1
|
Boldaji VN, Mirshekar MA, Arabmoazzen S, Shahrivar FF. Behavioral deficits after traumatic brain injury: Neuroprotective effect of Diosmin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04195-8. [PMID: 40261347 DOI: 10.1007/s00210-025-04195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Following traumatic brain injury (TBI), the progression of brain tissue injuries and subsequent psychiatric complications considerably affect the quality of life in humans. Diosmin (DM) is a flavonoid and has been demonstrated to improve cognitive deficit and amplify brain electrical activity in the rat model of traumatic brain injury. We aimed to explore the potential protective effects of DM on single-unit neuronal firing, as well as on motor function and behaviors related to depression and anxiety associated with TBI. Forty-eight Wistar rats were randomly divided into sham-operated, TBI, and TBI + DM (100 mg/kg/day; P.O.) Groups. Depression and anxiety-like behaviors and motor function were evaluated through standard behavioral tests and Rotarod apparatus at scheduled points in time. We also measured the neuronal firing rate in the striatum. The results indicated that DM pretreatment significantly improved TBI-induced depression and anxiety-like behaviors (P < 0.01), and motor coordination (P < 0.05). The striatum neuronal firing rate in the TBI + DM Group was significantly higher than the TBI group (216 Vs 49.38 Hz, P < 0.001). The findings suggest that pretreatment with DM may offer protective benefits against TBI-associated behavioral deficits.
Collapse
Affiliation(s)
- Vida Naderi Boldaji
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Genetics of Non-communicable Disease Research Center, Zahedan of University Medical Sciences, Zahedan, Iran.
| | - Saiedeh Arabmoazzen
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Faraji Shahrivar
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
- Department of Physiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
2
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Alderei A, Alfalahi M, Alhefeiti S, Alnaqbi D, Alshamsi S, Nemmar A. Protective Effects of Nerolidol on Thrombotic Events, Systemic Inflammation, Oxidative Stress, and DNA Damage Following Pulmonary Exposure to Diesel Exhaust Particles. Biomedicines 2025; 13:729. [PMID: 40149705 PMCID: PMC11940484 DOI: 10.3390/biomedicines13030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Inhalation of environmental particulate air pollution has been reported to cause pulmonary and systemic events including coagulation disturbances, systemic inflammation, and oxidative stress. Nerolidol, a naturally occurring sesquiterpene alcohol, has effective antioxidant and anti-inflammatory effects. Hence, the aim in the present investigation was to evaluate the potential ameliorative effects of nerolidol on the coagulation and systemic actions induced by pulmonary exposure to diesel exhaust particles (DEPs). Methods: Nerolidol (100 mg/kg) was given to mice by oral gavage one hour before the intratracheal instillation of DEPs (0.5 mg/kg), and 24 h later various markers of coagulation and systemic toxicity were evaluated. Results: Nerolidol treatment significantly abrogated DEP-induced platelet aggregation in vivo and in vitro. Nerolidol has also prevented the shortening of the prothrombin time and activated plasma thromboplastin time triggered by DEP exposure. Likewise, while the concentrations of fibrinogen and plasminogen activator inhibitor-1 were increased by DEP administration, that of tissue plasminogen activator was significantly decreased. These effects were abolished in the group of mice concomitantly treated with nerolidol and DEP. Moreover, plasma markers of inflammation, oxidative stress, and endothelial dysfunction which were significantly increased in the DEP-treated group, returned to control levels in the nerolidol + DEP group. Nerolidol treatment significantly ameliorated the increase in the concentrations of hypoxia-inducible factor 1α, galectin-3, and neutrophil gelatinase-associated lipocalin induced by pulmonary exposure to DEP. The co-administration of nerolidol + DEPs significantly mitigated the increase in markers of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, and apoptosis, cleaved-caspase-3, induced by DEP. Conclusions: Collectively, our data demonstrate that nerolidol exert significant ameliorative actions against DEP-induced thrombotic events, endothelial dysfunction, systemic inflammation, oxidative stress, DNA damage, and apoptosis. Pending further pharmacological and toxicological studies, nerolidol could be a promising agent to alleviate the toxicity of inhaled DEPs and other pollutant particles.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Alreem Alderei
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Maha Alfalahi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Shamma Alhefeiti
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Dana Alnaqbi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Salama Alshamsi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Abderrahim Nemmar
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Li W, Zhang W, Liu Z, Song H, Wang S, Zhang Y, Zhan C, Liu D, Tian Y, Tang M, Wen M, Qiao J. Review of Recent Advances in Microbial Production and Applications of Nerolidol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5724-5747. [PMID: 40013722 DOI: 10.1021/acs.jafc.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Nerolidol, an oxygenated sesquiterpene (C15H26O) that occurs in plants, exhibits significant bioactivities such as antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. It is a U.S. Food and Drug Administration-approved flavoring agent and a common ingredient in several commercial products such as toiletries and detergents. In addition, the potential applications of nerolidol that may prove beneficial for human health, agriculture, and the food industry have garnered increasing attention from researchers in these fields. Recent years have witnessed the application of metabolic engineering and synthetic biology strategies for constructing microbial cell factories that can produce nerolidol, which is considered a sustainable and economical approach. This review summarizes recent research on the biological activities and applications of nerolidol as well as nerolidol production using microbial cell factories. In addition, the synthesis of bioactive derivatives of nerolidol is addressed. In summary, this review provides readers with an updated understanding of the potential applications and green production prospects of nerolidol.
