1
|
Song SY, Lee SH, Park JW, Park DH, Cho SS. Study on the Possibility of Developing Functional Source Through Extraction Optimization of Schinus terebinthifolia Bark and Evaluation of Anti-Oxidant, Elastase Inhibitory and Xanthine Oxidase Inhibitory Effect. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241275016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Introduction: Schinus terebinthifolia (ST) is a plant belonging to the cashew family Anacardiaceae, native to subtropical and tropical South America. ST is commonly called Brazil pepper and aroeira. Several reports have been made on the biological activities of ST, but studies on leaf extracts, especially lectins, have mainly been reported. Objectives: Our study analyzed the active compounds, antioxidant activities, xanthine oxidase inhibitory, elastase inhibitory, and tyrosinase inhibitory activities of S. terebinthifolia (ST) bark extract. Results: Hot water extracts showed the strongest electron donating ability (84.46%) and tyrosinase inhibitory activity (67.1%). Eighty percent ethanol extract showed the highest reducing power, total phenolic, xanthine oxidase (91.7%) and elastase inhibitory ability (85.44%). Catechin, α–amyrin, β–amyrone and 11-Oxo-.α-amyrin were identified through HPLC and GCMS analysis, while eighty percent extract contained the highest amount of catechin. Catechin, α–amyrin, and β–amyrone are considered to be the main xanthine oxidase inhibitors, while β–amyrone is considered to be the main inhibitor of xanthine oxidase and elastase. Conclusion: Through this study, we reported the basic information that S. terebinthifolia bark extract was used in folk medicine as an anti-inflammatory, anti-gout, and skin disease improvement material. S. terebinthifolia bark extract could be used as an anti-gout natural drug or cosmetic material.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| |
Collapse
|
2
|
Nna VU, McGrowder D, Nwokocha C. Nutraceutical management of metabolic syndrome as a palliative and a therapeutic to coronavirus disease (COVID) crisis. Arch Physiol Biochem 2023; 129:1123-1142. [PMID: 33770443 DOI: 10.1080/13813455.2021.1903041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The global market for medicinal plants and herbs is on the increase due to their desirability, efficacy, and less adverse effects as complementary and alternative medications to the orthodox pharmaceuticals, perhaps due to their natural components and qualities. Metabolic syndromes are managed with changes in diet, exercise, lifestyle modifications and the use of pharmacological agents. Plants are now known to have potent antioxidant and cholinergic activities which are relevant to the management of several metabolic syndromes, which are unfortunately, co-morbidity factors in the coronavirus disease crisis. This review will focus on the biological activities of some plant products used as complementary and alternative medicines in the management of metabolic syndromes, and on their reported antiviral, antithrombotic, angiotensin-converting enzyme inhibitory properties, which are integral to their usage in the management of viral infections and may give an avenue for prophylactic and therapeutics especially in the absence of vaccines/formulated antiviral therapies.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Donovan McGrowder
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences (Physiology Section), The University of the West Indies, Mona, Jamaica
| |
Collapse
|
3
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Luna-Arias JP, Ahmad A, Kaushik P. Phytomediated selenium nanoparticles and light regimes elicited in vitro callus cultures for biomass accumulation and secondary metabolite production in Caralluma tuberculata. FRONTIERS IN PLANT SCIENCE 2023; 14:1253193. [PMID: 37810387 PMCID: PMC10556749 DOI: 10.3389/fpls.2023.1253193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Introduction Caralluma tuberculata holds significant importance as a medicinal plant due to its abundance of bioactive metabolites, which offer a wide range of therapeutic potentials. However, the sustainable production of this plant is challenged by overexploitation, changes in natural conditions, slow growth rate, and inadequate biosynthesis of bioactive compounds in wild populations. Therefore, the current study was conducted to establish an in vitro based elicitation strategy (nano elicitors and light regimes) for the enhancement of biomass and production of secondary metabolites. Methods Garlic clove extract was employed as a stabilizing, reducing, or capping agent in the green formulation of Selenium nanoparticles (SeNPs) and various physicochemical characterization analyses such as UV visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray (EDX) Spectroscopy, fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were performed. Furthermore, the effects of phytosynthesized SeNPs at various concentrations (0, 50, 100, 200, and 400 µg/L on callus proliferation and biosynthesis of medicinal metabolites under different light regimes were investigated. Results and discussion Cultures grown on Murashige and Skoog (MS) media containing SeNPs (100 µg/L), in a dark environment for two weeks, and then transferred into normal light, accumulated maximum fresh weight (4,750 mg/L FW), phenolic contents (TPC: 3.91 mg/g DW), flavonoid content (TFC: 2.04 mg/g DW) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (85%). Maximum superoxide dismutase (SOD: 4.36 U/mg) and peroxide dismutase activity (POD: 3.85 U/mg) were determined in those cultures exposed to SeNPs (100 µg/L) under complete dark conditions. While the callus cultures proliferate on media augmented with SeNPs (200 µg/L) and kept under dark conditions for two weeks and then shifted to normal light conditions exhibited the highest catalase (CAT: 3.25 U/mg) and ascorbate peroxidase (APx: 1.93 U/mg) activities. Furthermore, LC-ESI-MS/MS analysis confirmed the effects of SeNPs and light conditions that elicited the antidiabetic metabolites (cumarins, gallic acid, caffeic acid, ferulic acid, catechin, querctin and rutin). This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites using in vitro callus cultures of C. tuberculata.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology, and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
