1
|
Achten C, Marin-Enriquez O, Behrends B, Kupich S, Lutter A, Korth R, Andersson JT. Polycyclic aromatic compounds including non-target and 71 target polycyclic aromatic hydrocarbons in scrubber discharge water and their environmental impact. MARINE POLLUTION BULLETIN 2024; 208:116790. [PMID: 39270562 DOI: 10.1016/j.marpolbul.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/15/2024]
Abstract
Increasing use of scrubbers on vessels for reduction of SOx emissions has led to environmental concerns due to discharge of partly persistent and toxic substances such as polycyclic aromatic compounds (PAC) into the sea. A comprehensive analysis of the dissolved and particulate phases of the discharge water from open and closed loop operations on four ships was performed. 71 PAC in the discharge waters varied in concentration and were associated with those of the fuels used, as they mainly originate in unburnt fuel. Closed loop discharge water showed higher PAC concentrations, especially of HMW PAC, which partly explains the larger toxic effects reported for this discharge. Alkylnaphthalenes and -phenanthrenes dominated in dissolved and particulate fractions, respectively. 14 NSO-PAC concentrations were relatively low. Alkylated derivatives of 4H-cyclopenta[4,5-def]phenanthrene and/or phenylnaphthalene were for the first time tentatively identified using GC-APLI-MS. The use of low-PAC fuels could significantly reduce PAC ship emissions.
Collapse
Affiliation(s)
- Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149 Münster, Germany.
| | - Octavio Marin-Enriquez
- Federal Maritime and Hydrographic Agency (BSH), Bernhard-Nocht-Straße 78, 20359 Hamburg, Germany
| | | | - Sandra Kupich
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149 Münster, Germany
| | - Andreas Lutter
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149 Münster, Germany
| | - Richard Korth
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149 Münster, Germany
| | - Jan T Andersson
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
2
|
Ford LC, Lin HC, Zhou YH, Wright FA, Gombar VK, Sedykh A, Shah RR, Chiu WA, Rusyn I. Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy. Hum Genomics 2024; 18:92. [PMID: 39218963 PMCID: PMC11368000 DOI: 10.1186/s40246-024-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
3
|
Doris Tsai HH, Ford LC, Burnett SD, Dickey AN, Wright FA, Chiu WA, Rusyn I. Informing Hazard Identification and Risk Characterization of Environmental Chemicals by Combining Transcriptomic and Functional Data from Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Chem Res Toxicol 2024; 37:1428-1444. [PMID: 39046974 PMCID: PMC11691792 DOI: 10.1021/acs.chemrestox.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Environmental chemicals may contribute to the global burden of cardiovascular disease, but experimental data are lacking to determine which substances pose the greatest risk. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a high-throughput cardiotoxicity model that is widely used to test drugs and chemicals; however, most studies focus on exploring electro-physiological readouts. Gene expression data may provide additional molecular insights to be used for both mechanistic interpretation and dose-response analyses. Therefore, we hypothesized that both transcriptomic and functional data in human iPSC-derived cardiomyocytes may be used as a comprehensive screening tool to identify potential cardiotoxicity hazards and risks of the chemicals. To test this hypothesis, we performed concentration-response analysis of 464 chemicals from 12 classes, including both pharmaceuticals and nonpharmaceutical substances. Functional effects (beat frequency, QT prolongation, and asystole), cytotoxicity, and whole transcriptome response were evaluated. Points of departure were derived from phenotypic and transcriptomic data, and risk characterization was performed. Overall, 244 (53%) substances were active in at least one phenotype; as expected, pharmaceuticals with known cardiac liabilities were the most active. Positive chronotropy was the functional phenotype activated by the largest number of tested chemicals. No chemical class was particularly prone to pose a potential hazard to cardiomyocytes; a varying proportion (10-44%) of substances in each class had effects on cardiomyocytes. Transcriptomic data showed that 69 (15%) substances elicited significant gene expression changes; most perturbed pathways were highly relevant to known key characteristics of human cardiotoxicants. The bioactivity-to-exposure ratios showed that phenotypic- and transcriptomic-based POD led to similar results for risk characterization. Overall, our findings demonstrate how the integrative use of in vitro transcriptomic and phenotypic data from iPSC-derived cardiomyocytes not only offers a complementary approach for hazard and risk prioritization, but also enables mechanistic interpretation of the in vitro test results to increase confidence in decision-making.