Collapse
Affiliation(s)
- Weiguo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yi Zhang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Chuanling Zhan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Damiao Liu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yanjie Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Min Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
4
|
Singh A, Singh L. Acyclic sesquiterpenes nerolidol and farnesol: mechanistic insights into their neuroprotective potential. Pharmacol Rep 2025; 77:31-42. [PMID: 39436564 DOI: 10.1007/s43440-024-00672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Sesquiterpenes are a class of organic compounds found in plants, fungi, and some insects. They are characterized by the presence of three isoprene units, resulting in a molecular formula that typically contains 15 carbon atoms (C₁₅H₂₄). Nerolidol and farnesol are both sesquiterpene alcohols present in the essential oils of numerous plants. They have drawn attention due to their potential neuroprotective properties. Nerolidol and farnesol are structural isomers, specifically geometric isomers, haring the same molecular formula (C₁₅H₂₄O) but differing in the spatial arrangement of their atoms. This variation in structure may contribute to their distinct biological activities. Scientific evidence suggests that nerolidol and farnesol exhibit antioxidant and anti-inflammatory characteristics which are crucial for neuroprotection. Nerolidol has been specifically noted for its ability to alleviate conditions such as Alzheimer's disease, Parkinson's disease, encephalomyelitis, depression, and anxiety by modulating inflammatory and oxidative stress pathways. Moreover, research indicates that both nerolidol and farnesol may modulate the Nrf-2/HO-1 antioxidant signaling pathway to mitigate oxidative stress-induced neurological damage. Activation of Nrf-2/HO-1 signaling cascade promotes cell survival and enhances the brain's ability to resist various insults. Nerolidol has also been reported to alleviate neuroinflammation by inhibiting the TLR-4/NF-κB and COX-2/NF-κB inflammatory signaling pathway. Besides, this nerolidol also modulates BDNF/TrkB/CREB signaling pathway to improve neuronal health. To date, limited research has delved into the anti-inflammatory properties of farnesol concerning neurodegenerative diseases. Further investigation is warranted to comprehensively elucidate the mechanisms underlying its action and potential therapeutic uses in neuroprotection. Initial observations indicate that farnesol exhibits promising prospects as a natural agent for safeguarding brain functions. Henceforth, drawing upon existing literature elucidating the neuroprotective attributes of nerolidol and farnesol, the current review endeavors to provide a detailed analysis of their mechanistic underpinnings in neuroprotection.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
5
|
Sha R, Wu M, Wang P, Chen Z, Lei W, Wang S, Gong S, Liang G, Zhao R, Tao Y. Adolescent mice exposed to TBI developed PD-like pathology in middle age. Transl Psychiatry 2025; 15:27. [PMID: 39863574 PMCID: PMC11763066 DOI: 10.1038/s41398-025-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice. More than half of the mice exhibited PD-like behavior at 6 months post injury. PD-like behavioral dysfunction and pathological changes were aggravated with the injured time extension in chronic phase of TBI. The loss of tyrosine hydroxylase positive (TH+) neurons in the SN were partly associated with the accumulation of misfolded a-Synuclein and the cytoplasmic translocation of TDP-43 from nuclear. Moreover, the present of chronic inflammation was observed in SN of TBI mice, as evidenced by the enhancement of proinflammatory cytokines and reactive astrocytes and microgliosis post lesion. The enhanced phagocytosis of reactive microglia accounted for the reduction of dendrite spines. Our results revealed that chronic inflammation associated with the damage of TH+ neurons and the development of progressive PD-like pathology after chronic TBI in mice. Our study shed new light on the TBI-triggered molecular events on PD-like pathology. Additional research is required to have a deeper understanding of the molecular factors underlying the impairment of dopaminergic neurons following TBI.
