1
|
Liu YT, Zhang QQ, Yao SY, Zhao KY, Cui HW, Zou YL, Zhao LX. A dual-functional specific fluorescent bio-sensor based on triphenylamine for "turn-off" recognition of copper and mercury: Application in real samples and living system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125621. [PMID: 39721486 DOI: 10.1016/j.saa.2024.125621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Accurately monitoring the content of Cu2+ and Hg2+ in real samples and biological systems is of great significance in ensuring food safety and human health. Therefore, developing efficient methods for simultaneously detecting Cu2+ and Hg2+ is of great significance in living organisms and real samples. In this work, a bifunctional ratiometric and colorimetric fluorescent bio-sensor DPT-1, was designed and synthesized using triphenylamine to specifically and concurrently detect Cu2+ and Hg2+ exhibited varying degrees of fluorescence quenching through "turn-off" fluorescence. Furthermore, DPT-1 effectively detected Cu2+ and Hg2+ in various real samples, encompassing tap water, Songhua River water, and honeysuckle extract. In addition, DPT-1 exhibited remarkable performance in detecting Cu2+/Hg2+ in rice roots, living cells and zebrafish. As research progressed, the discoveries outlined in this article offered the versatile potential for holding promise for food safety monitoring and biological research.
Collapse
Affiliation(s)
- Ya-Tong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian-Qian Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Si-Yi Yao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Ke-Yu Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Han-Wen Cui
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Balali-Mood M, Eizadi-Mood N, Hassanian-Moghaddam H, Etemad L, Moshiri M, Vahabzadeh M, Sadeghi M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025; 11:e42696. [PMID: 40040983 PMCID: PMC11876891 DOI: 10.1016/j.heliyon.2025.e42696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Metals have been used for many centuries, but their nutritional and toxic effects have been investigated since the last century. The common toxic heavy metals (THM) include mercury, lead, chromium cadmium, and arsenic. As human exposure to THM increasingly causes systemic and organ complications, it seems required to review the recent advances of treatment of the toxic metals. Despite the current knowledge of the hazards of heavy metals, there is still high incidents of their poisonings particularly in developing countries. In this review, after an introduction, we briefly describe the routes of exposure, clinical features and prognosis of each metal poisoning. Then, review the different treatments for each metal with particular attention to recent advances in the treatment of both acute and chronic poisonings. The main antidotes for all THM are still chelating agents, but new agents were developed over the past decades and have been used successfully for the THM poisonings. Dimercaptosuccinic acid (DMSA) known as succimer has been prescribed as a safe oral chelator in lead poisoning. Similarly, dimercapto-propanesulfonic acid (DMPS) has also revealed fewer side effects than the old chelating agents. The two are currently gaining increased acceptance among clinical toxicologists. However, there is no specific antidote for mercury poisoning. Dimercaprol is almost no longer used as an antidote of choice in the treatment of chronic THM poisoning. Comparison of clinical management of intoxication by the five heavy metals reveals similar treatment strategies. On the other hand, some of them require specific interventions to reduce the toxicity. Because of drawbacks in the application of commonly known chelating agents, treatment with bioactive compounds which have antioxidant and anti-inflammatory properties has been the subject of much interest in recent research. However, despite the promising results observed in experimental animals, clinical trials on their clinical therapeutic benefits have not been yet successful and need further studies to determine their efficacy and safety in humans. Development of less toxic chelating agents are still under investigations. Moreover, the development of orally administrable chelating agents for home health care would likely be of great interest for future research.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nastaran Eizadi-Mood
- Department of Clinical Toxicology, School of Medicine, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Royal Perth Bentley Group, Next Step Drug and Alcohol Services, Perth, Australia
| | - Leila Etemad
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Vahabzadeh
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Validandi V, Kurella S, Gorain S, Sagubandi Y, Rudhra A, Annamanedi SKD, Ramachandrappa NK, Sinha SN. Heavy metal contamination in commonly consumed herbal medicines from local markets in Hyderabad, India, and associated health risks. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-12. [PMID: 40009029 DOI: 10.1080/19393210.2025.2471065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Heavy metal (HM) contamination in commonly consumed herbal medicines (n = 80), as determined by Liquid Chromatography-Inductively Coupled Plasma Mass Spectroscopy, revealed that 10% of the samples contained at least one HM which exceeded the maximum limits of the Ayurvedic Pharmacopoeia of India. The estimated daily intake of Cr was higher through the consumption of amla, brahmi, and lodhra bark, when compared to other HMs. The Hazard Quotient (1.8) and Hazard Index (2.3) exceeded 1 for brahmi consumption, suggesting potential non-carcinogenic health risks for the population. The Life Time Cancer Risk for brahmi was 2.95E-03, so above 10-4-10-6, which indicates a cancer risk to the population. Monte Carlo simulations for amla showed a skewed distribution, also suggesting its consumption to be a health risk. Therefore, proper management strategies and regular monitoring of herbal products are recommended to ensure the safety and efficacy of herbal medicines for the consumers.
