1
|
Alzu'bi A, Abu-El-Rub E, Al-Trad B, Alzoubi H, Abu-El-Rub H, Albals D, Abdelhady GT, Bader NS, Almazari R, Al-Zoubi RM. In vivo assessment of the nephrotoxic effects of the synthetic cannabinoid AB-FUBINACA. Forensic Toxicol 2025; 43:86-96. [PMID: 39120650 PMCID: PMC11782324 DOI: 10.1007/s11419-024-00699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The widespread misuse of synthetic cannabinoids (SCs) has led to a notable increase in reported adverse effects, raising significant health concerns. SCs use has been particularly associated with acute kidney injury (AKI). However, the pathogenesis of SCs-induced AKI is not well-understood. METHODS We investigated the nephrotoxic effect of acute administration of N-[(1S)- 1-(aminocarbonyl)-2-methylpropyl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide (AB-FUBINKA) (3 mg/kg for 5 days) in mice. Various parameters of oxidative stress, inflammation, and apoptosis have been quantified. The expressions of mitochondrial complexes (I-V) in renal tissues were also assessed. RESULTS Our findings showed that AB-FUBINACA induced substantial impairment in the renal function that is accompanied by elevated expression of renal tubular damage markers; KIM-1 and NGAL. Administration of AB-FUBINACA was found to be associated with a significant increase in the expression of oxidative stress markers (iNOS, NOX4, NOX2, NOS3) and the level of lipid peroxidation in the kidney. The expression of pro-inflammatory markers (IL-6, TNF-alpha, NF-kB) was also enhanced following exposure to AB-FUBINACA. These findings were also correlated with increased expression of major apoptosis regulatory markers (Bax, caspase-9, caspase-3) and reduced expression of mitochondrial complexes I, III, and IV. CONCLUSION These results indicate that AB-FUBINACA can trigger oxidative stress and inflammation, and activate caspase-dependent apoptosis in the kidney, with these processes being possibly linked to disruption of mitochondrial complexes and could be an underlying mechanism of SCs-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan.
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 211-63, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Hadeel Abu-El-Rub
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Dima Albals
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, 211-63, Jordan
| | - Gamal T Abdelhady
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Noor S Bader
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, 3050, Doha, Qatar.
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, 2713, Doha, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
2
|
Al-Eitan LN, Alahmad SZ, Ajeen SA, Altawil AY, Khair IY, Kharmah HSA, Alghamdi MA. Evaluation of the metabolic activity, angiogenic impacts, and GSK-3β signaling of the synthetic cannabinoid MMB-2201 on human cerebral microvascular endothelial cells. J Cannabis Res 2024; 6:43. [PMID: 39707578 DOI: 10.1186/s42238-024-00255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
Angiogenesis is an intrinsic physiological process involving the formation of new capillaries from existing ones. Synthetic cannabinoids refer to a class of human-made chemicals that are primarily designed to mimic the effects of delta-9-tetrahydrocannabinol, the primary psychoactive compound in cannabis. Studies investigating the association between synthetic cannabinoids and cellular reactions are limited, and the available scientific evidence is insufficient. Consequently, the primary goal was to examine the effects of the synthetic cannabinoid MDMB-2201 on brain angiogenesis in vitro to provide a comprehensive analysis of MMB-2201's potential therapeutic or adverse effects on vascular development and related health conditions. Human Cerebral Microvascular Endothelial Cells (HBEC-5i) were incubated with MMB-2201, and their metabolic activity, migration rate, and tubular structure formation were examined. Expression levels of several angiogenesis-related proteins such as vascular endothelial growth factor (VEGF), Angiopoietin-1 (ANG-1), and Angiopoietin-2 (ANG-2) were assessed using western blot, ELISA, and real-time PCR. Furthermore, the phosphorylation of glycogen synthase kinase 3 beta (GSK-3β) at Ser9 induced by MMB-2201 was evaluated. HBEC-5i cells showed a significant increase in metabolic rate, enhanced migration, and sprouting of brain endothelial cells. Moreover, there was a noticeable increase in the mRNA and protein levels of VEGF, ANG-1, and ANG-2, as well as in the phosphorylation rate of GSK-3β at Ser9. This study paves the way for a novel pharmacological approach to addressing various angiogenesis-related diseases by targeting cannabinoid receptor type-1. Further exploration using different antagonists or agonists of cannabinoid receptors, depending on the specific characteristics of the disorders, may be necessary.