Collapse
Affiliation(s)
- Rong Sha
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingzhe Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Pengfei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, China
| | - Ziyuan Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Wei Lei
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Shimiao Wang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
- China Medical University, Shenyang, Liaoning, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China.
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, China.
| | - Yingqun Tao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
- China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Lei Y, Li M, Liu X, Zhang L, Zhang R, Cai F. Nerolidol rescues hippocampal injury of diabetic rats through inhibiting NLRP3 inflammasome and regulation of MAPK/AKT pathway. Biofactors 2024; 50:1076-1100. [PMID: 38624190 DOI: 10.1002/biof.2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Despite the observation of diabetes-induced brain tissue damage and impaired learning and memory, the underlying mechanism of damage remains elusive, and effective, targeted therapeutics are lacking. Notably, the NLRP3 inflammasome is highly expressed in the hippocampus of diabetic individuals. Nerolidol, a naturally occurring compound with anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic option for metabolic disorders. However, the ameliorative capacity of nerolidol on diabetic hippocampal injury and its underlying mechanism remain unclear. Network pharmacology and molecular docking was used to predict the signaling pathways and therapeutic targets of nerolidol for the treatment of diabetes. Then established a diabetic rat model using streptozotocin (STZ) combined with a high-fat diet and nerolidol was administered. Morris water maze to assess spatial learning memory capacity. Hematoxylin and eosin and Nissl staining was used to detect neuronal damage in the diabetic hippocampus. Transmission electron microscopy was used to detect the extent of damage to mitochondria, endoplasmic reticulum (ER) and synapses. Immunofluorescence was used to detect GFAP, IBA1, and NLRP3 expression in the hippocampus. Western blot was used to detect apoptosis (Bcl-2, BAX, and Cleaved-Caspase-3); synapses (postsynaptic densifying protein 95, SYN1, and Synaptophysin); mitochondria (DRP1, OPA1, MFN1, and MFN2); ER (GRP78, ATF6, CHOP, and caspase-12); NLRP3 inflammasome (NLRP3, ASC, and caspase-1); inflammatory cytokines (IL-18, IL-1β, and TNF-α); AKT (P-AKT); and mitogen-activated protein kinase (MAPK) pathway (P-ERK, P-p38, and P-JNK) related protein expression. Network pharmacology showed that nerolidol's possible mechanisms for treating diabetes are the MAPK/AKT pathway and anti-inflammatory effects. Animal experiments demonstrated that nerolidol could improve blood glucose, blood lipids, and hippocampal neuronal damage in diabetic rats. Furthermore, nerolidol could improve synaptic, mitochondrial, and ER damage in the hippocampal ultrastructure of diabetic rats by potentially affecting synaptic, mitochondrial, and ER-related proteins. Further studies revealed that nerolidol decreased neuroinflammation, NLRP3 and inflammatory factor expression in hippocampal tissue while also decreasing MAPK pathway expression and enhancing AKT pathway expression. However, nerolidol improves hippocampal damage in diabetic rats cannot be shown to improve cognitive function. In conclusion, our study reveals for the first time that nerolidol can ameliorate hippocampal damage, neuroinflammation, synaptic, ER, and mitochondrial damage in diabetic rats. Furthermore, we suggest that nerolidol may inhibit NLRP3 inflammasome and affected the expression of MAPK and AKT. These findings provide a new experimental basis for the use of nerolidol to ameliorate diabetes-induced brain tissue damage and the associated disease.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Manqin Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Xinran Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Lu Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
7
|
