1
|
Pino JS, Alvarado PN, Larrea AM, Rojas W, Gomez-Lopera N. Analysis of cytotoxicity and genotoxicity of diesel exhaust PM2.5 generated from diesel and dual natural gas-diesel engines. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104638. [PMID: 39765323 DOI: 10.1016/j.etap.2025.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Diesel exhaust particles (DEPs) are atmospheric pollutants associated with adverse health effects. In response to their impact, natural gas (NG) has emerged as a promising alternative fuel due to its cleaner combustion. Although the cytotoxicity and genotoxicity of DEPs from diesel or NG engines have been extensively studied, the impact of dual natural gas-diesel systems remains unexplored. This study evaluated the toxicity of DEPs (PM2.5) emitted by an engine in diesel mode and dual natural gas-diesel mode on cellular parameters such as viability, apoptosis, oxidative stress, and DNA damage. The results showed that diesel DEPs reduced cell viability by up to 31 %, compared to a 19.2 % reduction with dual-mode DEPs. Apoptosis induction was also higher with diesel DEPs, with a 7 % increase compared to the dual mode. While dual-mode DEPs increased the production of reactive oxygen species (ROS) without causing DNA damage, diesel DEPs generated high ROS levels and measurable DNA damage. These differences could be attributed to the physicochemical characteristics of each mode, as diesel DEPs contained higher concentrations of polycyclic aromatic hydrocarbons (PAHs). This study addresses a research gap by quantifying the health effects of emissions from dual-fuel engines and highlights the potential of these systems to reduce DEP-induced toxicity.
Collapse
Affiliation(s)
- Juan Sebastian Pino
- Facultad de Ciencias Exactas y Naturales. Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Pedro N Alvarado
- Facultad de Ingenierías. Grupo de Investigación Materiales Avanzados y Energía, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Ana Maria Larrea
- Facultad de Ciencias Exactas y Naturales. Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Winston Rojas
- Facultad de Ciencias Exactas y Naturales. Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Gomez-Lopera
- Facultad de Medicina. Grupo de Genética Médica, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
2
|
Mendoza C, Arias S, Botero ML, Agudelo JR. Hazardous gas emissions from drop-in biofuels: mutagenicity, cytotoxicity, and unregulated pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136696. [PMID: 39616848 DOI: 10.1016/j.jhazmat.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
This study investigates cancer-related mutations (TA98 and YG5185 strains/Ames test), cell death (human A549 cell line/MTT assay) and unregulated pollutants (16 PAH, 13 carbonyls) from the gas exhaust emissions from a last-mile delivery vehicle following the WLTC driving cycle, operating with hydrotreated vegetable oil and biodiesel. Both biofuels were used pure and blended 20 % by volume with diesel fuel. Gas phase samples were collected using XAD-2 Amberlite® resin. Total carbonyl emission factors for the different fuels ranged from 9.4 ± 0.4 (HVO100) to 14.8 ± 1.6 mg/km (B20), while PAH emission factors ranged from 1.8 ± 0.5 (B100) to 4.3 ± 0.9 mg/km (HVO20). The ester group in biodiesel demonstrated a significant impact on increasing carbonyl emissions. All fuels were cytotoxic at the highest concentration of exhaust gases, causing more than 30 % cell death in human cell line A549 (HVO100 ≈ HVO20 > B100 ≈ B20 > ULSD). No significant correlation was found between cytotoxicity and most of PAH and carbonyls. A strong correlation between PAH and mutagenicity (Pearson correlation coefficient higher than 0.6 for PAH with 3 or more rings) was observed with strain YG5185, particularly when using the metabolic activator. These results indicate that the exhaust gases from the tested biofuels pose potential health risks, particularly in chronic exposure scenarios.
