such a framework may be used in the future to measure cognitive functions on a dimensional rather than dichotomous scale.
Collapse
Affiliation(s)
- Janine Thome
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mathieu Pinger
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Halli
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang H. Sommer
- Institute for Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Joue G, Chakroun K, Bayer J, Gläscher J, Zhang L, Fuss J, Hennies N, Sommer T. Sex Differences and Exogenous Estrogen Influence Learning and Brain Responses to Prediction Errors. Cereb Cortex 2021; 32:2022-2036. [PMID: 34649284 DOI: 10.1093/cercor/bhab334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/14/2022] Open
Abstract
Animal studies show marked sex differences as well as effects of estrogen (E2) in the mesocorticolimbic dopaminergic (DA) pathways, which play a critical role in reward processing and reinforcement learning and are also implicated in drug addiction. In this computational pharmacological fMRI study, we investigate the effects of both factors, sex and estrogen, on reinforcement learning and the dopaminergic system in humans; 67 male and 64 naturally cycling female volunteers, the latter in their low-hormone phase, were randomly assigned, double-blind, to take E2 or placebo. They completed a reinforcement learning task in the MRI scanner for which we have previously shown reward prediction error (RPE)-related activity to be dopaminergic. We found RPE-related brain activity to be enhanced in women compared with men and to a greater extent when E2 levels were elevated in both sexes. However, both factors, female sex and E2, slowed adaptation to RPEs (smaller learning rate). This discrepancy of larger RPE-related activity yet smaller learning rates can be explained by organizational sex differences and activational effects of circulating E2, which both affect DA release differently to DA receptor binding capacities.
Collapse
Affiliation(s)
- Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Karima Chakroun
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Janine Bayer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Gläscher
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Johannes Fuss
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Li G, Chen Y, Tang X, Li CSR. Alcohol use severity and the neural correlates of the effects of sleep disturbance on sustained visual attention. J Psychiatr Res 2021; 142:302-311. [PMID: 34416549 PMCID: PMC8429210 DOI: 10.1016/j.jpsychires.2021.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 01/09/2023]
Abstract
Alcohol misuse is associated with sleep disturbance and cognitive dysfunction. However, the neural processes inter-relating the severity of alcohol use, sleep disturbance and cognitive performance remain under-investigated. We addressed this issue with a dataset of 964 subjects (504 women) curated from the Human Connectome Project. Participants were assessed with the Pittsburgh Sleep Quality Index (PSQI) and fMRI while identifying relational dimension pictures and matching dimension pictures (as a control) in alternating blocks. Imaging data were analyzed with published routines and the results were evaluated at a corrected threshold. Subjects showed lower accuracy rate and longer reaction time (RT) in relational than control blocks. The difference in RT between the two blocks (RTRel-Con) was driven primarily by the RT and correlated positively with performance accuracy of relational trials, suggesting that a more cautious response (i.e., longer RTRel-Con) improved accuracy. The severity of alcohol use, identified from principal component analysis of drinking metrics, was positively correlated with sleep disturbance. Further, whole-brain regression identified activity of the superior colliculus (SC) during relational vs. control blocks in positive and negative correlation with RTRel-Con and PSQI score, respectively. Mediation and path analyses demonstrated a significant model: more severe alcohol use → greater sleep disturbance → diminished SC activity → impaired performance. These findings support the influences of alcohol misuse on sleep and suggest neural correlates that mediate the relationship between sleep disturbance and altered sustained attention in young adults.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT,Address correspondence to: C.-S. Ray Li, Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT 06519-1109, U.S.A. Phone: +1 203-974-7354, or Xiaoying Tang, 815-2 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China Phone: +86 010-68915998,
| |
Collapse
|
13
|
