1
|
Li C, Wu J, Dong Q, Ma J, Gao H, Liu G, Chen Y, Ning J, Lv X, Zhang M, Zhong H, Zheng T, Liu Y, Peng Y, Qu Y, Gao X, Shi H, Sun C, Hui Y. The crosstalk between oxidative stress and DNA damage induces neural stem cell senescence by HO-1/PARP1 non-canonical pathway. Free Radic Biol Med 2024; 223:443-457. [PMID: 39047850 DOI: 10.1016/j.freeradbiomed.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Neural stem cells play a crucial role in maintaining brain homeostasis. Neural stem cells senescence can lead to the decline of nerve repair and regeneration, causing brain aging and neurodegenerative diseases. However, the mechanism underlying neural stem cells senescence remains poorly understood. In this study, we report a novel HO-1/PARP1 non-canonical pathway highlighting how oxidative stress triggers the DNA damage response, ultimately leading to premature cellular senescence in neural stem cells. HO-1 acts as a sensor for oxidative stress, while PARP1 functions as a sensor for DNA damage. The simultaneous expression and molecular interaction of these two sensors can initiate a crosstalk of oxidative stress and DNA damage response processes, leading to the vicious cycle. The persistent activation of this pathway contributes to the senescence of neural stem cells, which in turn plays a crucial role in the progression of neurodegenerative diseases. Consequently, targeting this novel signaling pathway holds promise for the development of innovative therapeutic strategies and targets aimed at mitigating neural stem cells senescence-related disorders.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Qi Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Huiqun Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - You Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiaqi Ning
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xuebing Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Mingyang Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Haojie Zhong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Tianhu Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
2
|
Davis CK, Bathula S, Jeong S, Arruri V, Choi J, Subramanian S, Ostrom CM, Vemuganti R. An antioxidant and anti-ER stress combination therapy elevates phosphorylation of α-Syn at serine 129 and alleviates post-TBI PD-like pathology in a sex-specific manner in mice. Exp Neurol 2024; 377:114795. [PMID: 38657855 PMCID: PMC12017472 DOI: 10.1016/j.expneurol.2024.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Clinical studies have shown that traumatic brain injury (TBI) increases the onset of Parkinson's disease (PD) in later life by >50%. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are the major drivers of both TBI and PD pathologies. We presently evaluated if curtailing oxidative stress and ER stress concomitantly using a combination of apocynin and tert-butylhydroquinone and salubrinal during the acute stage after TBI in mice reduces the severity of late-onset PD-like pathology. The effect of multiple low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on post-TBI neurodegeneration was also evaluated. The combo therapy elevated the level of phosphorylation at serine 129 (pS129) of α-Syn in the pericontusional cortex of male mice at 72 h post-TBI. Motor and cognitive deficits induced by TBI lasted at least 3 months and the combo therapy curtailed these deficits in both sexes. At 3 months post-TBI, male mice given combo therapy exhibited significantly lesser α-Syn aggregates in the SN and higher TH+ cells in the SNpc, compared to vehicle control. However, the aggregate number was not significantly different between groups of female mice. Moreover, TBI-induced loss of TH+ cells was negligible in female mice irrespective of treatment. The MPTP treatment aggravated PD-like pathology in male mice but had a negligible effect on the loss of TH+ cells in female mice. Thus, the present study indicates that mitigation of TBI-induced oxidative stress and ER stress at the acute stage could potentially reduce the risk of post-TBI PD-like pathology at least in male mice, plausibly by elevating pS129-α-Syn level.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Jeongwoo Choi
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Shruti Subramanian
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Carlie M Ostrom
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
3
|
Kim JS, Choi H, Oh JM, Kim SW, Kim SW, Kim BG, Cho JH, Lee J, Lee DC. TBHQ Alleviates Particulate Matter-Induced Pyroptosis in Human Nasal Epithelial Cells. TOXICS 2024; 12:407. [PMID: 38922087 PMCID: PMC11209226 DOI: 10.3390/toxics12060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Pyroptosis represents a type of cell death mechanism notable for its cell membrane disruption and the subsequent release of proinflammatory cytokines. The Nod-like receptor family pyrin domain containing inflammasome 3 (NLRP3) plays a critical role in the pyroptosis mechanism associated with various diseases resulting from particulate matter (PM) exposure. Tert-butylhydroquinone (tBHQ) is a synthetic antioxidant commonly used in a variety of foods and products. The aim of this study is to examine the potential of tBHQ as a therapeutic agent for managing sinonasal diseases induced by PM exposure. The occurrence of NLRP3 inflammasome-dependent pyroptosis in RPMI 2650 cells treated with PM < 4 µm in size was confirmed using Western blot analysis and enzyme-linked immunosorbent assay results for the pyroptosis metabolites IL-1β and IL-18. In addition, the inhibitory effect of tBHQ on PM-induced pyroptosis was confirmed using Western blot and immunofluorescence techniques. The inhibition of tBHQ-mediated pyroptosis was abolished upon nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown, indicating its involvement in the antioxidant mechanism. tBHQ showed potential as a therapeutic agent for sinonasal diseases induced by PM because NLRP3 inflammasome activation was effectively suppressed via the Nrf2 pathway.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea; (H.C.); (J.-M.O.)