Collapse
Affiliation(s)
- Carolina Mendoza
- Grupo de Manejo Eficiente de la energía GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvana Arias
- Grupo de Investigación Ingeniería para la Sostenibilidad, Energía y Cambio Climático ISEC², Universidad EAFIT, Carrera 49, Calle 7 Sur #50, Medellín, Colombia
| | - Maria L Botero
- Grupo de Investigación Ingeniería para la Sostenibilidad, Energía y Cambio Climático ISEC², Universidad EAFIT, Carrera 49, Calle 7 Sur #50, Medellín, Colombia
| | - John R Agudelo
- Grupo de Manejo Eficiente de la energía GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
3
|
Vitucci ECM, Carberry CK, Payton A, Herring LE, Mordant AL, Kim YH, Gilmour MI, McCullough SD, Rager JE. Wildfire-relevant woodsmoke and extracellular vesicles (EVs): Alterations in EV proteomic signatures involved in extracellular matrix degradation and tissue injury in airway organotypic models. ENVIRONMENTAL RESEARCH 2025; 264:120395. [PMID: 39571711 DOI: 10.1016/j.envres.2024.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Wildfires adversely impact air quality and public health worldwide. Exposures to wildfire smoke are linked to adverse health outcomes, including cardiopulmonary diseases. Critical research gaps remain surrounding the underlying biological pathways leading to wildfire-induced health effects. The regulation of intercellular communication and downstream toxicity driven by extracellular vesicles (EVs) is an important, understudied biological mechanism. This study investigated EVs following a wildfire smoke-relevant in vitro exposure. We hypothesized that woodsmoke (WS) would alter the proteomic content of EVs secreted in organotypic in vitro airway models. Exposures were carried out using a tri-culture model of alveolar epithelial cells, fibroblasts, and endothelial cells and a simplified co-culture model of alveolar epithelial cells and fibroblasts to inform responses across different cell populations. Epithelial cells were exposed to WS condensate and EVs were isolated from basolateral conditioned medium following 24 h exposure. WS exposure did not influence EV particle characteristics, and it moderately increased EV count. Exposure caused the differential loading of 25 and 35 proteins within EVs collected from the tri- and co-culture model, respectively. EV proteins involved in extracellular matrix degradation and wound healing were consistently modulated across both models. However, distinct proteins involved in the wound healing pathway were altered between models, suggesting unique but concerted efforts across cell types to communicate in response to injury. These findings demonstrate that a wildfire-relevant exposure alters the EV proteome and suggest an impact on EV-mediated intercellular communication. Overall, results demonstrate the viability of organotypic approaches in evaluating EVs to investigate exposure-induced biomarkers and underlying mechanisms. Findings also highlight the impact of differences in the biological complexity of in vitro models used to evaluate the effects of inhaled toxicants.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA; Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shaun D McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Exposure and Protection Group, Technology Advancement and Commercialization Unit, Research Triangle Institute International, Durham, NC 27709, USA; Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
LaFollette MR, Baran SW, Curley JL, Dickinson AM, Frazier T, Hobi N, Huang MI, Hutter V, Maisonneuve BGC, Marsh GA, Mahendran R, Müller I, Qian X, Singh D, Thelin WR, Vukasinovic J, Candarlioglu PL, Roper CS. The Use of MPS in Three Rs and Regulatory Applications: Perspectives From Developers on Stakeholder Responsibilities. Altern Lab Anim 2025; 53:26-41. [PMID: 39772941 DOI: 10.1177/02611929241310566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Increasing the use of microphysiological systems (MPS) in Three Rs and regulatory applications is a nuanced but important goal, which would also help increase their scientific impact. There are three distinct and important stakeholder groups that each play a unique role in expediting the use of MPS for regulatory purpose - namely, commercial MPS developers, end-users and regulators. Additionally, non-profit organisations, such as the 3Rs Collaborative (3RsC), can help coordinate these efforts. This paper introduces the MPS Initiative, as organised by the 3RsC, and clarifies the potential for MPS to benefit all Three Rs. Key differences in the use of MPS-derived data for regulatory evidence of efficacy versus safety, and for various other contexts of use, are discussed. Finally, the results are presented from a survey of primarily commercial MPS developers, that collected their views on the realistic responsibilities of each stakeholder group. The results also highlight their key perspectives on the use of MPS, in the context of Three Rs and regulatory applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Nina Hobi
