1
|
Hasan S, Parikh MA, Trivedi DB, Frishman WH, Peterson SJ. Chelation Therapy in Coronary Artery Disease: Fact or Fiction? Cardiol Rev 2025:00045415-990000000-00418. [PMID: 39936901 DOI: 10.1097/crd.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Coronary artery disease (CAD) is responsible for 690,000 deaths a year, a leading cause of mortality worldwide. CAD results from cholesterol plaque buildup in arteries. Chelation therapy, which uses ethylenediaminetetraacetic acid to remove toxic metals from the bloodstream, has been explored as an alternative treatment for atherosclerotic CAD. While the 2013 Trial to Assess Chelation Therapy (TACT) trial showed modest cardiovascular benefits, particularly in patients with diabetes, subsequent studies such as TACT2 did not confirm its efficacy in reducing cardiovascular events in patients with diabetes. Adverse effects of chelation therapy could include renal dysfunction, electrolyte imbalances, and potential complications from heavy metal mobilization that could be fatal. Still, none of these were seen in TACT or TACT2.
Collapse
Affiliation(s)
- Sara Hasan
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Dhaval B Trivedi
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
2
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Navas-Acien A, Santella RM, Joubert BR, Huang Z, Lokhnygina Y, Ujueta F, Gurvich I, LoIacono NJ, Ravalli F, Ward CD, Jarrett JM, Salazar ADL, Boineau R, Jones TLZ, Mark DB, Newman JD, Nathan DM, Anstrom KJ, Lamas GA. Baseline characteristics including blood and urine metal levels in the Trial to Assess Chelation Therapy 2 (TACT2). Am Heart J 2024; 273:72-82. [PMID: 38621575 PMCID: PMC11162898 DOI: 10.1016/j.ahj.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The reduction in cardiovascular disease (CVD) events with edetate disodium (EDTA) in the Trial to Assess Chelation Therapy (TACT) suggested that chelation of toxic metals might provide novel opportunities to reduce CVD in patients with diabetes. Lead and cadmium are vasculotoxic metals chelated by EDTA. We present baseline characteristics for participants in TACT2, a randomized, double-masked, placebo-controlled trial designed as a replication of the TACT trial limited to patients with diabetes. METHODS TACT2 enrolled 1,000 participants with diabetes and prior myocardial infarction, age 50 years or older between September 2016 and December 2020. Among 959 participants with at least one infusion, 933 had blood and/or urine metals measured at the Centers for Diseases Control and Prevention using the same methodology as in the National Health and Nutrition Examination Survey (NHANES). We compared metal levels in TACT2 to a contemporaneous subset of NHANES participants with CVD, diabetes and other inclusion criteria similar to TACT2's participants. RESULTS At baseline, the median (interquartile range, IQR) age was 67 (60, 72) years, 27% were women, 78% reported white race, mean (SD) BMI was 32.7 (6.6) kg/m2, 4% reported type 1 diabetes, 46.8% were treated with insulin, 22.3% with GLP1-receptor agonists or SGLT-2 inhibitors, 90.2% with aspirin, warfarin or P2Y12 inhibitors, and 86.5% with statins. Blood lead was detectable in all participants; median (IQR) was 9.19 (6.30, 13.9) µg/L. Blood and urine cadmium were detectable in 97% and median (IQR) levels were 0.28 (0.18, 0.43) µg/L and 0.30 (0.18, 0.51) µg/g creatinine, respectively. Metal levels were largely similar to those in the contemporaneous NHANES subset. CONCLUSIONS TACT2 participants were characterized by high use of medication to treat CVD and diabetes and similar baseline metal levels as in the general US population. TACT2 will determine whether chelation therapy reduces the occurrence of subsequent CVD events in this high-risk population. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov. Identifier: NCT02733185. https://clinicaltrials.gov/study/NCT02733185.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences Columbia University Mailman School of Public Health New York, NY.