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Sufyan Ali Ajeen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Ahmad Younis Altawil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Hana Salah Abu Kharmah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Centre for Medical and Health Research, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
3
|
Lafzi A, Yeşilyurt F, Demirci T, Hacımüftüoğlu A, Şişman T. Acute and subacute toxic effects of CUMYL-4CN-BINACA on male albino rats. Forensic Toxicol 2024; 42:125-141. [PMID: 38102417 DOI: 10.1007/s11419-023-00676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE There is very little information about the toxicological and pathological effects of synthetic cannabinoids, which have cannabis-like properties. This study was carried out to histopathologically, hematologically, and biochemically determine the toxic effects of acute and subacute exposure to a novel synthetic cannabinoid 1-(4-cyanobutyl)-N-(2-phenylpropan-2-yl)indazole-3-carboxamide in internal organs of adult male rats. METHODS The cannabinoid was injected intraperitoneally at three doses (0.5, 1.0, and 2.0 mg/kg, body weight). The cannabinoid was administered to acute groups for 2 days and to subacute groups for 14 days. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. Hematological and biochemical changes were evaluated and histopathological analyses in lung, liver, and kidney tissues were also performed. RESULTS No mortality was observed. It was observed that there were fluctuations in hematological and serum biochemical parameters. Among the oxidative stress parameters, significant decreases in superoxide dismutase, catalase levels and significant increases in lipid peroxidation levels were determined. Serious pathological changes such as necrosis, vacuolation, congestion, and fibrosis were observed in the internal organs in a dose-dependent and time-dependent manner. It was also found that the synthetic cannabinoid triggered apoptosis in the organs. The results demonstrated that the most affected organ by the cannabinoid was the kidney. CONCLUSION This study showed for the first time that CUMYL-4CN-BINACA adversely affects healthy male albino rats. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey
| | - Fatma Yeşilyurt
- Department of Medical Pharmacology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
4
|
Alzu'bi A, Abu-El-Rub E, Almahasneh F, Tahat L, Athamneh RY, Khasawneh R, Alzoubi H, Ghorab DS, Almazari R, Zoubi MSA, Al-Zoubi RM. Delineating the molecular mechanisms of hippocampal neurotoxicity induced by chronic administration of synthetic cannabinoid AB-FUBINACA in mice. Neurotoxicology 2024; 103:50-59. [PMID: 38823587 DOI: 10.1016/j.neuro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Chronic use of synthetic cannabinoids (SCs) has been associated with cognitive and behavioural deficits and an increased risk of neuropsychiatric disorders. The underlying molecular and cellular mechanisms of the neurotoxic effects of long-term use of SCs have not been well investigated in the literature. Herein, we evaluated the in vivo effects of chronic administration of AB-FUBINACA on the hippocampus in mice. Our results revealed that the administration of AB-FUBINACA induced a significant impairment in recognition memory associated with histopathological changes in the hippocampus. These findings were found to be correlated with increased level of oxidative stress, neuroinflammation, and apoptosis markers, and reduced expression of brain-derived neurotrophic factor (BDNF), which plays an essential role in modulating synaptic plasticity integral for promoting learning and memory in the hippocampus. Additionally, we showed that AB-FUBINACA significantly decreased the expression of NR1, an important functional subunit of glutamate/NMDA receptors and closely implicated in the development of toxic psychosis. These findings shed light on the long-term neurotoxic effects of SCs on hippocampus and the underlying mechanisms of these effects. This study provided new targets for possible medical interventions to improve the treatment guidelines for SCs addiction.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan.