Zhang G, Zhou X, Feng Q, Ke W, Pan J, Zhang H, Luan Y, Lei B. Nerolidol reduces depression-like behavior in mice and suppresses microglia activation by down-regulating DNA methyltransferase 1. Neuroreport 2024; 35:457-465. [PMID: 38526920 DOI: 10.1097/wnr.0000000000002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Modern medicine has unveiled that essential oil made from Aquilaria possesses sedative and hypnotic effects. Among the chemical components in Aquilaria, nerolidol, a natural sesquiterpene alcohol, has shown promising effects. This study aimed to unravel the potential of nerolidol in treating depression. Chronic unpredictable mild stress (CUMS) was utilized to induce depression-like behavior in mice, and open field test, sucrose preference, and tail suspension test was conducted. The impacts of nerolidol on the inflammatory response, microglial activation, and DNA methyltransferase 1 (DNMT1) were assessed. To study the regulatory role of DNMT1, lipopolysaccharide (LPS) was used to treat BV2 cells, followed by the evaluation of cell viability and DNMT1 level. Additionally, the influence of DNMT1 overexpression on BV2 cell activation was determined. Behavioral analysis revealed that nerolidol reduced depression-like behavior in mice. Nerolidol reduced the levels of inflammatory factors and microglial activation caused by CUMS. Nerolidol treatment was found to reduce DNMT1 levels in mouse brain tissue and it also decrease the LPS-induced increase in DNMT1 levels in BV2 cells. DNMT1 overexpression reversed the impacts of nerolidol on the inflammation response and cell activation. This study underscores the potential of nerolidol in reducing CUMS-induced depressive-like behavior and inhibiting microglial activation by downregulating DNMT1. These findings offer valuable insights into the potential of nerolidol as a therapeutic option for depression.
Collapse
Affiliation(s)
- Guangcai Zhang
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Xiaohui Zhou
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Qifan Feng
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Weihua Ke
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
- Graduate School, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahui Pan
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Haiying Zhang
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Yixian Luan
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Beibei Lei
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
- Graduate School, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Zhang J, Li Y, Zhou T. Nerolidol Attenuates Cerebral Ischemic Injury in Middle Cerebral Artery Occlusion-Induced Rats via Regulation of Inflammation, Apoptosis, and Oxidative Stress Markers. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Cerebral ischemia is a syndrome that occurs due to the restricted flow of oxygen-rich blood to the brain, causing damage to the brain cells. Globally, ischemia ranks second in causing mortality and third in causing disability in stroke patients. Nerolidol is a bioactive compound present in the essential oil of plants with a floral odour. It is a natural sesquiterpene alcohol used in cosmetics, perfumes, and as a food flavouring agent. It also possesses antioxidant, antimicrobial, anti-inflammatory, and anticancer properties. Materials and Methods In this study, we assessed the anti-ischemic property of nerolidol in cerebral ischemia-induced mice. Healthy male Wistar rats were induced into cerebral ischemia with middle cerebral artery occlusion (MCAO) and treated with 10 mg and 20 mg nerolidol for 21 days. The brain morphometric, antioxidant, and MMP levels were estimated in the brain tissue of MCAO-performed and nerolidol-treated rats. The cerebral infarct-alleviating potency of nerolidol was analysed by estimating the levels of inflammatory cytokines and apoptotic proteins. It was further confirmed by assessing the levels of COX-2/PGE-2 signalling proteins in brain tissue from MCAO-performed in rats. Results Nerolidol significantly reduced the cerebral infarct volume and brain edema via increased antioxidant levels and decreased MMPs. It also decreased the pro-inflammatory cytokines and proapoptotic proteins in brain tissue. The inflammatory signalling proteins NFκB, COX-2, and PGE-2 were significantly decreased in nerolidol-treated MCAO-performed rats, confirming the antiischemic property of nerolidol. Conclusion Our results prove nerolidol significantly alleviates cerebral ischemia in rats, and it can be subjected to further trials to be formulated as an anti-ischemic drug.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery, Laizhou City People’s Hospital, Laizhou, Shandong, China
| | - Yanli Li
- School of Health, Binzhou Polytechnical College, Binzhou, Shandong, China
| | - Tao Zhou
- Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
9