Neural correlates of individual variation in two-back working memory and the relationship with fluid intelligence. Sci Rep 2021; 11:9980. [PMID: 33976306 PMCID: PMC8113462 DOI: 10.1038/s41598-021-89433-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/21/2021] [Indexed: 11/15/2022] Open
Abstract
Working memory has been examined extensively using the N-back task. However, less is known about the neural bases underlying individual variation in the accuracy rate (AR) and reaction time (RT) as metrics of N-back performance. Whereas AR indexes the overall performance, RT may more specifically reflect the efficiency in updating target identify. Further, studies have associated fluid intelligence (Gf) with working memory, but the cerebral correlates shared between Gf and N-back performance remain unclear. We addressed these issues using the Human Connectome Project dataset. We quantified the differences in AR (critical success index or CSI) and RT between 2- and 0-backs (CSI2–0 and RT2–0) and identified the neural correlates of individual variation in CSI2–0, RT2–0, and Gf, as indexed by the number of correct items scored in the Raven’s Standard Progressive Matrices (RSPM) test. The results showed that CSI2–0 and RT2–0 were negatively correlated, suggesting that a prolonged response time did not facilitate accuracy. At voxel p < 0.05, FWE-corrected, the pre-supplementary motor area (preSMA), bilateral frontoparietal cortex (biFPC) and right anterior insula (rAI) showed activities in negative correlation with CSI2–0 and positive correlation with RT2–0. In contrast, a cluster in the dorsal anterior cingulate cortex (dACC) bordering the SMA showed activities in positive correlation with CSI2–0 and negative correlation with RT2–0. Further, path analyses showed a significant fit of the model dACC → RT2–0 → CSI2–0, suggesting a critical role of target switching in determining performance accuracy. Individual variations in RT2–0 and Gf were positively correlated, although the effect size was small (f2 = 0.0246). RT2–0 and Gf shared activities both in positive correlation with the preSMA, biFPC, rAI, and dorsal precuneus. These results together suggest inter-related neural substrates of individual variation in N-back performance and highlight a complex relationship in the neural processes supporting 2-back and RSPM performance.
Collapse
|
14
|
Dhingra I, Zhang S, Zhornitsky S, Wang W, Le TM, Li CSR. Sex differences in neural responses to reward and the influences of individual reward and punishment sensitivity. BMC Neurosci 2021; 22:12. [PMID: 33639845 PMCID: PMC7913329 DOI: 10.1186/s12868-021-00618-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Men and women show differences in sensitivity to reward and punishment, which may impact behavior in health and disease. However, the neural bases of these sex differences remain under-investigated. Here, by combining functional magnetic resonance imaging (fMRI) and a variant of the Monetary Incentive Delay Task (MIDT), we examined sex differences in the neural responses to wins and losses and how individual reward and punishment sensitivity modulates these regional activities. METHODS Thirty-sex men and 27 women participated in the fMRI study. We assessed sensitivity to punishment (SP) and sensitivity to reward (SR) with the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). In the MIDT, participants pressed a button to collect reward ($1, 1¢, or nil), with the reaction time window titrated across trials so participants achieved a success rate of approximately 67%. We processed the Imaging data with published routines and evaluated the results with a corrected threshold. RESULTS Women showed higher SP score than men and men showed higher SR score than women. Men relative to women showed higher response to the receipt of dollar or cent reward in bilateral orbitofrontal and visual cortex. Men as compared to women also showed higher response to dollar loss in bilateral orbitofrontal cortex. Further, in whole-brain regressions, women relative to men demonstrated more significant modulation by SP in the neural responses to wins and larger wins, and the sex differences were confirmed by slope tests. CONCLUSIONS Together, men showed higher SR and neural sensitivity to both wins, large or small, and losses than women. Individual differences in SP were associated with diminished neural responses to wins and larger wins in women only. These findings highlight how men and women may differ in reward-related brain activations in the MIDT and add to the imaging literature of sex differences in cognitive and affective functions.
Collapse
Affiliation(s)
- Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA.
- Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT, 06519-1109, USA.
| |
Collapse
|
15
|
Obeso I, Herrero MT, Ligneul R, Rothwell JC, Jahanshahi M. A Causal Role for the Right Dorsolateral Prefrontal Cortex in Avoidance of Risky Choices and Making Advantageous Selections. Neuroscience 2021; 458:166-179. [PMID: 33476698 DOI: 10.1016/j.neuroscience.2020.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022]
Abstract
In everyday life, risky decision-making relies on multiple cognitive processes including sensitivity to reinforcers, exploration, learning, and forgetting. Neuroimaging evidence suggests that the dorsolateral prefrontal cortex (DLPFC) is involved in exploration and risky decision-making, but the nature of its computations and its causal role remain uncertain. We provide evidence for the role of the DLPFC in value-independent, directed exploration on the Iowa Gambling Task (IGT) and we describe a new computational model to account for the competition of directed exploration and exploitation in guiding decisions. Forty-two healthy human participants were included in a right DLPFC, left DLPFC or sham stimulation groups using continuous theta-burst stimulation (cTBS). Immediately after cTBS, the IGT was completed. Computational modelling was used to account for exploration and exploitation with different combinations with value-based and sensitivity to reinforcers for each group. Applying cTBS to the left and right DLPFC selectively decreased directed exploration on the IGT compared to sham stimulation. Model-based analyses further indicated that the right (but not the left) DLPFC stimulation increased sensitivity to reinforcers, leading to avoidance of risky choices and promoting advantageous choices during the task. Although these findings are based on small sample sizes per group, they nevertheless elucidate the causal role of the right DLPFC in governing the exploration-exploitation tradeoff during decision-making in uncertain and ambiguous contexts.
Collapse
Affiliation(s)
- Ignacio Obeso
- HM Hospitales - HM CINAC, 28938 Móstoles, and CEU-San Pablo University, 28003 Madrid, Spain.
| | - Maria-Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE-IMIB-IUIE), Department of Human Anatomy & Psychobiology, School of Medicine, Campus Espinardo, University of Murcia, 30071 Murcia, Spain
| | - Romain Ligneul
- Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR Nijmejen, Netherlands
| | - John C Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N3BG, United Kingdom
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N3BG, United Kingdom; Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
16
|
Li G, Le TM, Wang W, Zhornitsky S, Chen Y, Chaudhary S, Zhu T, Zhang S, Bi J, Tang X, Li CSR. Perceived stress, self-efficacy, and the cerebral morphometric markers in binge-drinking young adults. NEUROIMAGE: CLINICAL 2021; 32:102866. [PMID: 34749288 PMCID: PMC8569726 DOI: 10.1016/j.nicl.2021.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/12/2021] [Accepted: 10/24/2021] [Indexed: 11/18/2022] Open
Abstract
Self-efficacy is negatively correlated with perceived stress in young adult drinkers. Binge vs. non-binge drinking men show diminished PCC thickness and dmPFC GMV. The metrics are positively/negatively each correlated with self-efficacy/stress. Path analyses show daily drinks → neural metrics → low self-efficacy → high stress.
Studies have identified cerebral morphometric markers of binge drinking and implicated cortical regions in support of self-efficacy and stress regulation. However, it remains unclear how cortical structures of self-control play a role in ameliorating stress and alcohol consumption or how chronic alcohol exposure alters self-control and leads to emotional distress. We examined the data of 180 binge (131 men) and 256 non-binge (83 men) drinkers from the Human Connectome Project. We obtained data on regional cortical thickness from the HCP and derived gray matter volumes (GMVs) with voxel-based morphometry. At a corrected threshold, binge relative to non-binge drinking men showed diminished posterior cingulate cortex (PCC) thickness and dorsomedial prefrontal cortex (dmPFC) GMV. PCC thickness and dmPFC GMVs were positively and negatively correlated with self-efficacy and perceived stress, respectively, as assessed with the NIH Emotion Toolbox. Mediation and path analyses to query the inter-relationships between the neural markers and clinical variables showed a best fit of the model with daily drinks → lower PCC thickness and dmPFC GMV → lower self-efficacy → higher perceived stress in men. In contrast, binge and non-binge drinking women did not show significant differences in regional cortical thickness or GMVs. These findings suggest a pathway whereby chronic alcohol consumption alters cortical structures and self-efficacy mediates the effects of cortical structural deficits on perceived stress in men. The findings also suggest the need to investigate multimodal neural markers underlying the interplay between stress, self-control and alcohol use behavior in women.