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Lena Tahat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa 13110, Jordan
| | - Ramada Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Doaa S Ghorab
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
5
|
Lafzi A, Demirci T, Yüce N, Annaç E, Çiçek M, Şişman T. A study on the possible neurotoxic effects of CUMYL-4CN-BINACA in Sprague Dawley rats. Leg Med (Tokyo) 2024; 67:102389. [PMID: 38185093 DOI: 10.1016/j.legalmed.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Substances such as Δ9-tetrahydrocannabinol (THC) and cannabidiol cross the blood-brain barrier. Detecting the damage of these substances in the brain provides important data in drug abuse studies. The aim of the study is to define the neurotoxicity of a novel synthetic cannabinoid (CUMYL-4CN-BINACA) in the Sprague-Dawley rats. Histopathological, immunohistochemical, behavioral, and biochemical examinations were performed to determine the acute and subacute toxicity of the cannabinoid. Three cannabinoid doses were administered for 2 days in the acute exposure groups and 14 days in the subacute exposure groups. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. No mortality was determined. Serious pathological changes such as neurodegeneration, focal plague formation, vacuolation, edema, congestion, and fibrosis were observed in the cerebral cortex and hippocampus of the brain in a dose-dependent manner. Brain tissue caspase-3 activity showed that the cannabinoid triggered apoptosis in the rat brain. The detected cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) also supported neurotoxicity. Significant behavioral abnormalities were also observed in the acute groups, while no behavioral changes were detected in the subacute groups. This study showed for the first time that CUMYL-4CN-BINACA adversely affects the rat brain. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Neslihan Yüce
- Department of Medical Biochemistry, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Ebru Annaç
- Department of Histology and Embryology, Medicine Faculty, Adıyaman University, 02040 Adıyaman, Turkey.
| | - Mustafa Çiçek
- Department of Medical Biology and Genetics, Medicine Faculty, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaraş, Turkey.
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey.
| |
Collapse
|
6
|
Alzu'bi A, Almahasneh F, Khasawneh R, Abu-El-Rub E, Baker WB, Al-Zoubi RM. The synthetic cannabinoids menace: a review of health risks and toxicity. Eur J Med Res 2024; 29:49. [PMID: 38216984 PMCID: PMC10785485 DOI: 10.1186/s40001-023-01443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 01/14/2024] Open
Abstract
Synthetic cannabinoids (SCs) are chemically classified as psychoactive substances that target the endocannabinoid system in many body organs. SCs can initiate pathophysiological changes in many tissues which can be severe enough to damage the normal functionality of our body systems. The majority of SCs-related side effects are mediated by activating Cannabinoid Receptor 1 (CB1R) and Cannabinoid Receptor 2 (CB2R). The activation of these receptors can enkindle many downstream signalling pathways, including oxidative stress, inflammation, and apoptosis that ultimately can produce deleterious changes in many organs. Besides activating the cannabinoid receptors, SCs can act on non-cannabinoid targets, such as the orphan G protein receptors GPR55 and GPR18, the Peroxisome Proliferator-activated Receptors (PPARs), and the Transient receptor potential vanilloid 1 (TRPV1), which are broadly expressed in the brain and the heart and their activation mediates many pharmacological effects of SCs. In this review, we shed light on the multisystem complications found in SCs abusers, particularly discussing their neurologic, cardiovascular, renal, and hepatic effects, as well as highlighting the mechanisms that intermediate SCs-related pharmacological and toxicological consequences to provide comprehensive understanding of their short and long-term systemic effects.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan.
| | - Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ramada Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Worood Bani Baker
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation & Men'S Health, Doha, Qatar.