4
|
Spandana T, Goli VV, Gurupadayya B. In vitro study and pharmacokinetic evaluation of sitagliptin phosphate enantiomers in rat plasma. Bioanalysis 2023; 15:1033-1047. [PMID: 37431826 DOI: 10.4155/bio-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Background: A chiral HPLC technique was developed to determine sitagliptin phosphate enantiomers in rat plasma in compliance with US FDA regulations. Methods & results: The technique used a Phenomenex column with a mobile phase consisting of a 60:35:5 (v/v/v) blend of pH4, 10-mM ammonium acetate buffer, methanol and 0.1% formic acid in Millipore water. The precision for both (R) and (S) sitagliptin phosphate varied between 0.246 and 1.246%, while the accuracy was 99.6-100.1%. A glucose uptake assay was used to assess enantiomers in 3T3-L1 cell lines through flow cytometry. Conclusion: Investigation of the pharmacokinetic impacts of sitagliptin phosphate racemic enantiomers in rat plasma revealed notable contrasts in R and S enantiomers in female albino Wistar rats, suggesting enantioselectivity for sitagliptin phosphate.
Collapse
Affiliation(s)
- Tatineni Spandana
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, Mysore, 570015, India
| | - Veera Vn Goli
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, Mysore, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, Mysore, 570015, India
| |
Collapse
|
5
|
Choudhary DK, Chaturvedi N, Singh A, Mishra A. Catechin isolated from faba beans ( Vicia faba L.): insights from oxidative stress and hypoglycemic effect in yeast cells through confocal microscopy, flow cytometry, and in silico strategy. J Biomol Struct Dyn 2022; 40:10470-10480. [PMID: 34192480 DOI: 10.1080/07391102.2021.1945953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present aim of this investigation was to evaluate the effect of catechin from faba beans on oxidative stress and glucose uptake in yeast cells. Flow cytometry approach indicated that 2-NBDG (1.98 ± 0.37) seed extract had a lower relative fluorescence signal than methanol (5.98 ± 0.67) and acetone seed extract (4.43 ± 0.55). In comparison to the control and seed extract, H2O2 exposure increased the apoptosis rate of yeast cells from 8.20% to 64.80%. Yeast cells incubated with H2O2 produced significantly more ROS intensity (162 ± 4.32, p < 0.05) than control cells (118 ± 2.52, p < 0.05) and less than seed extract-treated cells. Molecular dynamics simulation studies were performed for cat:α-amylase (catechin-α-amylase complex) which revealed the stable and mixed mode of inhibition during a simulation. The synergistic action of polyphenols or catechin present in seed extract may be responsible for the anti-oxidative stress and hypoglycaemic effects. The findings of this study may provide insight into the further development of a novel antidiabetic drug for T2DM. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhiraj Kumar Choudhary
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Navaneet Chaturvedi
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
6
|
Ko H, Jang H, An S, Park IG, Ahn S, Gong J, Hwang SY, Oh S, Kwak SY, Choi WJ, Kim H, Noh M. Galangin 3-benzyl-5-methylether derivatives function as an adiponectin synthesis-promoting peroxisome proliferator-activated receptor γ partial agonist. Bioorg Med Chem 2021; 54:116564. [PMID: 34922307 DOI: 10.1016/j.bmc.2021.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
The upregulation of adiponectin production has been suggested as a novel strategy for the treatment of metabolic diseases. Galangin, a natural flavonoid, exhibited adiponectin synthesis-promoting activity during adipogenesis in human bone marrow mesenchymal stem cells. In target identification, galangin bound both peroxisome proliferator-activated receptor (PPAR) γ and estrogen receptor (ER) β. Novel galangin derivatives were synthesized to improve adiponectin synthesis-promoting compounds by increasing the PPARγ activity of galangin and reducing its ERβ activity, because PPARγ functions can be inhibited by ERβ. Three galangin 3-benzyl-5-methylether derivatives significantly promoted adiponectin production by 2.88-, 4.47-, and 2.76-fold, respectively, compared to the effect of galangin. The most potent compound, galangin 3-benzyl-5,7-dimethylether, selectively bound to PPARγ (Ki, 1.7 μM), whereas it did not bind to ERβ. Galangin 3-benzyl-5,7-dimethylether was identified as a PPARγ partial agonist in docking and pharmacological competition studies, suggesting that it may have diverse therapeutic potential in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hongjun Jang
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyeon Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo Yeon Kwak
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University-Seoul, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Hyoungsu Kim
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea.
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|