Collapse
Affiliation(s)
- Vakdevi Validandi
- Food Safety Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Srinivasu Kurella
- Food Safety Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Sumitra Gorain
- Food Safety Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Yamuna Sagubandi
- Food Safety Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Ajantha Rudhra
- Public Health Nutrition Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | | | | | |
Collapse
|
4
|
Dai J, Chen Y, Yang W, Liu Z, Deng X, Yang Y, Zeng Q. Field evaluation of oil crop rotations for cadmium remediation and safe vegetable oil production across five sites with varying contamination levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116897. [PMID: 39168085 DOI: 10.1016/j.ecoenv.2024.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Oil crops have the potential to remediate cadmium (Cd)-contaminated farmland while producing safe vegetable oil. However, it is currently unknown whether different oil crops can remediate varying levels of Cd contamination in farmland. This study assessed agricultural fields in southern China contaminated with Cd levels ranging from 0.42 to 10.3 mg/kg. Three representative oilseed crops winter rape, oil sunflower, and peanut were selected for field experiments under two rotation systems. The effects of different rotation systems on remediating various Cd contamination levels were compared to evaluate the feasibility and potential of a two oil crop rotation system. All three crops showed good tolerance to Cd without signs of biomass deficiency. The biomass produced by the rape-oil sunflower and rape-peanut rotation systems was 33.44-459.00 g/ha and 30.64-281.40 g/ha, respectively. The Cd concentration in the oil products obtained complied with existing national and international standards (0.05 mg/kg). The remediation efficiency of the rape-oil sunflower and rape-peanut rotation systems was 1.98-7.37 % and 1.21-4.94 %, respectively. However, the remediation efficiencies and enrichment capacities of both rotation systems were somewhat inhibited by heavy Cd contamination (10.3 mg/kg). Therefore, the agricultural model of rotating two oilseed crops can be implemented in Cd-contaminated farmland at all levels but is more suitable for light to moderate Cd contamination.
Collapse
Affiliation(s)
- Jingrong Dai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yiyang Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoyue Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Department of Pharmacology, Mahatma Gandhi Vidyamandirs Pharmacy College, Mumbai Agra Road, Panchavati, Nashik – 422 003, Maharashtra, India, M. M, Aswale MP, Department of Pharmacology, Mahatma Gandhi Vidyamandirs Pharmacy College, Mumbai Agra Road, Panchavati, Nashik – 422 003, Maharashtra, India, Kulkarni AN, Department of Rasashastra, A.S.S. Ayurved Mahavidyalaya, Nashik – 422 003, Maharashtra, India, Pande SP, Department of Rasashastra, A.S.S. Ayurved Mahavidyalaya, Nashik – 422 003, Maharashtra, India, Kulkarni RA, Department of Rasashastra, A.S.S. Ayurved Mahavidyalaya, Nashik – 422 003, Maharashtra, India. ASSESSMENT OF SUBCHRONIC ORAL TOXICITY AND SAFETY PROFILE OF SUVARNAPARPATI IN WISTAR RATS. INDIAN DRUGS 2024; 61:62-71. [DOI: 10.53879/id.61.09.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Suvarnaparpati is an ayurvedic metallic formulation used in gastrointestinal and respiratory disorders and as an antipyretic. The inclusion of heavy metals like mercury, sulfur and calcinated gold in Suvarnaparpati raises concerns and may lead to safety issues. Consequently, this research explores the sub-chronic oral toxicity of Suvarnaparpati in Wistar rats, adhering to OECD guideline 408, to analyse its safety profile. 24 Wistar rats were segmented into four groups. Animals received suvarnaparpati treatment continuously for 90 days at specified doses of 20.59 mg kg-1 (therapeutic dose-TD), 83.12 mg kg-1. (TD × 4) and 205.3 mg kg-1 (TD × 10). The effect of this formulation was examined on the water intake, food intake, urine analysis, hematology, serum biochemistry, organ-to-body weight ratio and histopathology of various organs, after 90 days of oral administration. Suvarnaparpati does not exhibit dose-related toxicity in Wistar rats of either sex across the said doses and may therefore be considered safe for human consumption.