Collapse
Affiliation(s)
- Han-Hsuan Doris Tsai
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Sarah D. Burnett
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Allison N. Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Fred A. Wright
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
4
|
de Oliveira Galvão MF, Scaramboni C, Ünlü Endirlik B, Vieira Silva A, Öberg M, Pozza SA, Watanabe T, de Oliveira Rodrigues PC, de Castro Vasconcellos P, Sadiktsis I, Dreij K. Application of an in vitro new approach methodology to determine relative cancer potency factors of air pollutants based on whole mixtures. ENVIRONMENT INTERNATIONAL 2024; 190:108942. [PMID: 39151266 DOI: 10.1016/j.envint.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Air pollution is an example of a complex environmental mixture with different biological activities, making risk assessment challenging. Current cancer risk assessment strategies that focus on individual pollutants may overlook interactions among them, potentially underestimating health risks. Therefore, a shift towards the evaluation of whole mixtures is essential for accurate risk assessment. This study presents the application of an in vitro New Approach Methodology (NAM) to estimate relative cancer potency factors of whole mixtures, with a focus on organic pollutants associated with air particulate matter (PM). Using concentration-dependent activation of the DNA damage-signaling protein checkpoint kinase 1 (pChk1) as a readout, we compared two modeling approaches, the Hill equation and the benchmark dose (BMD) method, to derive Mixture Potency Factors (MPFs). MPFs were determined for five PM2.5 samples covering sites with different land uses and our historical pChk1 data for PM10 samples and Standard Reference Materials. Our results showed a concentration-dependent increase in pChk1 by all samples and a higher potency compared to the reference compound benzo[a]pyrene. The MPFs derived from the Hill equation ranged from 128 to 9793, while those from BMD modeling ranged from 70 to 303. Despite the differences in magnitude, a consistency in the relative order of potencies was observed. Notably, PM2.5 samples from sites strongly impacted by biomass burning had the highest MPFs. Although discrepancies were observed between the two modeling approaches for whole mixture samples, relative potency factors for individual PAHs were more consistent. We conclude that differences in the shape of the concentration-response curves and how MPFs are derived explain the observed differences in model agreement for complex mixtures and individual PAHs. This research contributes to the advancement of predictive toxicology and highlights the feasibility of transitioning from assessing individual agents to whole mixture assessment for accurate cancer risk assessment and public health protection.
Collapse
Affiliation(s)
| | - Caroline Scaramboni
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, Brazil
| | - Burcu Ünlü Endirlik
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Antero Vieira Silva
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Simone Andréa Pozza
- Faculdade de Tecnologia, Universidade Estadual de Campinas (Unicamp), Limeira, Brazil
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
5
|
Ford LC, Lin HC, Tsai HHD, Zhou YH, Wright FA, Sedykh A, Shah RR, Chiu WA, Rusyn I. Hazard and risk characterization of 56 structurally diverse PFAS using a targeted battery of broad coverage assays using six human cell types. Toxicology 2024; 503:153763. [PMID: 38423244 PMCID: PMC11214689 DOI: 10.1016/j.tox.2024.153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are extensively used in commerce leading to their prevalence in the environment. Due to their chemical stability, PFAS are considered to be persistent and bioaccumulative; they are frequently detected in both the environment and humans. Because of this, PFAS as a class (composed of hundreds to thousands of chemicals) are contaminants of very high concern. Little information is available for the vast majority of PFAS, and regulatory agencies lack safety data to determine whether exposure limits or restrictions are needed. Cell-based assays are a pragmatic approach to inform decision-makers on potential health hazards; therefore, we hypothesized that a targeted battery of human in vitro assays can be used to determine whether there are structure-bioactivity relationships for PFAS, and to characterize potential risks by comparing bioactivity (points of departure) to exposure estimates. We tested 56 PFAS from 8 structure-based subclasses in concentration response (0.1-100 μM) using six human cell types selected from target organs with suggested adverse effects of PFAS - human induced pluripotent stem cell (iPSC)-derived hepatocytes, neurons, and cardiomyocytes, primary human hepatocytes, endothelial and HepG2 cells. While many compounds were without effect; certain PFAS demonstrated cell-specific activity highlighting the necessity of using a compendium of in vitro models to identify potential hazards. No class-specific groupings were evident except for some chain length- and structure-related trends. In addition, margins of exposure (MOE) were derived using empirical and predicted exposure data. Conservative MOE calculations showed that most tested PFAS had a MOE in the 1-100 range; ∼20% of PFAS had MOE<1, providing tiered priorities for further studies. Overall, we show that a compendium of human cell-based models can be used to derive bioactivity estimates for a range of PFAS, enabling comparisons with human biomonitoring data. Furthermore, we emphasize that establishing structure-bioactivity relationships may be challenging for the tested PFAS.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Menon R, Muglia LJ, Levin LH. Review on new approach methods to gain insight into the feto-maternal interface physiology. Front Med (Lausanne) 2023; 10:1304002. [PMID: 38098843 PMCID: PMC10720461 DOI: 10.3389/fmed.2023.1304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and - with continued scientific effort - may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, United States