| | - Regina M Santella
- Department of Environmental Health Sciences Columbia University Mailman School of Public Health New York, NY
| | - Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Zhen Huang
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
| | - Yuliya Lokhnygina
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Francisco Ujueta
- Department of Medicine at Mount Sinai Medical Center, Miami Beach, FL
| | - Irina Gurvich
- Department of Environmental Health Sciences Columbia University Mailman School of Public Health New York, NY
| | - Nancy J LoIacono
- Department of Environmental Health Sciences Columbia University Mailman School of Public Health New York, NY
| | - Filippo Ravalli
- Department of Environmental Health Sciences Columbia University Mailman School of Public Health New York, NY
| | - Cynthia D Ward
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jeffery M Jarrett
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Alfonsina De Leon Salazar
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Robin Boineau
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD
| | - Teresa L Z Jones
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel B Mark
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
| | | | - David M Nathan
- Massachusetts General Hospital Diabetes Center, Harvard Medical School, Boston, MA
| | - Kevin J Anstrom
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Gervasio A Lamas
- Department of Medicine at Mount Sinai Medical Center, Miami Beach, FL; Columbia University Division of Cardiology at Mount Sinai Medical Center, Miami Beach, FL
| |
Collapse
|
4
|
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| | - Tingyu Gong
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China (T.G.)
| | - Ping Liang
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| |
Collapse
|
5
|
Aaseth JO, Alehagen U, Opstad TB, Alexander J. Vitamin K and Calcium Chelation in Vascular Health. Biomedicines 2023; 11:3154. [PMID: 38137375 PMCID: PMC10740993 DOI: 10.3390/biomedicines11123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, N-2418 Elverum, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Trine Baur Opstad
- Oslo Centre for Clinical Heart Research Laboratory, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway;
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway;
| |
Collapse
|
6
|
BAÑERAS J, IGLESIES-GRAU J, TÉLLEZ-PLAZA M, ARRARTE V, BÁEZ-FERRER N, BENITO B, CAMPUZANO RUIZ R, CECCONI A, DOMÍNGUEZ-RODRÍGUEZ A, RODRÍGUEZ-SINOVAS A, UJUETA F, VOZZI C, LAMAS GA, NAVAS-ACIÉN A. [Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment]. Rev Esp Cardiol 2022; 75:1050-1058. [PMID: 36570815 PMCID: PMC9785336 DOI: 10.1016/j.recesp.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi BAÑERAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Josep IGLESIES-GRAU
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canadá
| | - María TÉLLEZ-PLAZA
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España
| | - Vicente ARRARTE
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, España
| | - Néstor BÁEZ-FERRER
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Begoña BENITO
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Raquel CAMPUZANO RUIZ
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, España
| | - Alberto CECCONI
- Servicio de Cardiología, Hospital Universitario de la Princesa, Madrid, España
| | - Alberto DOMÍNGUEZ-RODRÍGUEZ
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Antonio RODRÍGUEZ-SINOVAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Francisco UJUETA
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Carlos VOZZI
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A. LAMAS
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Ana NAVAS-ACIÉN
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, Estados Unidos
| |
Collapse
|
7
|
Bañeras J, Iglesies-Grau J, Téllez-Plaza M, Arrarte V, Báez-Ferrer N, Benito B, Campuzano Ruiz R, Cecconi A, Domínguez-Rodríguez A, Rodríguez-Sinovas A, Ujueta F, Vozzi C, Lamas GA, Navas-Acién A. Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:1050-1058. [PMID: 35931285 PMCID: PMC10266758 DOI: 10.1016/j.rec.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Bañeras
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Josep Iglesies-Grau
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - María Téllez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Arrarte
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, Spain
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Begoña Benito
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raquel Campuzano Ruiz
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, Spain
| | - Alberto Cecconi
- Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alberto Domínguez-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Antonio Rodríguez-Sinovas
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Francisco Ujueta
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Carlos Vozzi
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States; Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, United States.
