1
|
Lee CM, Lee HY, Jarrell ZR, Smith MR, Jones DP, Go YM. Mechanistic role for mTORC1 signaling in profibrotic toxicity of low-dose cadmium. Toxicol Appl Pharmacol 2025; 494:117159. [PMID: 39557346 DOI: 10.1016/j.taap.2024.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Cadmium (Cd) is a toxic environmental metal that occurs naturally in food and drinking water. Cd is of increasing concern to human health due to its association with age-related diseases and long biological half-life. Previous studies show that low-dose Cd exposure via drinking water induces mechanistic target of rapamycin complex 1 (mTORC1) signaling in mice; however, the role of mTORC1 pathway in Cd-induced pro-fibrotic responses has not been established. In the present study, we used human lung fibroblasts to examine whether inhibiting the mTORC1 pathway prevents lung fibrosis signaling induced by low-dose Cd exposure. Results show that rapamycin, a pharmacological inhibitor of mTORC1, inhibited Cd-dependent phosphorylation of ribosomal protein S6, a downstream marker of mTORC1 activation. Rapamycin also decreased Cd-dependent increases in pro-fibrotic markers, α-smooth muscle actin, collagen 1α1 and fibronectin. Cd activated mitochondrial spare respiratory capacity in association with increased cell proliferation. Rapamycin decreased these responses, showing that mTORC1 signaling supports mitochondrial energy supply for cell proliferation, an important step in fibroblast trans-differentiation into myofibroblasts. Collectively, these results establish a key mechanistic role for mTORC1 activation in environmental Cd-dependent lung fibrosis.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Ho Young Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America; VA Healthcare System of Atlanta, Decatur, GA 30033, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America.
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
2
|
Jeon J, He X, Shinde A, Meister M, Barnett L, Zhang Q, Black M, Shannahan J, Wright C. The role of puff volume in vaping emissions, inhalation risks, and metabolic perturbations: a pilot study. Sci Rep 2024; 14:18949. [PMID: 39147784 PMCID: PMC11327287 DOI: 10.1038/s41598-024-69985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
Secondhand vaping exposure is an emerging public health concern that remains understudied. In this study, saliva and exhaled emissions from ENDS users (secondhand) and non-ENDS users (baseline) were collected, firsthand emissions were generated using an automated ENDS aerosol generation system programmed to simulate puffing topography profiles collected from ENDS users. Particulate concentrations and sizes along with volatile organic compounds were characterized. We revealed puffing topography metrics as potential mediators of firsthand and secondhand particle and chemical exposures, as well as metabolic and respiratory health outcomes. Particle deposition modeling revealed that while secondhand emissions displayed smaller deposited mass, total and pulmonary particle deposition fractions were higher than firsthand deposition levels, possibly due to smaller secondhand emission particle diameters. Lastly, untargeted metabolomic profiling of salivary biomarkers of lung injury due to firsthand ENDS exposures revealed potential early indicators of respiratory distress that may also be relevant in bystanders exposed to secondhand vaping scenarios. By leveraging system toxicology, we identified 10 metabolites, including leukotriene D4, that could potentially serve as biomarkers for ENDS use, exposure estimation, and the prediction of vaping-related disease. This study highlights characterization of vaping behavior is an important exposure component in advancing our understanding of potential health effects in ENDS users and bystanders.
Collapse
Affiliation(s)
- Jennifer Jeon
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA
| | - Xiaojia He
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA
| | - Akshada Shinde
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Maureen Meister
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA
| | - Lillie Barnett
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA
| | - Qian Zhang
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA
| | - Marilyn Black
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Christa Wright
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30367, USA.
| |
Collapse
|
3
|
Jones DP. Redox organization of living systems. Free Radic Biol Med 2024; 217:179-189. [PMID: 38490457 PMCID: PMC11313653 DOI: 10.1016/j.freeradbiomed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Whitehead Biomedical Research Building, 615 Michael St, RM205P, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Shi G, Tai T, Miao Y, Yan L, Han T, Dong H, Liu Z, Cheng T, Liu Y, Yang Y, Fei S, Pang B, Chen T. The antagonism mechanism of astilbin against cadmium-induced injury in chicken lungs via Treg/Th1 balance signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116364. [PMID: 38657461 DOI: 10.1016/j.ecoenv.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The purpose of this study was to investigate the effect of Treg/Th1 imbalance in cadmium-induced lung injury and the potential protective effect of astilbin against cadmium-induced lung injury in chicken. Cadmium exposure significantly decreased T-AOC and GSH-Px levels and SOD activity in the chicken lung tissues. In contrast, it significantly increased the MDA and NO levels. These results indicate that cadmium triggers oxidative stress in lungs. Histopathological analysis revealed that cadmium exposure further induced infiltration of lymphocytes in the chicken lungs, indicating that cadmium causes pulmonary damage. Further analysis revealed that cadmium decreased the expression of IL-4 and IL-10 but increased those of IL-17, Foxp3, TNF-α, and TGF-β, indicating that the exposure of cadmium induced the imbalance of Treg/Th1. Moreover, cadmium adversely affected chicken lung function by activating the NF-kB pathway and inducing expression of genes downstream to these pathways (COX-2, iNOS), associated with inflammatory injury in the lung tissue. Astilbin reduced cadmium-induced oxidative stress and inflammation in the lungs by increasing antioxidant enzyme activities and restoring Treg/Th1 balance. In conclusion, our results suggest that astilbin treatment alleviated the effects of cadmium-mediated lung injury in chickens by restoring the Treg/Th1 balance.