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
7
|
Cordova AC, Dodds JN, Tsai HHD, Lloyd DT, Roman-Hubers AT, Wright FA, Chiu WA, McDonald TJ, Zhu R, Newman G, Rusyn I. Application of Ion Mobility Spectrometry-Mass Spectrometry for Compositional Characterization and Fingerprinting of a Library of Diverse Crude Oil Samples. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2336-2349. [PMID: 37530422 PMCID: PMC10592202 DOI: 10.1002/etc.5727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure characterization of crude oils, especially in time-sensitive circumstances such as spills and disasters, is a well-known analytical chemistry challenge. Gas chromatography-mass spectrometry is commonly used for "fingerprinting" and origin tracing in oil spills; however, this method is both time-consuming and lacks the resolving power to separate co-eluting compounds. Recent advances in methodologies to analyze petroleum substances using high-resolution analytical techniques have demonstrated both improved resolving power and higher throughput. One such method, ion mobility spectrometry-mass spectrometry (IMS-MS), is especially promising because it is both rapid and high-throughput, with the ability to discern among highly homologous hydrocarbon molecules. Previous applications of IMS-MS to crude oil analyses included a limited number of samples and did not provide detailed characterization of chemical constituents. We analyzed a diverse library of 195 crude oil samples using IMS-MS and applied a computational workflow to assign molecular formulas to individual features. The oils were from 12 groups based on geographical and geological origins: non-US (1 group), US onshore (3), and US Gulf of Mexico offshore (8). We hypothesized that information acquired through IMS-MS data would provide a more confident grouping and yield additional fingerprint information. Chemical composition data from IMS-MS was used for unsupervised hierarchical clustering, as well as machine learning-based supervised analysis to predict geographic and source rock categories for each sample; the latter also yielded several novel prospective biomarkers for fingerprinting of crude oils. We found that IMS-MS data have complementary advantages for fingerprinting and characterization of diverse crude oils and that proposed polycyclic aromatic hydrocarbon biomarkers can be used for rapid exposure characterization. Environ Toxicol Chem 2023;42:2336-2349. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexandra C. Cordova
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - James N. Dodds
- Department of Chemistry, UNC Chapel Hill, Chapel Hill, NC 27514, United States
| | - Han-Hsuan D. Tsai
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Dillon T. Lloyd
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Alina T. Roman-Hubers
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Fred A. Wright
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, United States
| | - Rui Zhu
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Galen Newman
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
8
|
Cordova AC, Klaren WD, Ford LC, Grimm FA, Baker ES, Zhou YH, Wright FA, Rusyn I. Integrative Chemical-Biological Grouping of Complex High Production Volume Substances from Lower Olefin Manufacturing Streams. TOXICS 2023; 11:586. [PMID: 37505552 PMCID: PMC10385386 DOI: 10.3390/toxics11070586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Human cell-based test methods can be used to evaluate potential hazards of mixtures and products of petroleum refining ("unknown or variable composition, complex reaction products, or biological materials" substances, UVCBs). Analyses of bioactivity and detailed chemical characterization of petroleum UVCBs were used separately for grouping these substances; a combination of the approaches has not been undertaken. Therefore, we used a case example of representative high production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene naphtha and resin oils categories, to determine whether existing manufacturing-based category grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while similarity in composition and bioactivity can be observed for some substances, existing categories are largely heterogeneous. Strong relationships between composition and bioactivity were observed, and individual constituents that determine these associations were identified. Overall, this study showed a promising approach that combines chemical composition and bioactivity data to better characterize the variability within manufacturing categories of petroleum UVCBs.