- AlveoliX AG Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | | | | | | | | | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Haber LT, Bradley MA, Buerger AN, Behrsing H, Burla S, Clapp PW, Dotson S, Fisher C, Genco KR, Kruszewski FH, McCullough SD, Page KE, Patel V, Pechacek N, Roper C, Sharma M, Jarabek AM. New approach methodologies (NAMs) for the in vitro assessment of cleaning products for respiratory irritation: workshop report. FRONTIERS IN TOXICOLOGY 2024; 6:1431790. [PMID: 39439531 PMCID: PMC11493779 DOI: 10.3389/ftox.2024.1431790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
The use of in vitro new approach methodologies (NAMs) to assess respiratory irritation depends on several factors, including the specifics of exposure methods and cell/tissue-based test systems. This topic was examined in the context of human health risk assessment for cleaning products at a 1-day public workshop held on 2 March 2023, organized by the American Cleaning Institute® (ACI). The goals of this workshop were to (1) review in vitro NAMs for evaluation of respiratory irritation, (2) examine different perspectives on current challenges and suggested solutions, and (3) publish a manuscript of the proceedings. Targeted sessions focused on exposure methods, in vitro cell/tissue test systems, and application to human health risk assessment. The importance of characterization of assays and development of reporting standards was noted throughout the workshop. The exposure methods session emphasized that the appropriate exposure system design depends on the purpose of the assessment. This is particularly important given the many dosimetry and technical considerations affecting relevance and translation of results to human exposure scenarios. Discussion in the in vitro cell/tissue test systems session focused on the wide variety of cell systems with varying suitability for evaluating key mechanistic steps, such as molecular initiating events (MIEs) and key events (KEs) likely present in any putative respiratory irritation adverse outcome pathway (AOP). This suggests the opportunity to further develop guidance around in vitro cell/tissue test system endpoint selection, assay design, characterization and validation, and analytics that provide information about a given assay's utility. The session on applications for human health protection emphasized using mechanistic understanding to inform the choice of test systems and integration of NAMs-derived data with other data sources (e.g., physicochemical properties, exposure information, and existing in vivo data) as the basis for in vitro to in vivo extrapolation. In addition, this group noted a need to develop procedures to align NAMs-based points of departure (PODs) and uncertainty factor selection with current human health risk assessment methods, together with consideration of elements unique to in vitro data. Current approaches are described and priorities for future characterization of in vitro NAMs to assess respiratory irritation are noted.
Collapse
Affiliation(s)
- Lynne T. Haber
- Risk Science Center, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark A. Bradley
- Risk Science Center, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | | | - Holger Behrsing
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, United States
| | | | - Phillip W. Clapp
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Scott Dotson
- Insight Exposure and Risk Sciences Group, Cincinnati, OH, United States
| | | | | | | | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Chapel Hill, NC, United States
| | | | - Vivek Patel
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, United States
| | | | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, United Kingdom
| | - Monita Sharma
- PETA Science Consortium International e.V, Stuttgart, Germany
| | - Annie M. Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
7
|
Vitucci ECM, Simmons AE, Martin EM, McCullough SD. Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure. Part Fibre Toxicol 2024; 21:15. [PMID: 38468337 PMCID: PMC10926573 DOI: 10.1186/s12989-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Alysha E Simmons
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shaun D McCullough
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA.