Collapse
|
17
|
Li G, Chen Y, Wang W, Dhingra I, Zhornitsky S, Tang X, Li CSR. Sex Differences in Neural Responses to the Perception of Social Interactions. Front Hum Neurosci 2020; 14:565132. [PMID: 33061901 PMCID: PMC7518190 DOI: 10.3389/fnhum.2020.565132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Social interaction is critical to emotional well-being. Previous studies have suggested sex differences in the perception of social interaction. However, the findings depend on the nature of interactions and whether it involves facial emotions. Here, we explored sex differences in neural responses to the perception of social interaction using the Human Connectome Project data. Participants (n = 969, 505 women) were engaged in a social cognition task with geometric objects moving and colliding to simulate social interaction. Behaviorally, men relative to women demonstrated higher accuracy in perceiving social vs. random interactions. Men vs. women showed higher activation in the right superior temporal gyrus, bilateral occipital and posterior cingulate cortex and precuneus, and women vs. men showed higher activation in the right inferior frontal cortex, during exposure to social vs. random interactions. In whole-brain regressions, the differences in accuracy rate in identifying social vs. random interactions (AR SOC - AR RAN ) were associated with higher activation in the paracentral lobule (PCL) and lower activation in bilateral anterior insula (AI), pre-supplementary motor area (preSMA), and left middle frontal gyrus (MFG) in men and women combined, lower activation in bilateral AI, preSMA and left MFG in men alone, and higher activation in the PCL and the medial orbitofrontal cortex in women alone. The latter sex differences were confirmed by slope tests. Further, the PCL activity mediated the correlation between an internalizing syndromal score, as assessed by the Achenbach Self-Report, and (AR SOC - AR RAN ) across all subjects. These findings highlighted sex differences in the behavioral and neural processes underlying the perception of social interaction, as well as the influence of internalizing traits on these processes.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Li G, Zhang S, Le TM, Tang X, Li CSR. Neural responses to negative facial emotions: Sex differences in the correlates of individual anger and fear traits. Neuroimage 2020; 221:117171. [PMID: 32682098 PMCID: PMC7789231 DOI: 10.1016/j.neuroimage.2020.117171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Studies have examined sex differences in emotion processing in health and illness. However, it remains unclear how these neural processes may relate to individual differences in affective traits. We addressed this issue with a dataset of 970 subjects (508 women) curated from the Human Connectome Project. Participants were assessed with the NIH Toolbox Emotion Measures and fMRI while identifying negative facial emotion and neutral shape targets in alternating blocks. Imaging data were analyzed with published routines and the results were reported at a corrected threshold. Men scored similarly in Anger- but lower in Fear-Affect, as compared to women. Men as compared with women engaged the occipital-temporal visual cortex, retrosplenial cortex (RSC), and both anterior and posterior cingulate cortex to a greater extent during face versus shape identification. Women relative to men engaged higher activation of bilateral middle frontal cortex. In regional brain responses to face versus shape identification, men relative to women showed more significant modulations by both Anger- and Fear- Affect traits. The left RSC and right RSC/precuneus each demonstrated activities during face vs. shape identification in negative correlation with Anger- and Fear- Affect scores in men only. Anger affect was positively correlated with prolonged RT in identifying face vs. shape target in men but not women. In contrast, women relative to men showed higher Fear-Affect score and higher activation in the right middle frontal cortex, which was more strongly correlated with prolonged RT during face vs. shape identification. Together, men and women with higher Fear-Affect demonstrated lower accuracy in identifying negative facial emotion versus neutral shape target, a relationship mediated by activity of the RSC. These findings add to the literature of sex and trait individual differences in emotion processing and may help research of sex-shared and sex-specific behavioral and neural markers of emotional disorders.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, 715-3 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, 715-3 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT 06519-1109, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|