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea; (H.C.); (J.-M.O.)
| | - Sung Won Kim
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| | - Soo Whan Kim
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| | - Byung Guk Kim
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| | - Jin Hee Cho
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| | - Joohyung Lee
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| | - Dong Chang Lee
- Department of Otorhinolaryngology Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-S.K.); (S.W.K.); (S.W.K.); (B.G.K.); (J.H.C.); (J.L.)
| |
Collapse
|
4
|
Oluwafunmilayo Ajayi J, Bukoye Oyewo E, Sanmi Adekunle A, Temidayo Ige P, Ayomide Akomolafe P. Subchronic doses of artemether-lumefantrine, ciprofloxacin and diclofenac precipitated inflammatory and immunological dysfunctions in female Wistar rats. Cytokine 2024; 176:156515. [PMID: 38290256 DOI: 10.1016/j.cyto.2024.156515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Recents reports have shown increases in the abuse of anti-malaria, antibiotic and analgesic drugs. This study evaluated the effects of co-administration of artemether-lumefantrine (AL), ciprofloxacin (CPX) and diclofenac (DFC) on inflammatory and immunological status of female Wistar rats. Ninety-six female Wistar rats were assigned into eight groups of twelve animals each. Group A was control, groups B, C, D, E, F, G and H were administered AL, CPX, DFC, AL + CPX, AL + DFC, CPX + DFC and AL + CPX + DFC respectively. Dosages of administered drugs were 178 mg/kg b/w of AL, 185 mg/kg b/w of CPX and 9 mg/kg b/w of DFC. Animals were sacrificed after 6 and 12 weeks of oral administration. Blood was obtained through cardiac puncture. The liver was harvested and processed for immunohistochemical analysis. Differential leukocyte count and neutrophil adhesion test was conducted on whole blood. Immunological response was assessed by the serum levels of C-reactive protein (CRP), interleukin-1β (Il-1β), interleukin-6 (Il-6), monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), myeloperoxidase, and total immunoglobulin G. Data were analyzed with Graph pad prism 5, using one way analysis of variance at 5 % level of significance. Total leukocyte, lymphocyte and basophils count increased (p<0.05) in B, C, E, F, G and H, while neutrophil count decreased (p<0.05) in D, E, G and H at 6 weeks. Neutrophil adhesion decreased (p<0.05) in B, E, F, G and H at 6 weeks. There was no significant difference (p>0.05) in the expression of Il-6, MCP-1 and VCAM-1 across the groups. Il-1β decreased in H, while CRP increased in H at 6 weeks and 12 weeks. MPO activity decreased (p<0.05) in B, C, D, E, G and H at 6 weeks, but increased (p<0.05) in D and G at 12 weeks. Immunohistochemical analysis indicated increase (p<0.05) in tumour necrosis factor-α in liver tissues of B, C, D, E, F and G, while nuclear factor erythroid 2-related factor 2 increased (p<0.05) in C, D, E, F and G, but decreased (p<0.05) in H at 12 weeks. The co-administration of AL, CPX and DFC induced inflammatory responses with attendant immunological dysfunctions and liver damage.