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Engels SM, Kamat P, Pafilis GS, Li Y, Agrawal A, Haller DJ, Phillip JM, Contreras LM. Particulate matter composition drives differential molecular and morphological responses in lung epithelial cells. PNAS NEXUS 2024; 3:pgad415. [PMID: 38156290 PMCID: PMC10754159 DOI: 10.1093/pnasnexus/pgad415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
Particulate matter (PM) is a ubiquitous component of air pollution that is epidemiologically linked to human pulmonary diseases. PM chemical composition varies widely, and the development of high-throughput experimental techniques enables direct profiling of cellular effects using compositionally unique PM mixtures. Here, we show that in a human bronchial epithelial cell model, exposure to three chemically distinct PM mixtures drive unique cell viability patterns, transcriptional remodeling, and the emergence of distinct morphological subtypes. Specifically, PM mixtures modulate cell viability, DNA damage responses, and induce the remodeling of gene expression associated with cell morphology, extracellular matrix organization, and cellular motility. Profiling cellular responses showed that cell morphologies change in a PM composition-dependent manner. Finally, we observed that PM mixtures with higher cadmium content induced increased DNA damage and drove redistribution among morphological subtypes. Our results demonstrate that quantitative measurement of individual cellular morphologies provides a robust, high-throughput approach to gauge the effects of environmental stressors on biological systems and score cellular susceptibilities to pollution.
Collapse
Affiliation(s)
- Sean M Engels
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Pratik Kamat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - G Stavros Pafilis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Yukang Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anshika Agrawal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel J Haller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Singh N, Nagar E, Gautam A, Kapoor H, Arora N. Resveratrol mitigates miR-212-3p mediated progression of diesel exhaust-induced pulmonary fibrosis by regulating SIRT1/FoxO3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166063. [PMID: 37544448 DOI: 10.1016/j.scitotenv.2023.166063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Diesel exhaust (DE) exposure contributes to the progression of chronic respiratory diseases and is associated with dysregulation of microRNA expression. The present study aims to investigate the involvement of miRNAs and target genes in DE-induced lung fibrosis. METHODS C57BL/6 mice were divided into three groups. Group 1 mice were exposed to filtered air (Control). Group 2 mice were exposed to DE for 30 min per day, 5 days per week, for 8 weeks (DE). Group 3 mice received DE exposure along with resveratrol on alternate days for the last 2 weeks (DE + RES). Mice were sacrificed to isolate RNA from lung tissue for miRNA microarray profiling. Bronchoalveolar lavage fluid and lung tissues were collected for cell count and biochemical analysis. RESULTS DE exposure resulted in differential expression of 28 miRNAs with fold change >2 (p < 0.05). The upregulated miR-212-3p was selected for further analysis. Consensus analysis revealed enrichment of SIRT1 in the FoxO pathway, along with a co-annotation of reduced body weight (p < 0.05). A549 cells transfected with a miR-212-3p inhibitor showed a dose-dependent increase in SIRT1 expression, indicating SIRT1 as a direct target. Treatment with resveratrol restored SIRT1 and miR-212-3p expression and led to a reduction in inflammatory cytokines (p < 0.05). The modulation of SIRT1 correlated negatively with macrophage infiltration, confirming its role in regulating cellular infiltration and lung inflammation. Fibronectin, alpha-SMA, and collagen levels were significantly decreased in DE + RES compared to DE group suggesting modulation of cellular functions and resolution of lung fibrosis. Furthermore, a significant decrease in FoxO3a and TGF-β gene expressions was observed upon resveratrol administration thereby downregulating pro-fibrotic pathway. CONCLUSIONS The present study demonstrates resveratrol treatment stabilizes SIRT1 gene expression by attenuating miR-212-3p in DE-exposed mice, leading to downregulation of TGF-β and FoxO3a expressions. The study highlights the therapeutic role of resveratrol in the treatment of DE-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Naresh Singh
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Nagar
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshu Gautam