| |
Collapse
|
8
|
Guo X, Li N, Wang H, Su W, Song Q, Liang Q, Liang M, Sun C, Li Y, Lowe S, Bentley R, Song EJ, Zhou Q, Ding X, Sun Y. Combined exposure to multiple metals on cardiovascular disease in NHANES under five statistical models. ENVIRONMENTAL RESEARCH 2022; 215:114435. [PMID: 36174761 DOI: 10.1016/j.envres.2022.114435] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It is well-documented that heavy metals are associated with cardiovascular disease (CVD). However, there is few studies exploring effect of metal mixture on CVD. Therefore, the primary objective of present study was to investigate the joint effect of heavy metals on CVD and to identify the most influential metals in the mixture. METHODS Original data for study subjects were obtained from the National Health and Nutrition Examination Survey. In this study, adults with complete data on 12 kinds of urinary metals (antimony, arsenic, barium, cadmium, cobalt, cesium, molybdenum, mercury, lead, thallium, tungsten, and uranium), cardiovascular disease, and core covariates were enrolled. We applied five different statistical strategies to examine the CVD risk with metal exposure, including multivariate logistic regression, adaptive elastic net combined with Environmental Risk Score, Quantile g-computation, Weighted Quantile Sum regression, and Bayesian kernel machine regression. RESULTS Higher levels of cadmium, tungsten, cobalt, and antimony were significantly associated with Increased risk of CVD when covariates were adjusted for multivariate logistic regression. The results from multi-pollutant strategies all indicated that metal mixture was positively associated with the risk of CVD. Based on the results of multiple statistical strategies, it was determined that cadmium, tungsten, cobalt, and antimony exhibited the strongest positive correlations, whereas barium, lead, molybdenum, and thallium were most associated with negative correlations. CONCLUSION Overall, our study demonstrates that exposure to heavy metal mixture is linked to a higher risk of CVD. Meanwhile, this association may be driven primarily by cadmium, tungsten, cobalt, and antimony. Further prospective studies are warranted to validate or refute our primary findings as well as to identify other important heavy metals linked with CVD.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Yaru Li
- Internal Medicine, Swedish Hospital, 5140 N California Ave, Chicago, IL, 60625, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Qin Zhou
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Chaohu Hospital, Anhui Medical University, Hefei, 238006, Anhui, PR China.
| |
Collapse
|
9
|
Lamas GA, Anstrom KJ, Navas-Acien A, Boineau R, Kim H, Rosenberg Y, Stylianou M, Jones TLZ, Joubert BR, Santella RM, Escolar E, Aude YW, Fonseca V, Elliott T, Lewis EF, Farkouh ME, Nathan DM, Mon AC, Gosnell L, Newman JD, Mark DB. The trial to assess chelation therapy 2 (TACT2): Rationale and design. Am Heart J 2022; 252:1-11. [PMID: 35598636 PMCID: PMC9434822 DOI: 10.1016/j.ahj.2022.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intravenous edetate disodium-based infusions reduced cardiovascular events in a prior clinical trial. The Trial to Assess Chelation Therapy 2 (TACT2) will replicate the initial study design. METHODS TACT2 is an NIH-sponsored, randomized, 2x2 factorial, double masked, placebo-controlled, multicenter clinical trial testing 40 weekly infusions of a multi-component edetate disodium (disodium ethylenediamine tetra-acetic acid, or Na2EDTA)-based chelation solution and twice daily oral, high-dose multivitamin and mineral supplements in patients with diabetes and a prior myocardial infarction (MI). TACT2 completed enrollment of 1000 subjects in December 2020, and infusions in December 2021. Subjects are followed for 2.5 to 5 years. The primary endpoint is time to first occurrence of all-cause mortality, MI, stroke, coronary revascularization, or hospitalization for unstable angina. The trial has >;85% power to detect a 30% relative reduction in the primary endpoint. TACT2 also includes a Trace Metals and Biorepository Core Lab, to test whether benefits of treatment, if present, are due to chelation of lead and cadmium from patients. Design features of TACT2 were chosen to replicate selected features of the first TACT, which demonstrated a significant reduction in cardiovascular outcomes in the EDTA chelation arm compared with placebo among patients with a prior MI, with the largest effect in patients with diabetes. RESULTS Results are expected in 2024. CONCLUSION TACT2 may provide definitive evidence of the benefit of edetate disodiumbased chelation on cardiovascular outcomes, as well as the clinical importance of longitudinal changes in toxic metal levels of participants.
Collapse
Affiliation(s)
- Gervasio A Lamas
- Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA.