Collapse
Affiliation(s)
- Alexandra C Cordova
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - William D Klaren
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Tsai HHD, House JS, Wright FA, Chiu WA, Rusyn I. A tiered testing strategy based on in vitro phenotypic and transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo. Toxicol Sci 2023; 193:219-233. [PMID: 37079747 PMCID: PMC10230285 DOI: 10.1093/toxsci/kfad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Hazard evaluation of substances of "unknown or variable composition, complex reaction products and biological materials" (UVCBs) remains a major challenge in regulatory science because their chemical composition is difficult to ascertain. Petroleum substances are representative UVCBs and human cell-based data have been previously used to substantiate their groupings for regulatory submissions. We hypothesized that a combination of phenotypic and transcriptomic data could be integrated to make decisions as to selection of group-representative worst-case petroleum UVCBs for subsequent toxicity evaluation in vivo. We used data obtained from 141 substances from 16 manufacturing categories previously tested in 6 human cell types (induced pluripotent stem cell [iPSC]-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, and MCF7 and A375 cell lines). Benchmark doses for gene-substance combinations were calculated, and both transcriptomic and phenotype-derived points of departure (PODs) were obtained. Correlation analysis and machine learning were used to assess associations between phenotypic and transcriptional PODs and to determine the most informative cell types and assays, thus representing a cost-effective integrated testing strategy. We found that 2 cell types-iPSC-derived-hepatocytes and -cardiomyocytes-contributed the most informative and protective PODs and may be used to inform selection of representative petroleum UVCBs for further toxicity evaluation in vivo. Overall, although the use of new approach methodologies to prioritize UVCBs has not been widely adopted, our study proposes a tiered testing strategy based on iPSC-derived hepatocytes and cardiomyocytes to inform selection of representative worst-case petroleum UVCBs from each manufacturing category for further toxicity evaluation in vivo.
Collapse
Affiliation(s)
- Han-Hsuan Doris Tsai
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - John S House
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Fred A Wright
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
- Department of Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
10
|
Jiao H, Chen W, Li R, Bian G, Wang Q, Bai Z, Li Y, Jin D. Toxicity evaluation of polycyclic aromatic hydrocarbons (PAHs) in soils of coal chemical industry areas, North China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1889-1903. [PMID: 35731356 DOI: 10.1007/s10653-022-01306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Objectives of this study were to investigate the concentrations, distributions, toxicities, and risk assessment of 16 polycyclic aromatic hydrocarbons in surface soils surrounding a coal chemical industrial zone in the southeast of Shanxi province, China. A total of 52 topsoil samples were collected from different land-use areas: cereal agriculture, roadsides, and parkland. Results show that the total PAHs (∑16PAHs) ranged from 3.87 × 103 to 116 × 103 µg kg-1 and that the total carcinogenicity PAHs (∑BPAHs) ranged from 3.11 × 103 to 94.2 × 103 µg kg-1, with the highest concentration of ∑16PAHs noted in the RS samples, followed by PS and AS. The entire risk quotient of all PAH maximum permissible concentrations (RQ∑PAHMPCi) was greater than 1.0, and the minimum concentration entire risk quotient (RQ∑PAHNCi) of 84.3% of all samples was higher than 800. The value of the total toxicity equivalent concentration of PAH (PAHBapeq) for areas surrounding the coal chemical industrial zone was higher than the value of the standard level, and the incremental lifetime cancer risk (ILCR) far exceeds the U.S. EPA's risk standard. The toxic properties of PAHs indicated that the soils in the survey areas have a high risk to human health and the environment.