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Vitucci EC, Carberry CK, Payton A, Herring LE, Mordant AL, McCullough SD, Rager JE. Characterizing the extracellular vesicle proteomic landscape of the human airway using in vitro organotypic multi-cellular models. iScience 2023; 26:108162. [PMID: 37920665 PMCID: PMC10618692 DOI: 10.1016/j.isci.2023.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Extracellular vesicle (EV)-mediated intercellular communication significantly influences pulmonary cell health and disease, yet in vitro methods to investigate these mechanisms are limited. We hypothesize that organotypic models of the airway can be leveraged to investigate EV-mediated intercellular signaling, focusing on EV proteomic content as a case study. Two in vitro airway culture models were evaluated by mass spectrometry-based proteomics analysis: a tri-culture model consisting of alveolar epithelial, fibroblast, and lung microvascular endothelial cells and a co-culture model of alveolar epithelial and fibroblasts. EVs isolated from the tri-culture model were enriched with EV proteins regulating RNA-to-protein translation. EVs isolated from the co-culture model were enriched with EV biogenesis and extracellular matrix signaling proteins. These model-specific differences suggest that different pulmonary cell types uniquely affect EV composition and the biological pathways influenced by the EV proteome in recipient cells. These findings can inform future studies surrounding EV-related pulmonary disease pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Eva C.M. Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K. Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L. Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shaun D. McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA
- Exposure and Protection, RTI International, Durham, NC, USA
| | - Julia E. Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Singh N, Nagar E, Arora N. Diesel exhaust exposure impairs recovery of lung epithelial and cellular damage in murine model. Mol Immunol 2023; 158:1-9. [PMID: 37254294 DOI: 10.1016/j.molimm.2023.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Studies have investigated the relationship between diesel exhaust (DE) exposure and lung health, highlighting the potential for DE to induce pulmonary inflammation and oxidative stress. However, the resolution of inflammation upon withdrawal of DE exposure needs further investigation. Therefore, resolution of diesel exhaust-induced lung damage was studied in the murine model. Mice (6 weeks) were divided into three groups. Group 1 (control) mice were exposed to filtered air, Group 2 (DE) mice were exposed to DE (5.1 ± 0.7 mg/m3) & Group 3 (DE-FA) mice were exposed to DE followed by filtered air exposure. Airway hyper-responsiveness was recorded after 24 h of the last exposure. BALF and lung samples were collected for cytokine estimation, immunobiological assays, and western blot analysis. DE exposure showed an increase in lung resistance thereby causing alteration in lung function parameters (p < 0.05) which was restored in the DE-FA group. BALF analysis showed a significant increase in total cell count and protein content in DE with no resolution in DE-FA groups (p < 0.05). Lung histology showed no reduction in the bronchiolar thickness and damage in the DE-FA group suggesting irreversible lung damage (p < 0.05). The significant increase in inflammatory cytokine levels, and collagen deposition showed persistent inflammatory phase and lung damage in the DE-FA group(p < 0.05). ZO-1 was significantly decreased in both test groups indicating disintegrated lung epithelium where in claudin-5 expression showed increased lung permeability. A significant increase in neutrophil elastase activity and decreased expression of, Elafin, resulted in lung epithelial damage in the DE-FA group. Lung injury marker alpha1-antitrypsin was increased in DE-FA groups indicating an immune defense mechanism against neutrophil elastase. The study showed that DE exposure causes persistent lung damage via neutrophil elastase-associated disruption of the epithelial barrier integrity and membrane dysfunction.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Nagar
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Engels SM, Kamat P, Pafilis GS, Li Y, Agrawal A, Haller DJ, Phillip JM, Contreras LM. Particulate matter composition drives differential molecular and morphological responses in lung epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541204. [PMID: 37292596 PMCID: PMC10245696 DOI: 10.1101/2023.05.17.541204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) is a ubiquitous component of indoor and outdoor air pollution that is epidemiologically linked to many human pulmonary diseases. PM has many emission sources, making it challenging to understand the biological effects of exposure due to the high variance in chemical composition. However, the effects of compositionally unique particulate matter mixtures on cells have not been analyzed using both biophysical and biomolecular approaches. Here, we show that in a human bronchial epithelial cell model (BEAS-2B), exposure to three chemically distinct PM mixtures drives unique cell viability patterns, transcriptional remodeling, and the emergence of distinct morphological subtypes. Specifically, PM mixtures modulate cell viability and DNA damage responses and induce the remodeling of gene expression associated with cell morphology, extracellular matrix organization and structure, and cellular motility. Profiling cellular responses showed that cell morphologies change in a PM composition-dependent manner. Lastly, we observed that particulate matter mixtures with high contents of heavy metals, such as cadmium and lead, induced larger drops in viability, increased DNA damage, and drove a redistribution among morphological subtypes. Our results demonstrate that quantitative measurement of cellular morphology provides a robust approach to gauge the effects of environmental stressors on biological systems and determine cellular susceptibilities to pollution.