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Kokorina PI, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3399. [PMID: 36501438 PMCID: PMC9739404 DOI: 10.3390/plants11233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees. Black poplar (Populus balsamifera L.) buds are one of the primary sources of propolis. Despite their reported therapeutic properties, little is known about the innate immunomodulatory activity of essential oils from P. balsamifera and propolis. In the present studies, essential oils were isolated from the buds of P. balsamifera and propolis collected in Montana. The main components of the essential oil from P. balsamifera were E-nerolidol (64.0%), 1,8-cineole (10.8%), benzyl benzoate (3.7%), α-terpinyl acetate (2.7%), α-pinene (1.8%), o-methyl anisol (1.8%), salicylaldehyde (1.8%), and benzyl salicylate (1.6%). Likewise, the essential oil from propolis was enriched with E-nerolidol (14.4%), cabreuva oxide-VI (7.9%), α-bisabolol (7.1%), benzyl benzoate (6.1%), β-eudesmol (3.6%), T-cadinol (3.1%), 2-methyl-3-buten-2-ol (3.1%), α-eudesmol (3.0%), fokienol (2.2%), nerolidol oxide derivative (1.9%), decanal (1.8%), 3-butenyl benzene (1.5%), 1,4-dihydronaphthalene (1.5%), selina-4,11-diene (1.5%), α-cadinol (1.5%), linalool (1.4%), γ-cadinene (1.4%), 2-phenylethyl-2-methyl butyrate (1.4%), 2-methyl-2-butenol (1.3%), octanal (1.1%), benzylacetone (1.1%), and eremoligenol (1.1%). A comparison between P. balsamifera and propolis essential oils demonstrated that 22 compounds were found in both essential oil samples. Both were enriched in E-nerolidol and its derivatives, including cabreuva oxide VI and nerolidol oxides. P. balsamifera and propolis essential oils and pure nerolidol activated Ca2+ influx in human neutrophils. Since these treatments activated neutrophils, the essential oil samples were also evaluated for their ability to down-regulate the neutrophil responses to subsequent agonist activation. Indeed, treatment with P. balsamifera and propolis essential oils inhibited subsequent activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, nerolidol inhibited human neutrophil activation induced by fMLF (IC50 = 4.0 μM) and WKYMVM (IC50 = 3.7 μM). Pretreatment with the essential oils and nerolidol also inhibited human neutrophil chemotaxis induced by fMLF, again suggesting that these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Finally, reverse pharmacophore mapping predicted several potential kinase targets for nerolidol. Thus, our studies have identified nerolidol as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Polina I. Kokorina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia
| | | | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
10
|
Tian Y, Jia X, Wang Q, Lu T, Deng G, Tian M, Zhou Y. Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil. Pharmaceuticals (Basel) 2022; 15:ph15091069. [PMID: 36145290 PMCID: PMC9505801 DOI: 10.3390/ph15091069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
Alpinia galanga is widely cultivated for its essential oil (EO), which has been used in cosmetics and perfumes. Previous studies of A. galanga focussed mostly on the rhizome but seldom on the flower. Therefore, this study was designed to identify the chemical composition of A. galanga flower EO and firstly estimate its antioxidant, antibacterial, enzyme inhibitory, and anticancer activities. According to the results of the gas chromatography with flame ionization or mass selective detection (GC-FID/MS) analysis, the most abundant component of the EO was farnesene (64.3%), followed by farnesyl acetate (3.6%), aceteugenol (3.2%), eugenol (3.1%), E-nerolidol (2.9%), decyl acetate (2.4%), octyl acetate (2.0%), sesquirosefuran (1.9%), (E)-β-farnesene (1.7%), and germacrene D (1.5%). For the bioactivities, the EO exhibited moderate DPPH and ABTS radical scavenging effects with IC50 values of 138.62 ± 3.07 μg/mL and 40.48 ± 0.49 μg/mL, respectively. Moreover, the EO showed strong-to-moderate antibacterial activities with various diameter of inhibition zone (DIZ) (8.79−14.32 mm), minimal inhibitory concentration (MIC) (3.13−6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25−12.50 mg/mL) values against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris. Interestingly, the EO possessed remarkable α-glucosidase inhibition (IC50 = 0.16 ± 0.03 mg/mL), which was equivalent to that of the positive control acarbose (IC50 = 0.15 ± 0.01 mg/mL) (p > 0.05). It showed moderate tyrosinase inhibition (IC50 = 0.62 ± 0.09 mg/mL) and weak inhibitory activity on acetylcholinesterase (AChE) (IC50 = 2.49 ± 0.24 mg/mL) and butyrylcholinesterase (BChE) (IC50 = 10.14 ± 0.59 mg/mL). Furthermore, the EO exhibited considerable selective cytotoxicity to K562 cells (IC50 = 41.55 ± 2.28 μg/mL) and lower cytotoxicity to non-cancerous L929 cells (IC50 = 120.54 ± 8.37 μg/mL), and it induced K562 cell apoptosis in a dose-dependent manner. Hence, A. galanga flower EO could be regarded as a bioactive natural product with great application potential in the pharmaceutical field.