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
7
|
AL-Eitan LN, Zuhair S, Khair IY, Alghamdi MA. Assessment of the proliferative and angiogenic effects of the synthetic cannabinoid (R)-5-fluoro ADB on human cerebral microvascular endothelial cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:304-310. [PMID: 38333752 PMCID: PMC10849210 DOI: 10.22038/ijbms.2023.71819.15605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024]
Abstract
Objectives The process of vascular formation, also known as angiogenesis, primarily relies on endothelial cell proliferation, migration, and invasion. In recent years, it has been discovered that synthetic cannabinoids (SCs) may potentially impact angiogenic processes within the body. We evaluated the impact of the synthetic cannabinoid (R)-5-Fluoro-ADB on the proliferation rate and angiogenesis in Human Cerebral Microvascular Endothelial Cells (hBMECs). Materials and Methods hBMECs were treated with (R)-5-Fluoro-ADB and investigated for cell viability, migration rate, and tube-like structure formation. Furthermore, angiogenic-related proteins including Angopoitein-1 and -2, and Vascular Endothelial Growth Factors (VEGF) were examined on mRNA and protein levels. Results The results showed a notable rise in the rate of proliferation (P-value<0.0001) of HBMECs induced by (R)-5-Fluoro-ADB. The angiogenic capacity of HBMECs was also enhanced between 0.001 μM to 1 μM (R)-5-Fluoro-ADB. Moreover, an increase in the levels of ANG-1, ANG-2, and VEGF mRNA and protein, as well as elevated phosphorylation rate of GSK-3β, were observed across various concentrations of (R)-5-Fluoro-ADB. Conclusion Our results suggest an innovative approach in pharmacology for addressing a range of conditions linked to angiogenesis. This approach involves precise targeting of both cannabinoid receptors type-1 and -2. To achieve this, specific agonists or antagonists of these receptors could be employed based on the particular characteristics of the diseases in question.
Collapse
Affiliation(s)
- Laith Naser AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
8
|
Gioé-Gallo C, Ortigueira S, Brea J, Raïch I, Azuaje J, Paleo MR, Majellaro M, Loza MI, Salas CO, García-Mera X, Navarro G, Sotelo E. Pharmacological insights emerging from the characterization of a large collection of synthetic cannabinoid receptor agonists designer drugs. Biomed Pharmacother 2023; 164:114934. [PMID: 37236027 DOI: 10.1016/j.biopha.2023.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) constitute the largest and most defiant group of abuse designer drugs. These new psychoactive substances (NPS), developed as unregulated alternatives to cannabis, have potent cannabimimetic effects and their use is usually associated with episodes of psychosis, seizures, dependence, organ toxicity and death. Due to their ever-changing structure, very limited or nil structural, pharmacological, and toxicological information is available to the scientific community and the law enforcement offices. Here we report the synthesis and pharmacological evaluation (binding and functional) of the largest and most diverse collection of enantiopure SCRAs published to date. Our results revealed novel SCRAs that could be (or may currently be) used as illegal psychoactive substances. We also report, for the first time, the cannabimimetic data of 32 novel SCRAs containing an (R) configuration at the stereogenic center. The systematic pharmacological profiling of the library enabled the identification of emerging Structure-Activity Relationship (SAR) and Structure-Selectivity Relationship (SSR) trends, the detection of ligands exhibiting incipient cannabinoid receptor type 2 (CB2R) subtype selectivity and highlights the significant neurotoxicity of representative SCRAs on mouse primary neuronal cells. Several of the new emerging SCRAs are currently expected to have a rather limited potential for harm, as the evaluation of their pharmacological profiles revealed lower potencies and/or efficacies. Conceived as a resource to foster collaborative investigation of the physiological effects of SCRAs, the library obtained can contribute to addressing the challenge posed by recreational designer drugs.
Collapse
Affiliation(s)
- Claudia Gioé-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sandra Ortigueira
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Neurosciences (NeuroUB), Campus Mundet, University of Barcelona, Barcelona 08035, Spain
| | - Jhonny Azuaje
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - M Rita Paleo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Cristian O Salas
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Xerardo García-Mera
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Neurosciences (NeuroUB), Campus Mundet, University of Barcelona, Barcelona 08035, Spain.