Collapse
Affiliation(s)
- Sean M. Engels
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, 78712
| | - Pratik Kamat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - G. Stavros Pafilis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, 78712
| | - Yukang Li
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Anshika Agrawal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Daniel J. Haller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27606
| | - Jude M. Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, 21231
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Moreau M, Fisher J, Andersen ME, Barnwell A, Corzine S, Ranade A, McMullen PD, Slattery SD. NAM-based Prediction of Point-of-contact Toxicity in the Lung: A Case Example With 1,3-dichloropropene. Toxicology 2022; 481:153340. [PMID: 36183849 DOI: 10.1016/j.tox.2022.153340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/13/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24hours after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.
Collapse
Affiliation(s)
- Marjory Moreau
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Jeff Fisher
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Asayah Barnwell
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Sage Corzine
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Aarati Ranade
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Patrick D McMullen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Scott D Slattery
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA.
| |
Collapse
|
14
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155016. [PMID: 35381248 DOI: 10.1016/j.scitotenv.2022.155016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Biodiesel is created through the transesterification of fats/oils and its usage is increasing worldwide as global warming concerns increase. Biodiesel fuel properties change depending on the feedstock used to create it. The aim of this study was to assess the different toxicological properties of biodiesel exhausts created from different feedstocks using a complex 3D air-liquid interface (ALI) model that mimics the human airway. Primary human airway epithelial cells were grown at ALI until full differentiation was achieved. Cells were then exposed to 1/20 diluted exhaust from an engine running on Diesel (ULSD), pure or 20% blended Canola biodiesel and pure or 20% blended Tallow biodiesel, or Air for control. Exhaust was analysed for various physio-chemical properties and 24-h after exposure, ALI cultures were assessed for permeability, protein release and mediator response. All measured exhaust components were within industry safety standards. ULSD contained the highest concentrations of various combustion gases. We found no differences in terms of particle characteristics for any of the tested exhausts, likely due to the high dilution used. Exposure to Tallow B100 and B20 induced increased permeability in the ALI culture and the greatest increase in mediator response in both the apical and basal compartments. In contrast, Canola B100 and B20 did not impact permeability and induced the smallest mediator response. All exhausts but Canola B20 induced increased protein release, indicating epithelial damage. Despite the concentrations of all exhausts used in this study meeting industry safety regulations, we found significant toxic effects. Tallow biodiesel was found to be the most toxic of the tested fuels and Canola the least, both for blended and pure biodiesel fuels. This suggests that the feedstock biodiesel is made from is crucial for the resulting health effects of exhaust exposure, even when not comprising the majority of fuel composition.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
15
|
Bowers EC, Martin EM, Jarabek AM, Morgan DS, Smith HJ, Dailey LA, Aungst ER, Diaz-Sanchez D, McCullough SD. Ozone Responsive Gene Expression as a Model for Describing Repeat Exposure Response Trajectories and Interindividual Toxicodynamic Variability In Vitro. Toxicol Sci 2021; 185:38-49. [PMID: 34718810 PMCID: PMC8714356 DOI: 10.1093/toxsci/kfab128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inhaled chemical/material exposures are a ubiquitous part of daily life around the world. There is a need to evaluate potential adverse effects of both single and repeat exposures for thousands of chemicals and an exponentially larger number of exposure scenarios (eg, repeated exposures). Meeting this challenge will require the development and use of in vitro new approach methodologies (NAMs); however, 2 major challenges face the deployment of NAMs in risk assessment are (1) characterizing