Collapse
Affiliation(s)
- Yufeng Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Xiaoyan Jia
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Qinqin Wang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Tingya Lu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Guodong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Minyi Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
- Correspondence: (M.T.); (Y.Z.)
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Correspondence: (M.T.); (Y.Z.)
| |
Collapse
|
11
|
Jaiswal G, Kumar P. Neuroprotective role of apocynin against pentylenetetrazole kindling epilepsy and associated comorbidities in mice by suppression of ROS/RNS. Behav Brain Res 2022; 419:113699. [PMID: 34856299 DOI: 10.1016/j.bbr.2021.113699] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023]
Abstract
Epilepsy is a neurological disease that transpires due to the unusual synchronized neuronal discharge within the central nervous system, which drives repetitious unprovoked seizures. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a complex enzyme accountable for reactive oxygen species (ROS) production, neurodegeneration, neurotoxicity, memory impairment, vitiates normal cellular processes, long term potentiation, and thus, implicated in the pathogenesis of epilepsy. Therefore, the present study was sketched to examine the neuroprotective effect of apocynin, NADPH oxidase inhibitor in pentylenetetrazole kindling epilepsy, and induced comorbidities in mice. Mice (either sex) were given pentylenetetrazole (35 mg/kg, i.p.) every other day up to 29 days, and a challenge test was executed on the 33rd day. Pretreatment with apocynin (25, 50, and 100 mg/kg, i.p.) was carried out from 1st to 33rd day. Rotarod and open field test were performed on the 1st, 10th, 20th, and 30th days of the study. Animals were tutored on the morris water maze from 30th to 33rd day, and the retention was registered on the 34th day. Tail suspension test and elevated plus maze were sequentially performed on the 32nd and 33rd day of the study. On the 34th day, animals were sacrificed, and their brains were isolated to conduct biochemical estimation. NADPH oxidase activation due to chronic pentylenetetrazole treatment resulted in generalized tonic-clonic seizures, enhanced oxidative stress, remodeled neurotransmitters' level, and resulted in comorbidities (anxiety, depression, and memory impairment). Pretreatment with apocynin significantly restricted the pentylenetetrazole induced seizure severity, ROS production, neurotransmitter alteration, and comorbid conditions by inhibiting the NADPH oxidase enzyme.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India.
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India; Department of Pharmacology, Central University of Punjab, Bathinda (Punjab), India.
| |
Collapse
|
12
|
Tan MA, Sharma N, An SSA. Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals (Basel) 2022; 15:188. [PMID: 35215300 PMCID: PMC8880493 DOI: 10.3390/ph15020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) mainly affect neurons and gradually lead to a loss of normal motor and cognitive functions. Atypical protein homeostasis-misfolding, aggregations and accumulations, oxidative stress, inflammation, and apoptosis-are common features in most NDs. To date, due to the complex etiology and pathogenesis of NDs, no defined treatment is available. There has been increasing interest in plant extracts as potential alternative medicines as the presence of various active components may exert synergistic and multi-pharmacological effects. Murraya koenigii (Rutaceae) is utilized in Ayurvedic medicine for various ailments. Pharmacological studies evidenced its potential antioxidant, anti-inflammatory, anticancer, hepatoprotective, immunomodulatory, antimicrobial, and neuroprotective activities, among others. In line with our interest in exploring natural agents for the treatment of neurodegenerative diseases, this review presents an overview of literature concerning the mechanisms of action and the safety profile of significant bioactive components present in M. koenigii leaves to support further investigations into their neuroprotective therapeutic potential.
Collapse
Affiliation(s)
- Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
| |
Collapse
|