Collapse
|
6
|
Mehrotra D, Shetty RY, Shetty J, Kumar BM, Shetty AV, Shetty S, Shetty RN. Evaluation of Cytotoxic Effects of Purified Mercury in Human Gingival Fibroblasts- In vitro Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S2046-S2048. [PMID: 39346483 PMCID: PMC11426568 DOI: 10.4103/jpbs.jpbs_1293_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 10/01/2024] Open
Abstract
Background Since the introduction of amalgam for tooth fillings, there have been concerns that mercury toxicity could pose unacceptable health risks. Rasa shastra is an ancient medical discipline that focuses on the utilization of metals and minerals for the treatment of diseases. Nevertheless, these minerals cannot be directly administered to the human body in their natural state due to their potential adverse effects. Hence, for medicinal purposes, these metals and minerals need to undergo purification (Shodhana) to eliminate impurities and modify their physical, chemical, and biological characteristics. Methodology Human gingival fibroblasts (HGF) were exposed to commercially available mercury (CA-Hg) and ayurvedically purified mercury (AP-Hg) at concentrations of 6.25 μM, 12.5 μM, 25 μM and 50 μM. The unexposed HGF cultured in basal media was considered a control. All the samples were cultured for 24 hours and 48 hours, and the cytotoxicity was analyzed by MTT assay. Results Cell viability between the control and experimental groups varied at 24 hours, however, the results were not statistically significant (p>0.05). At 48 hours, cell viability was higher in the AP-Hg group as compared to the CA-Hg group at the concentration of 6.25 μM, and the difference was statistically significant (p<0.05). The cell proliferation assay results demonstrated a statistically significant difference in the mean optical density values (p<0.05) between CA-Hg and AP-Hg at 12.50 μM, 25 μM, and 50, μM concentrations observed at 24 hours. At 48 hours, a statistically significant difference in the mean OD values (p<0.05) between CA-Hg and AP-Hg at all four concentrations was observed. Conclusion: AP-Hg at a concentration of 6.25 μM demonstrated higher cell viability at 48 hours. Further, the cell proliferation rate was also higher for AP-Hg at all concentrations at 24 and 48 hours. These results indicated a less cytotoxic effect of AP-Hg than CA-Hg in HGF and hence could be employed for dental amalgam preparations.
Collapse
Affiliation(s)
- Deepshikha Mehrotra
- Department of Pediatric and Preventive Dentistry, D.Y. Patil University School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Rajmohan Y Shetty
- Department of Pediatric and Preventive Dentistry, A. B. Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Jayaprakasha Shetty
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte University (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - B Mohana Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte University (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - A Veena Shetty
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte University (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Shraddha Shetty
- Department of Rasashastra and Bhaishajya Kalpana, Muniyal Institute of Ayurveda Medical Sciences, Manipal, Karnataka, India
| | - Rashmi N Shetty
- Department of Pediatric and Preventive Dentistry, A J Institute of Dental Sciences, Kuntikana, Mangalore, Karnataka, India
| |
Collapse
|
7
|
Sikder MM. Ayurvedic Medicine: A Traditional Medical System and Its Heavy Metal Poisoning. Chonnam Med J 2024; 60:97-104. [PMID: 38841605 PMCID: PMC11148304 DOI: 10.4068/cmj.2024.60.2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024] Open
Abstract
Ayurveda is one of the oldest and most widely practiced traditional medical systems in the world. The ancient knowledge in this traditional medical system has yet to be fully explored. The interaction of rich knowledge from various traditional systems of medicine can open new pathways in the herbal drug discovery process. Apart from other hurdles in discovering plant-based medicines, the lack of knowledge of the differences and similarities between the theoretical doctrines of these systems is the greatest impediment to their convergence. Rasashastra is an Ayurvedic medicine section that deals with formulations that include minerals/metals, particularly Parad (mercury). According to the Ayurvedic Formulary of India, the most widely used heavy metals are mercury, arsenic, and lead. However, contemporary scientists are concerned about the use of heavy metals in Ayurvedic preparation. In this review article, we will discuss Ayurvedic medicine and the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Mohammad Mamun Sikder
- Department of Biochemistry, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Philips CA, Theruvath AH. A comprehensive review on the hepatotoxicity of herbs used in the Indian (Ayush) systems of alternative medicine. Medicine (Baltimore) 2024; 103:e37903. [PMID: 38640296 PMCID: PMC11029936 DOI: 10.1097/md.0000000000037903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