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
9
|
Reece AS, Hulse GK. Geospatiotemporal and Causal Inferential Study of European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Orofacial Anomalies. J Xenobiot 2023; 13:42-74. [PMID: 36810431 PMCID: PMC9944119 DOI: 10.3390/jox13010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Since high rates of congenital anomalies (CAs), including facial CAs (FCAs), causally attributed to antenatal and community cannabis use have been reported in several recent series, it was of interest to examine this subject in detail in Europe. METHODS CA data were taken from the EUROCAT database. Drug exposure data were downloaded from the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Income was taken from the World Bank's online sources. RESULTS On the bivariate maps of both orofacial clefts and holoprosencephaly against resin, the Δ9-tetrahydrocannabinol concentration rates of both covariates increased together in France, Bulgaria, and the Netherlands. In the bivariate analysis, the anomalies could be ranked by the minimum E-value (mEV) as congenital glaucoma > congenital cataract > choanal atresia > cleft lip ± cleft palate > holoprosencephaly > orofacial clefts > ear, face, and neck anomalies. When nations with increasing daily use were compared to those without, the former had generally higher rates of FCAs (p = 0.0281). In the inverse probability weighted panel regression, the sequence of anomalies-orofacial clefts, anotia, congenital cataract, and holoprosencephaly-had positive and significant cannabis coefficients of p = 2.65 × 10-5, 1.04 × 10-8, 5.88 × 10-16, and 3.21 × 10-13, respectively. In the geospatial regression, the same series of FCAs had positive and significant regression terms for cannabis of p = 8.86 × 10-9, 0.0011, 3.36 × 10-8, and 0.0015, respectively. Some 25/28 (89.3%) E-value estimates and 14/28 (50%) mEVs were >9 (considered to be in the high range), and 100% of both were >1.25 (understood to be in the causal range). CONCLUSION Rising cannabis use is associated with all the FCAs and fulfils the epidemiological criteria for causality. The data indicate particular concerns relating to brain development and exponential genotoxic dose-responses, urging caution with regard to community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Correspondence: ; Tel.: +61-7-3844-4000; Fax: +61-7-3844-4015
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
10
|
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP. Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol 2023; 63:187-209. [PMID: 35914767 DOI: 10.1146/annurev-pharmtox-031122-113758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.
Collapse
Affiliation(s)
- Rita Roque-Bravo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rafaela Sofia Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rui F Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; , .,Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, IUCS-CESPU, Gandra, Portugal
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| |
Collapse
|
11
|
Akar M, Ercin M, Boran T, Gezginci-Oktayoglu S, Özhan G. UR-144, synthetic cannabinoid receptor agonist, induced cardiomyoblast toxicity mechanism comprises cytoplasmic Ca 2+ and DAPK1 related autophagy and necrosis. Toxicol Mech Methods 2023; 33:56-64. [PMID: 35606921 DOI: 10.1080/15376516.2022.2081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UR-144, a cannabinoid receptor agonist, is widely used alone or in combination with other synthetic cannabinoids (SCs) all over the world. At overdose, cardiovascular symptoms have been reported and the underlying molecular mechanisms of these adverse effects are not known. It is highly important to clarify the toxic effects of UR-144 for the treatment of poisoning. In the present study, the molecular mechanism of cytotoxic effects of UR-144 is evaluated on a cardiomyoblastic cell line using WST-1 and LDH assays. Apoptosis/necrosis, autophagy, and ROS (reactive oxygen species) levels were determined using flow cytometry. Cytoplasmic Ca2+ levels were measured by using a fluorogenic calcium-binding dye. Released and cytoplasmic troponin T levels, a specific marker of cardiotoxicity, were examined with western blot. For the evaluation of the role of DAPK1, on UR-144-induced cell death, DAPK1 activity and DAPK1 protein level were investigated. Its cytotoxic effects increased in a dose-dependent manner for WST-1 and LDH assays, while membrane damage, one of the signs of necrotic cell death, was more remarkable than damage to mitochondria. Cytoplasmic Ca2+ levels rose after high-dose UR-144 treatment and inhibition of DAPK1 activity ameliorated UR-144-induced cytotoxicity. Released troponin T significantly increased at a dose of 200 µM. ROS and total antioxidant capacity of cells were both reduced following high dose UR-144 treatment. The results indicated that UR-144-induced autophagic and necrotic cell death might be a consequence of elevated cytoplasmic Ca2+ levels and DAPK1 activation. However, in vivo/clinical studies are needed to identify molecular mechanisms of cardiotoxic effects of UR-144.