Collapse
Affiliation(s)
- Haihua Jiao
- Department of Biological Sciences and Technology, Changzhi University, Changzhi, 046011, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenyan Chen
- Shanxi Bethune Hospital, Taiyuan, 030000, China
| | - Rui Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaopeng Bian
- Department of Biological Sciences and Technology, Changzhi University, Changzhi, 046011, China
| | - Qi Wang
- Department of Biological Sciences and Technology, Changzhi University, Changzhi, 046011, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Arcega RD, Chen RJ, Chih PS, Huang YH, Chang WH, Kong TK, Lee CC, Mahmudiono T, Tsui CC, Hou WC, Hsueh HT, Chen HL. Toxicity prediction: An application of alternative testing and computational toxicology in contaminated groundwater sites in Taiwan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116982. [PMID: 36502707 DOI: 10.1016/j.jenvman.2022.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Groundwater contamination remains a global threat due to its toxic effects to humans and the environment. The remediation of contaminated groundwater sites can be costly, thus, identifying the priority areas of concern is important to reduce money spent on resources. In this study, we aimed to identify and rank the priority groundwater sites in a contaminated petrochemical district by combining alternative, non-animal approaches - chemical analysis, cell-based high throughput screening (HTS), and Toxicological Priority Index (ToxPi) computational toxicology tool. Groundwater samples collected from ten different sites in a contaminated district showed pollutant levels below the detection limit, however, hepatotoxic bioactivity was demonstrated in human hepatoma HepaRG cells. Integrating the pollutants information (i.e., pollutant characteristics and concentration data) with the bioactivity data of the groundwater samples, an evidence-based ranking of the groundwater sites for future remediation was established using ToxPi analysis. The currently presented combinatorial approach of screening groundwater sites for remediation purposes can further be refined by including relevant parameters, which can boost the utility of this approach for groundwater screening and future remediation.
Collapse
Affiliation(s)
- Rachelle D Arcega
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Chih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hsuan Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Khai Kong
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chang Lee
- Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chun-Chih Tsui
- Toxic and Chemical Substances Bureau, Environmental Protection Administration Executive Yuan, Taipei City,106, Taiwan
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
12
|
Cordova AC, Ford LC, Valdiviezo A, Roman-Hubers AT, McDonald TJ, Chiu WA, Rusyn I. Dosing Methods to Enable Cell-Based In Vitro Testing of Complex Substances: A Case Study with a PAH Mixture. TOXICS 2022; 11:19. [PMID: 36668745 PMCID: PMC9866728 DOI: 10.3390/toxics11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Cell-based testing of multi-constituent substances and mixtures for their potential adverse health effects is difficult due to their complex composition and physical-chemical characteristics. Various extraction methods are typically used to enable studies in vitro; however, a limited number of solvents are biocompatible with in vitro studies and the extracts may not fully represent the original test article's composition. While the methods for dosing with "difficult-to-test" substances in aquatic toxicity studies are well defined and widely used, they are largely unsuited for small-volume (100 microliters or less) in vitro studies with mammalian cells. Therefore, we aimed to evaluate suitability of various scaled-down dosing methods for high-throughput in vitro testing by using a mixture of polycyclic aromatic hydrocarbons (PAH). Specifically, we compared passive dosing via silicone micro-O-rings, cell culture media-accommodated fraction, and traditional solvent (dimethyl sulfoxide) extraction procedures. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to evaluate kinetics of PAH absorption to micro-O-rings, as well as recovery of PAH and the extent of protein binding in cell culture media with and without cells for each dosing method. Bioavailability of the mixture from different dosing methods was also evaluated by characterizing in vitro cytotoxicity of the PAH mixture using EA.hy926 and HepG2 human cell lines. Of the tested dosing methods, media accommodated fraction (MAF) was determined to be the most appropriate method for cell-based studies of PAH-containing complex substances and mixtures. This conclusion is based on the observation that the highest fraction of the starting materials can be delivered using media accommodated fraction approach into cell culture media and thus enable concentration-response in vitro testing.