Complementary and alternative medicine-related liver injuries are increasing globally. Alternative medicine, as an inclusive healthcare practice, is widely accepted in developing and underdeveloped countries. In this context, the traditional systems of medicine in India have been at the forefront, catering to the preventive and therapeutic spectrum in the absence of conclusive evidence for benefits and lack of data on safety. Contrary to popular belief, it is evident that apart from adverse events caused by contamination and adulteration of alternative medicines, certain commonly used herbal components have inherent hepatotoxicity. This narrative review updates our current understanding and increasing publications on the liver toxicity potential of commonly used herbs in traditional Indian systems of medicine (Ayush), such as Tinospora cordifolia (Willd.) Hook.f. & Thomson (Giloy/Guduchi), Withania somnifera (L.) Dunal (Ashwagandha), Curcuma longa L. (Turmeric), and Psoralea corylifolia L. (Bakuchi/Babchi). This review also highlights the importance of the upcoming liver toxicity profiles associated with other traditional herbs used as dietary supplements, such as Centella asiatica (L.) Urb., Garcinia cambogia Desr., Cassia angustifolia Vahl (Indian senna), and Morinda citrofolia L. (Noni fruit). Fortunately, most reported liver injuries due to these herbs are self-limiting, but can lead to progressive liver dysfunction, leading to acute liver failure or acute chronic liver failure with a high mortality rate. This review also aims to provide adequate knowledge regarding herbalism in traditional practices, pertinent for medical doctors to diagnose, treat, and prevent avoidable liver disease burdens within communities, and improve public health and education.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, India
- Department of Clinical Research, Division of Complementary and Alternative Medicine and the Liver, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, India
| | - Arif Hussain Theruvath
- Department of Clinical Research, Division of Complementary and Alternative Medicine and the Liver, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, India
| |
Collapse
|
9
|
Gao L, Wang S, Zou D, Fan X, Guo P, Du H, Zhao W, Mao Q, Li H, Ma M, Rennenberg H. Physiological responses of low- and high-cadmium accumulating Robinia pseudoacacia-rhizobium symbioses to cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123456. [PMID: 38307241 DOI: 10.1016/j.envpol.2024.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.
Collapse
Affiliation(s)
- Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Dongchen Zou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Xu Fan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Wancang Zhao
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
10
|
Li Z, Chen L, Deng J, Zhang J, Qiao C, Yang M, Xu G, Luo X, Huo D, Hou C. Eu-MOF based fluorescence probe for ratiometric and visualization detection of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123367. [PMID: 37714107 DOI: 10.1016/j.saa.2023.123367] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Water contamination caused by heavy metals represents an urgent global issue. Cu2+, a potential trace heavy metal pollutant, can accumulate in the human body through the food chain, leading to excessive levels that give rise to diverse health complications. Hence, in this investigation, a novel and efficacious fluorescent probe named Eu-BTB was developed for the detection of Cu2+, employing 1,3,5-triphenyl(4-carboxyphenyl) (H3BTB) as the ligand and Eu3+ as the metallic framework. The probe demonstrates exceptional fluorescence characteristics. The interaction between the probe ligand BTB and Eu3+ triggers an antenna effect, heightening the emission efficiency of Eu3+ while preserving its intrinsic emission. The introduction of Cu2+ competes with BTB for binding, thus quelling the antenna effect and inducing a fluorescence alteration. Within the concentration range of 0.05-10 μM, the fluorescence intensity-to-Cu2+ concentration ratio exhibits a robust linear correlation, with a remarkably low detection limit of 10 nM and a rapid response time of 3 min. The fluorescent probe has been effectively deployed for the detection of copper ions in water across diverse environmental conditions, with the obtained outcomes being validated via the conventional approach of inductively coupled plasma mass spectrometry (ICP-MS). The Eu-BTB probe showcases the advantages of simplicity, swiftness, and broad applicability, thus affirming its potential for the prompt and accurate detection of Cu2+ in diverse environmental water samples.
Collapse
Affiliation(s)
- Zhihua Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Lin Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jiaxi Deng
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jing Zhang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
11
|
Aksoy GK, Koyun M, Çomak E, Akman S. Severe anemia and massive proteinuria in a boy with diabetes mellitus: Answers. Pediatr Nephrol 2023; 38:2997-2999. [PMID: 37084136 DOI: 10.1007/s00467-023-05972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Gülşah Kaya Aksoy
- Department of Pediatric Nephrology, Faculty of Medicine, Akdeniz University, Antalya, 07100, Turkey.
| | - Mustafa Koyun
- Department of Pediatric Nephrology, Faculty of Medicine, Akdeniz University, Antalya, 07100, Turkey
| | - Elif Çomak
- Department of Pediatric Nephrology, Faculty of Medicine, Akdeniz University, Antalya, 07100, Turkey
| | - Sema Akman
- Department of Pediatric Nephrology, Faculty of Medicine, Akdeniz University, Antalya, 07100, Turkey
| |
Collapse
|
12
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|