Collapse
Affiliation(s)
- Muzeyyen Akar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Merve Ercin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Tugce Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | | | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 2 - categorical bivariate analysis and attributable fractions. Arch Public Health 2022; 80:100. [PMID: 35354495 PMCID: PMC8969377 DOI: 10.1186/s13690-022-00812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As the cannabis-cancer relationship remains an important open question epidemiological investigation is warranted to calculate key metrics including Rate Ratios (RR), Attributable Fractions in the Exposed (AFE) and Population Attributable Risks (PAR) to directly compare the implicated case burden between emerging cannabinoids and the established carcinogen tobacco. METHODS SEER*Stat software from Centres for Disease Control was used to access age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") from National Cancer Institute in US states 2001-2017. Drug exposures taken from the National Survey of Drug Use and Health 2003-2017, response rate 74.1%. Federal seizure data provided cannabinoid exposure. US Census Bureau furnished income and ethnicity. Exposure dichotomized as highest v. lowest exposure quintiles. Data processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Fifteen cancers displayed elevated E-Values in the highest compared to the lowest quintiles of cannabidiol exposure, namely (in order): prostate, melanoma, Kaposi sarcoma, ovarian, bladder, colorectal, stomach, Hodgkins, esophagus, Non-Hodgkins lymphoma, All cancer, brain, lung, CLL and breast. Eleven cancers were elevated in the highest THC exposure quintile: melanoma, thyroid, liver, AML, ALL, pancreas, myeloma, CML, breast, oropharynx and stomach. Twelve cancers were elevated in the highest tobacco quintile confirming extant knowledge and study methodology. For cannabidiol RR declined from 1.397 (95%C.I. 1.392, 1.402), AFE declined from 28.40% (28.14, 28.66%), PAR declined from 15.3% (15.1, 15.5%) and minimum E-Values declined from 2.13. For THC RR declined from 2.166 (95%C.I. 2.153, 2.180), AFE declined from 53.8% (53.5, 54.1%); PAR declined from 36.1% (35.9, 36.4%) and minimum E-Values declined from 3.72. For tobacco, THC and cannabidiol based on AFE this implies an excess of 93,860, 91,677 and 48,510 cases; based on PAR data imply an excess of 36,450, 55,780 and 14,819 cases. CONCLUSION Data implicate 23/28 cancers as being linked with THC or cannabidiol exposure with epidemiologically-causal relationships comparable to those for tobacco. AFE-attributable cases for cannabinoids (91,677 and 48,510) compare with PAR-attributable cases for tobacco (36,450). Cannabinoids constitute an important multivalent community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
13
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 1 - continuous bivariate analysis. Arch Public Health 2022; 80:99. [PMID: 35354487 PMCID: PMC8966217 DOI: 10.1186/s13690-022-00811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genotoxic and cancerogenic impacts of population-wide cannabinoid exposure remains an open but highly salient question. The present report examines these issues from a continuous bivariate perspective with subsequent reports continuing categorical and detailed analyses. METHODS Age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") was sourced using SEER*Stat software from Centres for Disease Control and National Cancer Institute across US states 2001-2017. It was joined with drug exposure data from the nationally representative National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017, response rate 74.1%. Cannabinoid data was from Federal seizure data. Income and ethnicity data sourced from the US Census Bureau. Data was processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Regression lines were charted for cancer-substance exposures for cigarettes, alcohol use disorder (AUD), cannabis, THC, cannabidiol, cannabichromene, cannabinol and cannabigerol. In this substance series positive trends were found for 14, 9, 6, 9, 12, 6, 9 and 7 cancers; with largest minimum E-Values (mEV) of 1.76 × 109, 4.67 × 108, 2.74 × 104, 4.72, 2.34 × 1018, 2.74 × 1017, 1.90 × 107, 5.05 × 109; and total sum of exponents of mEV of 34, 32, 13, 0, 103, 58, 25, 31 indicating that cannabidiol followed by cannabichromene are the most strongly implicated in environmental carcinogenesis. Breast cancer was associated with tobacco and all cannabinoids (from mEV = 3.53 × 109); "All Cancer" (non-skin) linked with cannabidiol (mEV = 1.43 × 1011); pediatric AML linked with cannabis (mEV = 19.61); testicular cancer linked with THC (mEV = 1.33). Cancers demonstrating elevated mEV in association with THC were: thyroid, liver, pancreas, AML, breast, oropharynx, CML, testis and kidney. Cancers demonstrating elevated mEV in relation to cannabidiol: prostate, bladder, ovary, all cancers, colorectum, Hodgkins, brain, Non-Hodgkins lymphoma, esophagus, breast and stomach. CONCLUSION Data suggest that cannabinoids including THC and cannabidiol are important community carcinogens exceeding the effects of tobacco or alcohol. Testicular, (prostatic) and ovarian tumours indicate mutagenic corruption of the germline in both sexes; pediatric tumourigenesis confirms transgenerational oncogenesis; quantitative criteria implying causality are fulfilled.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