what apical outcome(s) acute assays inform regarding the trajectory to long-term events, especially under repeated exposure conditions, and (2) capturing interindividual variability as it informs considerations of potentially susceptible and/or vulnerable populations. To address these questions, we used a primary human bronchial epithelial cell air-liquid interface model exposed to ozone (O3), a model oxidant and ubiquitous environmental chemical. Here we report that O3-induced proinflammatory gene induction is attenuated in repeated exposures thus demonstrating that single acute exposure outcomes do not reliably represent the trajectory of responses after repeated or chronic exposures. Further, we observed 10.1-, 10.3-, 14.2-, and 7-fold ranges of induction of interleukin (IL)-8, IL-6, heme oxygenase 1, and cyclooxygenase 2 transcripts, respectively, within in our population of 25 unique donors. Calculation of sample size estimates that indicated that 27, 24, 299, and 13 donors would be required to significantly power similar in vitro studies to identify a 2-fold change in IL-8, IL-6, HMOX1, and cyclooxygenase 2 transcript induction, respectively, to inform considerations of the uncertainty factors to reflect variability within the human population for in vitro studies.
Collapse
Affiliation(s)
- Emma C Bowers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Elizabeth M Martin
- Department of Health and Human Services, Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
- Department of Health and Human Services, Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Annie M Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - David S Morgan
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27599, USA
| | - Hannah J Smith
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lisa A Dailey
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27599, USA
| | - Emily R Aungst
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27599, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27599, USA
| | - Shaun D McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Chu S, Li X, Sun N, He F, Cui Z, Li Y, Liu R. The combination of ultrafine carbon black and lead provokes cytotoxicity and apoptosis in mice lung fibroblasts through oxidative stress-activated mitochondrial pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149420. [PMID: 34371411 DOI: 10.1016/j.scitotenv.2021.149420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Ultrafine particulates (UFPs) are considered one of the most hazardous of all air pollutants, which can be directly inhaled into the human body and cause direct damage to lung tissues. Lung fibroblasts (LF) play an important role in the structure and function of lung and there are few studies on primary cells at present. So, the article focuses on LF as the research objective and ultrafine carbon black (UFCB) and Pb-UFCB (loaded with lead) as a representative of UFPs to study the effect on LF. The results showed that UFCB and Pb-UFCB inhibited LF proliferation due to cell cycle arrested in the S phase, and induced apoptosis. Additionally, UFCB or Pb-UFCB could induce oxidative stress manifested as the increase of intracellular reactive oxygen species. The redox imbalance was further confirmed by measuring the changes of related enzymes, including the activity of superoxide dismutase and catalase and the level of reduced glutathione and malondialdehyde in cells. Moreover, the elevated lactate dehydrogenase in the culture medium indicated that cell membrane had been injured. And mitochondrial function was impaired by the imbalance of ATP synthesis and hydrolysis. In summary, both induced oxidative stress, which is the main driving force of LF early apoptosis, disruption of cell membrane integrity and mitochondrial function. Here, we provide a meaningful and challenging subject to explore the toxic effect and mechanism between UFPs and lung tissue at cellular levels, and theoretical basics for the possible changes of lung tissue function in vivo.
Collapse
Affiliation(s)
- Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
17
|
Guttenberg MA, Vose AT, Tighe RM. Role of Innate Immune System in Environmental Lung Diseases. Curr Allergy Asthma Rep 2021; 21:34. [PMID: 33970346 PMCID: PMC8311569 DOI: 10.1007/s11882-021-01011-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.
Collapse
Affiliation(s)
| | | | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC,Corresponding Author: Robert M Tighe, MD, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Box 2969, Durham, North Carolina 27710, Telephone: 919-684-4894, Fax: 919-684-5266,
| |
Collapse
|