Collapse
Affiliation(s)
- Alexandra C. Cordova
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alina T. Roman-Hubers
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Departments of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Valdiviezo A, Kato Y, Baker ES, Chiu WA, Rusyn I. Evaluation of Metabolism of a Defined Pesticide Mixture through Multiple In Vitro Liver Models. TOXICS 2022; 10:566. [PMID: 36287846 PMCID: PMC9609317 DOI: 10.3390/toxics10100566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The evaluation of exposure to multiple contaminants in a mixture presents a number of challenges. For example, the characterization of chemical metabolism in a mixture setting remains a research area with critical knowledge gaps. Studies of chemical metabolism typically utilize suspension cultures of primary human hepatocytes; however, this model is not suitable for studies of more extended exposures and donor-to-donor variability in a metabolic capacity is unavoidable. To address this issue, we utilized several in vitro models based on human-induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep) to characterize the metabolism of an equimolar (1 or 5 µM) mixture of 20 pesticides. We used iHep suspensions and 2D sandwich cultures, and a microphysiological system OrganoPlate® 2-lane 96 (MimetasTM) that also included endothelial cells and THP-1 cell-derived macrophages. When cell culture media were evaluated using gas and liquid chromatography coupled to tandem mass spectrometry methods, we found that the parent molecule concentrations diminished, consistent with metabolic activity. This effect was most pronounced in iHep suspensions with a 1 µM mixture, and was lowest in OrganoPlate® 2-lane 96 for both mixtures. Additionally, we used ion mobility spectrometry-mass spectrometry (IMS-MS) to screen for metabolite formation in these cultures. These analyses revealed the presence of five primary metabolites that allowed for a more comprehensive evaluation of chemical metabolism in vitro. These findings suggest that iHep-based suspension assays maintain higher metabolic activity compared to 2D sandwich and OrganoPlate® 2-lane 96 model. Moreover, this study illustrates that IMS-MS can characterize in vitro metabolite formation following exposure to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Erin S. Baker
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Jang S, Ford LC, Rusyn I, Chiu WA. Cumulative Risk Meets Inter-Individual Variability: Probabilistic Concentration Addition of Complex Mixture Exposures in a Population-Based Human In Vitro Model. TOXICS 2022; 10:toxics10100549. [PMID: 36287830 PMCID: PMC9611413 DOI: 10.3390/toxics10100549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 05/16/2023]
Abstract
Although humans are continuously exposed to complex chemical mixtures in the environment, it has been extremely challenging to investigate the resulting cumulative risks and impacts. Recent studies proposed the use of “new approach methods,” in particular in vitro assays, for hazard and dose−response evaluation of mixtures. We previously found, using five human cell-based assays, that concentration addition (CA), the usual default approach to calculate cumulative risk, is mostly accurate to within an order of magnitude. Here, we extend these findings to further investigate how cell-based data can be used to quantify inter-individual variability in CA. Utilizing data from testing 42 Superfund priority chemicals separately and in 8 defined mixtures in a human cell-based population-wide in vitro model, we applied CA to predict effective concentrations for cytotoxicity for each individual, for “typical” (median) and “sensitive” (first percentile) members of the population, and for the median-to-sensitive individual ratio (defined as the toxicodynamic variability factor, TDVF). We quantified the accuracy of CA with the Loewe Additivity Index (LAI). We found that LAI varies more between different mixtures than between different individuals, and that predictions of the population median are generally more accurate than predictions for the “sensitive” individual or the TDVF. Moreover, LAI values were generally <1, indicating that the mixtures were more potent than predicted by CA. Together with our previous studies, we posit that new approach methods data from human cell-based in vitro assays, including multiple phenotypes in diverse cell types and studies in a population-wide model, can fill critical data gaps in cumulative risk assessment, but more sophisticated models of in vitro mixture additivity and bioavailability may be needed. In the meantime, because simple CA models may underestimate potency by an order of magnitude or more, either whole-mixture testing in vitro or, alternatively, more stringent benchmarks of cumulative risk indices (e.g., lower hazard index) may be needed to ensure public health protection.