14
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 3 - spatiotemporal, multivariable and causal inferential pathfinding and exploratory analyses of prostate and ovarian cancers. Arch Public Health 2022; 80:101. [PMID: 35354499 PMCID: PMC8969240 DOI: 10.1186/s13690-022-00813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The epidemiology of cannabinoid-related cancerogenesis has not been studied with cutting edge epidemiological techniques. Building on earlier bivariate papers in this series we aimed to conduct pathfinding studies to address this gap in two tumours of the reproductive tract, prostate and ovarian cancer. METHODS Age-standardized cancer incidence data for 28 tumour types (including "All (non-skin) Cancer") was sourced from Centres for Disease Control and National Cancer Institute using SEER*Stat software across US states 2001-2017. Drug exposure was sourced from the nationally representative household survey National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017 with response rate 74.1%. Federal seizure data provided cannabinoid concentration data. US Census Bureau provided income and ethnicity data. Inverse probability weighted mixed effects, robust and panel regression together with geospatiotemporal regression analyses were conducted in R. E-Values were also calculated. RESULTS 19,877 age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Inverse probability weighted regressions for prostate and ovarian cancers confirmed causal associations robust to adjustment. Cannabidiol alone was significantly associated with prostate cancer (β-estimate = 1.61, (95%C.I. 0.99, 2.23), P = 3.75 × 10- 7). In a fully adjusted geospatiotemporal model at one spatial and two temporal years lags cannabidiol was significantly independently associated with prostate cancer (β-estimate = 2.08, (1.19, 2.98), P = 5.20 × 10- 6). Cannabidiol alone was positively associated with ovarian cancer incidence in a geospatiotemporal model (β-estimate = 0.36, (0.30, 0.42), P < 2.20 × 10- 16). The cigarette: THC: cannabidiol interaction was significant in a fully adjusted geospatiotemporal model at six years of temporal lag (β-estimate = 1.93, (1.07, 2.78), P = 9.96 × 10- 6). Minimal modelled polynomial E-Values for prostate and ovarian cancer ranged up to 5.59 × 1059 and 1.92 × 10125. Geotemporospatial modelling of these tumours showed that the cannabidiol-carcinogenesis relationship was supra-linear and highly sigmoidal (P = 1.25 × 10- 45 and 12.82 × 10- 52 for linear v. polynomial models). CONCLUSION Cannabinoids including THC and cannabidiol are therefore important community carcinogens additive to the effects of tobacco and greatly exceeding those of alcohol. Reproductive tract carcinogenesis necessarily implies genotoxicity and epigenotoxicity of the germ line with transgenerational potential. Pseudoexponential and causal dose-response power functions are demonstrated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
15
|
Correia B, Fernandes J, Botica MJ, Ferreira C, Quintas A. Novel Psychoactive Substances: The Razor's Edge between Therapeutical Potential and Psychoactive Recreational Misuse. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9030019. [PMID: 35323718 PMCID: PMC8950629 DOI: 10.3390/medicines9030019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Novel psychoactive substances (NPS) are compounds of natural and synthetic origin, similar to traditional drugs of abuse. NPS are involved in a contemporary trend whose origin lies in a thinner balance between legitimate therapeutic drug research and legislative control. The contemporary NPS trend resulted from the replacement of MDMA by synthetic cathinones in 'ecstasy' during the 2000s. The most common NPS are synthetic cannabinoids and synthetic cathinones. Interestingly, during the last 50 years, these two classes of NPS have been the object of scientific research for a set of health conditions. METHODS Searches were conducted in the online database PubMed using boolean equations. RESULTS Synthetic cannabinoids displayed protective and therapeutic effects for inflammatory, neurodegenerative and oncologic pathologies, activating the immune system and reducing inflammation. Synthetic cathinones act similarly to amphetamine-type stimulants and can be used for depression and chronic fatigue. CONCLUSIONS Despite the scientific advances in this field of research, pharmacological application of NPS is being jeopardized by fatalities associated with their recreational use. This review addresses the scientific achievements of these two classes of NPS and the toxicological data, ending with a reflection on Illicit and NPS control frames.