Collapse
Affiliation(s)
- Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Miao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liangchun Yan
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Tianyu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Han Dong
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhaoyang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yiding Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Shanshan Fei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Pang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tiezhu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu 610041, China.
| |
Collapse
|
6
|
Lee CM, Jarrell ZR, Lee HY, Singer G, Tran VT, Orr M, Jones DP, Go YM. Protein S-palmitoylation enhances profibrotic signaling in response to cadmium. Toxicol Appl Pharmacol 2024; 483:116806. [PMID: 38195004 PMCID: PMC10923080 DOI: 10.1016/j.taap.2024.116806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-β1 and β3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFβ1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFβ1-dependent proteins.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ho Young Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grant Singer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - ViLinh Thi Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Zhang Z, Liang W, Zheng X, Zhong Q, Hu H, Huo X. Kindergarten dust heavy metal(loid) exposure associates with growth retardation in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118341-118351. [PMID: 37910347 DOI: 10.1007/s11356-023-30278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Heavy metal contamination from electronic waste recycling sites is present in dust found in indoor kindergartens located in e-waste recycling areas, and its potential impact on child health is a significant concern. The association between heavy metal(loid)s and the child developmental indicators is still unclear. In 2019 and 2020, we enrolled 325 and 319 children in an e-waste recycling town, respectively. Corresponding 61 and 121 dust samples were collected from roads, houses, and kindergartens in the two years. The median concentrations of metals, including Cr, Ni, Cu, Zn, and Pb exceeded the allowable limits. The highest amount of cumulative enrichment (cEF) was observed in indoor kindergarten dust (cEF = 112.3400), followed by house dust (cEF = 76.6950) and road dust (cEF = 39.7700). Children residing in the e-waste town had below-average height and weight compared to their Chinese peers. Based on linear regression analysis, the daily intake of Cd, V, Mn, and Pb in indoor kindergarten dust was found to be negatively associated with head circumference (HeC) (P < 0.05). Similarly, the daily intake of As, Cd, and Ba in indoor kindergarten dust was found to be negatively associated with chest circumference (ChC) (P < 0.05). In addition, the daily intake of As, Cd, and Ba in indoor kindergarten dust was negatively correlated with body mass index (BMI), as per the results of the study (P < 0.05). Cross-product term analysis revealed a negative correlation between daily intake of heavy metal(loid)s and HeC, ChC, and BMI, with age and sex serving as influencing factors. In conclusion, exposure to heavy metal(loid)s in indoor kindergarten dust increases the risk of growth retardation and developmental delay in children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
8
|
Jarrell ZR, Lee CM, Kim KH, He X, Smith MR, Raha JR, Bhatnagar N, Orr M, Kang SM, Chen Y, Jones DP, Go YM. Metabolic reprograming and increased inflammation by cadmium exposure following early-life respiratory syncytial virus infection-the involvement of protein S-palmitoylation. Toxicol Sci 2023; 197:kfad112. [PMID: 37941452 PMCID: PMC10823773 DOI: 10.1093/toxsci/kfad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Early-life respiratory syncytial virus (RSV) infection (eRSV) is one of the leading causes of serious pulmonary disease in children. eRSV is associated with higher risk of developing asthma and compromised lung function later in life. Cadmium (Cd) is a toxic metal, widely present in the environment and in food. We recently showed that eRSV re-programs metabolism and potentiates Cd toxicity in the lung, and our transcriptome-metabolome-wide study showed strong associations between S-palmitoyl transferase expression and Cd-stimulated lung inflammation and fibrosis signaling. Limited information is available on the mechanism by which eRSV re-programs metabolism and potentiates Cd toxicity in the lung. In the current study, we used a mouse model to examine the role of protein S-palmitoylation (Pr-S-Pal) in low dose Cd-elevated lung metabolic disruption and inflammation following eRSV. Mice exposed to eRSV were later treated with Cd (3.3 mg CdCl2/L) in drinking water for 6 weeks (RSV+Cd). The role of Pr-S-Pal was studied using a palmitoyl transferase inhibitor, 2-bromopalmitate (BP, 10 µM). Inflammatory marker analysis showed that cytokines, chemokines and inflammatory cells were highest in the RSV+Cd group, and BP decreased inflammatory markers. Lung metabolomics analysis showed that pathways including phenylalanine, tyrosine and tryptophan, phosphatidylinositol and sphingolipid were altered across treatments. BP antagonized metabolic disruption of sphingolipid and glycosaminoglycan metabolism by RSV+Cd, consistent with BP effect on inflammatory markers. This study shows that Cd exposure following eRSV has a significant impact on subsequent inflammatory response and lung metabolism, which is mediated by Pr-S-Pal, and warrants future research for a therapeutic target.