Collapse
Affiliation(s)
- Suji Jang
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-(979)-845-4106
| |
Collapse
|
15
|
House JS, Grimm FA, Klaren WD, Dalzell A, Kuchi S, Zhang SD, Lenz K, Boogaard PJ, Ketelslegers HB, Gant TW, Rusyn I, Wright FA. Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays. ALTEX 2022; 39:388–404. [PMID: 35288757 PMCID: PMC9344966 DOI: 10.14573/altex.2107051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - William D Klaren
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.,current address: ToxStrategies, Inc., Asheville, NC, USA
| | - Abigail Dalzell
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Srikeerthana Kuchi
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK.,current address: MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK
| | - Klaus Lenz
- SYNCOM Forschungs und Entwicklungsberatung GmbH, Ganderkesee, Germany
| | | | | | - Timothy W Gant
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
16
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
17
|
Daley MC, Mende U, Choi BR, McMullen PD, Coulombe KLK. Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 2022; 40:103-116. [PMID: 35648122 PMCID: PMC10502740 DOI: 10.14573/altex.2109131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Chen Z, Jang S, Kaihatu JM, Zhou YH, Wright FA, Chiu WA, Rusyn I. Potential Human Health Hazard of Post-Hurricane Harvey Sediments in Galveston Bay and Houston Ship Channel: A Case Study of Using In Vitro Bioactivity Data to Inform Risk Management Decisions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13378. [PMID: 34948986 PMCID: PMC8702027 DOI: 10.3390/ijerph182413378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
Natural and anthropogenic disasters may be associated with redistribution of chemical contaminants in the environment; however, current methods for assessing hazards and risks of complex mixtures are not suitable for disaster response. This study investigated the suitability of in vitro toxicity testing methods as a rapid means of identifying areas of potential human health concern. We used sediment samples (n = 46) from Galveston Bay and the Houston Ship Channel (GB/HSC) areas after hurricane Harvey, a disaster event that led to broad redistribution of chemically-contaminated sediments, including deposition of the sediment on shore due to flooding. Samples were extracted with cyclohexane and dimethyl sulfoxide and screened in a compendium of human primary or induced pluripotent stem cell (iPSC)-derived cell lines from different tissues (hepatocytes, neuronal, cardiomyocytes, and endothelial) to test for concentration-dependent effects on various functional and cytotoxicity phenotypes (n = 34). Bioactivity data were used to map areas of potential concern and the results compared to the data on concentrations of polycyclic aromatic hydrocarbons (PAHs) in the same samples. We found that setting remediation goals based on reducing bioactivity is protective of both "known" risks associated with PAHs and "unknown" risks associated with bioactivity, but the converse was not true for remediation based on PAH risks alone. Overall, we found that in vitro bioactivity can be used as a comprehensive indicator of potential hazards and is an example of a new approach method (NAM) to inform risk management decisions on site cleanup.
Collapse
Affiliation(s)
- Zunwei Chen
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| | - Suji Jang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| | - James M. Kaihatu
- Civil & Environmental Engineering and Ocean Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yi-Hui Zhou
- Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; (Y.-H.Z.); (F.A.W.)
| | - Fred A. Wright
- Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; (Y.-H.Z.); (F.A.W.)
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| |
Collapse
|
19
|
Burnett SD, Blanchette AD, Chiu WA, Rusyn I. Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. Chem Res Toxicol 2021; 34:2110-2124. [PMID: 34448577 PMCID: PMC8762671 DOI: 10.1021/acs.chemrestox.1c00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heart disease remains a significant human health burden worldwide with a significant fraction of morbidity attributable to environmental exposures. However, the extent to which the thousands of chemicals in commerce and the environment may contribute to heart disease morbidity is largely unknown, because in contrast to pharmaceuticals, environmental chemicals are seldom tested for potential cardiotoxicity. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes have become an informative in vitro model for cardiotoxicity testing of drugs with the availability of cells from multiple individuals allowing in vitro testing of population variability. In this study, we hypothesized that a panel of iPSC-derived cardiomyocytes from healthy human donors can be used to screen for the potential cardiotoxicity hazard and risk of environmental chemicals. We conducted concentration-response testing of 1029 chemicals (drugs, pesticides, flame retardants, polycyclic aromatic hydrocarbons (PAHs), plasticizers, industrial chemicals, food/flavor/fragrance agents, etc.) in iPSC-derived cardiomyocytes from 5 donors. We used kinetic calcium flux and high-content imaging to derive quantitative measures as inputs into Bayesian population concentration-response modeling of the effects of each chemical. We found that many environmental chemicals pose a hazard to human cardiomyocytes in vitro with more than half of all chemicals eliciting positive or negative chronotropic or arrhythmogenic effects. However, most of the tested environmental chemicals for which human exposure and high-throughput toxicokinetics data were available had wide margins of exposure and, thus, do not appear to pose a significant human health risk in a general population. Still, relatively narrow margins of exposure (<100) were estimated for some perfuoroalkyl substances and phthalates, raising concerns that cumulative exposures may pose a cardiotoxicity risk. Collectively, this study demonstrated the value of using a population-based human in vitro model for rapid, high-throughput hazard and risk characterization of chemicals for which little to no cardiotoxicity data are available from guideline studies in animals.