| | - Kevin J Anstrom
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robin Boineau
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Hwasoon Kim
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Yves Rosenberg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Stylianou
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Teresa L Z Jones
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Regina M Santella
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Esteban Escolar
- Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Y Wady Aude
- Heart and Vascular Specialists of South Texas, McAllen, TX, USA
| | - Vivian Fonseca
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Eldrin F Lewis
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - David M Nathan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Mon
- Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Leigh Gosnell
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | | - Daniel B Mark
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Guo LC, Lv Z, Ma W, Xiao J, Lin H, He G, Li X, Zeng W, Hu J, Zhou Y, Li M, Yu S, Xu Y, Zhang J, Zhang H, Liu T. Contribution of heavy metals in PM 2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. CHEMOSPHERE 2022; 297:134102. [PMID: 35219707 DOI: 10.1016/j.chemosphere.2022.134102] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals play an important role in inducing fine particulate matter (PM2.5) related cardiovascular disease (CVD). However, most of the past researches concerned the associations between CVD mortality and the PM2.5 mass, which may not reveal the CVD mortality risk contributed by heavy metals in PM2.5. This study explored the correlations between individual heavy metals in PM2.5 and CVD mortality, identified the heavy metals that significantly contribute to PM2.5-related CVD, heart disease (HD), and cerebrovascular disease (CEV) mortality, and attempted to establish corresponding source control measures. Over a 2-year study period, PM2.5 was sampled daily in Guangzhou, China and analyzed for heavy metals. The airborne pollution and weather data, along with CVD, HD, and CEV mortality, were obtained at the same time. The excess risk (ER) of mortality was linked to the individual heavy metals using a distributed lag non-linear model. PM2.5 and most heavy metals showed significant correlations with the CVD, HD, and CEV mortality; the largest cumulative ER (LCER) values of CVD mortality associated with an interquartile range increase in the levels of lead, cadmium, arsenic, selenium, antimony, nickel, thallium, aluminum, iron, and PM2.5 were 2.43%, 2.23%, 1.66%, 2.39%, 1.19%, 1.21%, 2.69%, 3.29%, 1.74%, and 2.40%, respectively. Most heavy metals showed comparable LCER values of HD and CEV mortality. Heavy metals with the addition of PM2.5 were divided into three groups following their LCER values; lead, cadmium, arsenic, antimony, thallium, zinc, aluminum, and iron, whose contributions were greater than or equal to the average effect of the PM2.5 components, should be limited on a priority basis. These findings indicated that heavy metals play roles in the CVD, HD, and CEV mortality risk of PM2.5, and specific control measures which aimed at the emission sources should be taken to reduce the CVD mortality risk of PM2.5.
Collapse
Affiliation(s)
- Ling-Chuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanlu Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjun Ma
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Hualiang Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guanhao He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Yan Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Min Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Shengbing Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Yanjun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jinliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Han Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tao Liu
- School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Ravalli F, Vela Parada X, Ujueta F, Pinotti R, Anstrom KJ, Lamas GA, Navas‐Acien A. Chelation Therapy in Patients With Cardiovascular Disease: A Systematic Review. J Am Heart Assoc 2022; 11:e024648. [PMID: 35229619 PMCID: PMC9075296 DOI: 10.1161/jaha.121.024648] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
Background EDTA is an intravenous chelating agent with high affinity to divalent cations (lead, cadmium, and calcium) that may be beneficial in the treatment of cardiovascular disease (CVD). Although a large randomized clinical trial showed benefit, smaller studies were inconsistent. We conducted a systematic review of published studies to examine the effect of repeated EDTA on clinical outcomes in adults with CVD. Methods and Results We searched 3 databases (MEDLINE, Embase, and Cochrane) from database inception to October 2021 to identify all studies involving EDTA treatment in patients with CVD. Predetermined outcomes included mortality, disease severity, plasma biomarkers of disease chronicity, and quality of life. Twenty-four studies (4 randomized clinical trials, 15 prospective before/after studies, and 5 retrospective case series) assessed the use of repeated EDTA chelation treatment in patients with preexistent CVD. Of these, 17 studies (1 randomized clinical trial) found improvement in their respective outcomes following EDTA treatment. The largest improvements were observed in studies with high prevalence of participants with diabetes and/or severe occlusive arterial disease. A meta-analysis conducted with 4 studies reporting ankle-brachial index indicated an improvement of 0.08 (95% CI, 0.06-0.09) from baseline. Conclusions Overall, 17 studies suggested improved outcomes, 5 reported no statistically significant effect of treatment, and 2 reported no qualitative benefit. Repeated EDTA for CVD treatment may provide more benefit to patients with diabetes and severe peripheral arterial disease. Differences across infusion regimens, including dosage, solution components, and number of infusions, limit comparisons across studies. Additional research is necessary to confirm these findings and to evaluate the potential mediating role of metals. Registration URL: https://www.crd.york.ac.uk/; Unique identifier: CRD42020166505.
Collapse
Affiliation(s)
- Filippo Ravalli
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| | | | - Francisco Ujueta
- Department of Medicine at Mount Sinai Medical CenterMiami BeachFL
| | - Rachel Pinotti
- Levy LibraryIcahn School of Medicine at Mount SinaiNew YorkNY
| | | | - Gervasio A. Lamas
- Department of Medicine at Mount Sinai Medical CenterMiami BeachFL
- Columbia University Division of Cardiology at Mount Sinai Medical CenterMiami BeachFL
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| |
Collapse
|