Collapse
Affiliation(s)
- Beatriz Correia
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Joana Fernandes
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Maria João Botica
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carla Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Rua Professor Lima Basto, 1099-023 Lisboa, Portugal
| | - Alexandre Quintas
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
16
|
Sogos V, Caria P, Porcedda C, Mostallino R, Piras F, Miliano C, De Luca MA, Castelli MP. Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. Int J Mol Sci 2021; 22:ijms22136785. [PMID: 34202634 PMCID: PMC8268582 DOI: 10.3390/ijms22136785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.
Collapse
Affiliation(s)
- Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Clara Porcedda
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Franca Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
- Guy Everett Laboratory, University of Cagliari, 09042 Monserrato, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070-6754065
| |
Collapse
|
17
|
Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli CA. MAM-2201, One of the Most Potent-Naphthoyl Indole Derivative-Synthetic Cannabinoids, Exerts Toxic Effects on Human Cell-Based Models of Neurons and Astrocytes. Neurotox Res 2021; 39:1251-1273. [PMID: 33945101 DOI: 10.1007/s12640-021-00369-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Considering the consequences on human health, in general population and workplace, associated with the use of new psychoactive substances and their continuous placing on the market, novel in vitro models for neurotoxicology research, applying human-derived CNS cells, may provide a means to understand the mechanistic basis of molecular and cellular alterations in brain. Cytotoxic effects of MAM-2201, a potent-naphthoyl indole derivative-synthetic cannabinoid, have been evaluated applying a panel of human cell-based models of neurons and astrocytes, testing different concentrations (1-30 µM) and exposure times (3-24-48 h). MAM-2201 induced toxicity in primary neuron-like cells (hNLCs), obtained from transdifferentiation of mesenchymal stem cells derived from human umbilical cord. Effects occurred in a concentration- and time-dependent manner. The lowest concentration affecting cell viability, metabolic function, apoptosis, morphology, and neuronal markers (MAP-2, NSE) was 5 μM, and even 1 μM induced apoptosis. Effects appeared early (3 h) and persisted after 24 and 48 h. Similar behavior was evidenced for human D384-astrocytes treated with MAM-2201. Differently, human SH-SY5Y-neurons, both differentiated and undifferentiated, were not sensitive to MAM-2201. On D384, the different altered endpoints were reversed, attenuated, or not antagonized by AM251 indicating that CB1 receptors may partially mediate MAM-2201-induced cytotoxicity. While in hNLCs, all toxic effects caused by MAM-2201 were apparently unrelated to CB-receptors since they were not evidenced by immunofluorescence. The present in vitro findings demonstrate the cytotoxicity of MAM-2201 on human primary neurons (hNLCs) and astrocytes cell line (D384), and support the use of these cellular models as species-specific in vitro tools suitable to clarify the neurotoxicity mechanisms of synthetic cannabinoids.
Collapse
Affiliation(s)
- T Coccini
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy.
| | - U De Simone
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - D Lonati
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - G Scaravaggi
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - M Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - C A Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|