Collapse
Affiliation(s)
- Sarah D. Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Alexander D. Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| |
Collapse
|
20
|
Valdiviezo A, Luo YS, Chen Z, Chiu WA, Rusyn I. Quantitative in Vitro-to-in Vivo Extrapolation for Mixtures: A Case Study of Superfund Priority List Pesticides. Toxicol Sci 2021; 183:60-69. [PMID: 34142158 DOI: 10.1093/toxsci/kfab076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro cell-based toxicity testing methods generate large amounts of data informative for risk-based evaluations. To allow extrapolation of the quantitative outputs from cell-based tests to the equivalent exposure levels in humans, reverse toxicokinetic (RTK) modeling is used to conduct in vitro-to-in vivo extrapolation (IVIVE) from in vitro effective concentrations to in vivo oral dose equivalents. IVIVE modeling approaches for individual chemicals are well-established; however, the potential implications of chemical-to-chemical interactions in mixture settings on IVIVE remains largely unexplored. We hypothesized that chemical co-exposures could modulate both protein binding efficiency and hepatocyte clearance of the chemicals in a mixture, which would in turn affect the quantitative IVIVE toxicokinetic parameters. To test this hypothesis, we used 20 pesticides from the Agency for Toxic Substances and Disease Registry (ATSDR) Substance Priority List, both individually and as equimolar mixtures, and investigated the concentration-dependent effects of chemical interactions on in vitro toxicokinetic parameters. Plasma protein binding efficiency was determined by using ultracentrifugation, and hepatocyte clearance was estimated in suspensions of cryopreserved primary human hepatocytes. We found that for single chemicals, the protein binding efficiencies were similar at different test concentrations. In a mixture, however, both protein binding efficiency and hepatocyte clearance were affected. When IVIVE was conducted using mixture-derived toxicokinetic data, more conservative estimates of Activity-to-Exposure Ratios (AERs) were produced as compared to using data from single chemical experiments. Because humans are exposed to mixtures of chemicals, this study is significant as it demonstrates the importance of incorporating mixture-derived parameters into IVIVE for in vitro bioactivity data in order to accurately prioritize risks and facilitate science-based decision-making.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
21
|
Luo YS, Chen Z, Blanchette AD, Zhou YH, Wright FA, Baker ES, Chiu WA, Rusyn I. Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food Chem Toxicol 2021; 149:111979. [PMID: 33450301 DOI: 10.1016/j.fct.2021.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Consumption of energy drinks has been associated with adverse cardiovascular effects; however, little is known about the ingredients that may contribute to these effects. We therefore characterized the chemical profiles and in vitro effects of energy drinks and their ingredients on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, and identified the putative active ingredients using a multivariate prediction model. Energy drinks from 17 widely-available over-the-counter brands were evaluated in this study. The concentrations of six common ingredients (caffeine, taurine, riboflavin, pantothenic acid, adenine, and L-methionine) were quantified by coupling liquid chromatography with a triple quadrupole mass spectrometer for the acquisition of LC-MS/MS spectra. In addition, untargeted analyses for each beverage were performed with a platform combining LC, ion mobility spectrometry and mass spectrometry (LC-IMS-MS) measurements. Approximately 300 features were observed across samples in the untargeted studies, and of these ~100 were identified. In vitro effects of energy drinks and some of their ingredients were then tested in iPSC-derived cardiomyocytes. Data on the beat rate (positive and negative chronotropy), ion channel function (QT prolongation), and cytotoxicity were collected in a dilution series. We found that some of the energy drinks elicited adverse effects on the cardiomyocytes with the most common being an increase in the beat rate, while QT prolongation was also observed at the lowest concentrations. Finally, concentration addition modeling using quantitative data from the 6 common ingredients and multivariate prediction modeling was used to determine potential ingredients responsible for the adverse effects on the cardiomyocytes. These analyses suggested theophylline, adenine, and azelate as possibly contributing to the in vitro effects of energy drinks on QT prolongation in cardiomyocytes.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|