Collapse
Affiliation(s)
- Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Xiaojia He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Matthew R Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | - Jannatul R Raha
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Yan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Das S, Ahmad Z, Singh S, Singh S, Wright RE, Giri S, Kumar A. Oral administration of S-nitroso-L-glutathione (GSNO) provides anti-inflammatory and cytoprotective effects during ocular bacterial infections. Cell Mol Life Sci 2023; 80:309. [PMID: 37770649 PMCID: PMC11072052 DOI: 10.1007/s00018-023-04963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Bacterial endophthalmitis is a severe complication of eye surgeries that can lead to vision loss. Current treatment involves intravitreal antibiotic injections that control bacterial growth but not inflammation. To identify newer therapeutic targets to promote inflammation resolution in endophthalmitis, we recently employed an untargeted metabolomics approach. This led to the discovery that the levels of S-nitroso-L-glutathione (GSNO) were significantly reduced in an experimental murine Staphylococcus aureus (SA) endophthalmitis model. In this study, we tested the hypothesis whether GSNO supplementation via different routes (oral, intravitreal) provides protection during bacterial endophthalmitis. Our results show that prophylactic administration of GSNO via intravitreal injections ameliorated SA endophthalmitis. Therapeutically, oral administration of GSNO was found to be most effective in reducing intraocular inflammation and bacterial burden. Moreover, oral GSNO treatment synergized with intravitreal antibiotic injections in reducing the severity of endophthalmitis. Furthermore, in vitro experiments using cultured human retinal Muller glia and retinal pigment epithelial (RPE) cells showed that GSNO treatment reduced SA-induced inflammatory mediators and cell death. Notably, both in-vivo and ex-vivo data showed that GSNO strengthened the outer blood-retinal barrier during endophthalmitis. Collectively, our study demonstrates GSNO as a potential therapeutic agent for the treatment of intraocular infections due to its dual anti-inflammatory and cytoprotective properties.
Collapse
Affiliation(s)
- Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Robert Emery Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
10
|
Smith MR, Hu X, Jarrell ZR, He X, Orr M, Fernandes J, Chandler JD, Walker DI, Esper A, Marts L, Neujahr DC, Jones DP, Go YM. Study on the Relationship between Selenium and Cadmium in Diseased Human Lungs. ADVANCES IN REDOX RESEARCH 2023; 7. [PMID: 37034445 PMCID: PMC10078579 DOI: 10.1016/j.arres.2023.100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Cadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - Xiaojia He
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joshua D. Chandler
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
- Department of Pediatrics, School of Medicine at Emory University, Atlanta, GA, USA
| | - Douglas I. Walker
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annette Esper
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - Lucian Marts
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - David C. Neujahr
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
- Corresponding authors at: Whitehead Biomedical Research Building, 615 Michael St, Room 225, Atlanta, GA, 30322, USA. (D.P. Jones), (Y.-M. Go)
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine at Emory University, Atlanta, GA, USA
- Corresponding authors at: Whitehead Biomedical Research Building, 615 Michael St, Room 225, Atlanta, GA, 30322, USA. (D.P. Jones), (Y.-M. Go)
| |
Collapse
|
11
|
He X, Jarrell ZR, Smith MR, Ly VT, Liang Y, Orr M, Go YM, Jones DP. Metabolomics of V 2O 5 nanoparticles and V 2O 5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol Appl Pharmacol 2023; 459:116327. [PMID: 36460058 PMCID: PMC9986994 DOI: 10.1016/j.taap.2022.116327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|