Collapse
Affiliation(s)
- Juliana Oluwafunmilayo Ajayi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria.
| | - Emmanuel Bukoye Oyewo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria.
| | - Adeniran Sanmi Adekunle
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria.
| | - Peace Temidayo Ige
- Bloomberg School of Public Health, John Hopkin University, Baltimore, MD, United States
| | | |
Collapse
|
5
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Abbonante V, Benedetto GL, Scalise M, Gambardella A, Parrotta EI, Cuda G. Ascorbic acid mitigates the impact of oxidative stress in a human model of febrile seizure and mesial temporal lobe epilepsy. Sci Rep 2024; 14:5941. [PMID: 38467734 PMCID: PMC10928078 DOI: 10.1038/s41598-024-56680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 03/13/2024] Open
Abstract
Prolonged febrile seizures (FS) in children are linked to the development of temporal lobe epilepsy (MTLE). The association between these two pathologies may be ascribed to the long-term effects that FS exert on neural stem cells, negatively affecting the generation of new neurons. Among the insults associated with FS, oxidative stress is noteworthy. Here, we investigated the consequences of exposure to hydrogen peroxide (H2O2) in an induced pluripotent stem cell-derived neural stem cells (iNSCs) model of a patient affected by FS and MTLE. In our study, we compare the findings from the MTLE patient with those derived from iNSCs of a sibling exhibiting a milder phenotype defined only by FS, as well as a healthy individual. In response to H2O2 treatment, iNSCs derived from MTLE patients demonstrated an elevated production of reactive oxygen species and increased apoptosis, despite the higher expression levels of antioxidant genes and proteins compared to other cell lines analysed. Among the potential causative mechanisms of enhanced vulnerability of MTLE patient iNSCs to oxidative stress, we found that these cells express low levels of the heat shock protein HSPB1 and of the autophagy adaptor SQSTM1/p62. Pre-treatment of diseased iNSCs with the antioxidant molecule ascorbic acid restored HSBP1 and p62 expression and simultaneously reduced the levels of ROS and apoptosis. Our findings suggest the potential for rescuing the impaired oxidative stress response in diseased iNSCs through antioxidant treatment, offering a promising mechanism to prevent FS degeneration in MTLE.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vittorio Abbonante
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
6
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Dong C, Li J, Tang Q, Wang Y, Zeng C, Du L, Sun Q. Denervation aggravates renal ischemia reperfusion injury via BMAL1-mediated Nrf2/ARE pathway. Arch Biochem Biophys 2023; 746:109736. [PMID: 37657745 DOI: 10.1016/j.abb.2023.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
AIM To explore the change of clock gene rhythm under renal denervation (RDN) and its effect on renal function and oxidative stress during renal ischemia-reperfusion (IR) injury. METHOD C57/BL6 mice were randomly divided into 4 groups at daytime 7 A M (zeitgeber time [ZT] 0) or at nighttime 7 P M (ZT12) in respectively: Sham (S) group, RDN group, IR group and RDN + IR (DIR) group. Renal pathological and functional changes were assessed by H&E staining, and serum creatinine, urea nitrogen and neutrophil gelatinase-associated lipocalin levels. Renal oxidative stress was detected by SOD and MDA levels, and renal inflammation was measured by IL-6, IL-17 A F and TNF-ɑ levels. BMAL1, CLOCK, Nrf2 and HO-1 mRNA and protein expressions were tested by qPCR and Western Blot. RESULT Compared with S groups, the rhythm of BMAL1, CLOCK and Nrf2 genes in the kidney were disordered in RDN groups, while renal pathological and functional indexes did not change significantly. Compared with IR groups, renal pathological and functional indexes were significantly higher in the DIR groups, as well as oxidative stress and inflammation in renal tissues. The nocturnal IR injury in the RDN kidney was the worst while the BMAL1, Nrf2 and HO-1 expressions were the highest. In DIR groups, renal injury was aggravated after the Brusatol treatment, but there was no significant improvement after the t-BHQ treatment at night, which might be consistent with the changes of Nrf2 and HO-1 protein expressions. CONCLUSION RDN lead to the disruption of BMAL1-mediated Nrf2 rhythm accumulation in the kidney, which reduced the renal ability to resist oxidative stress and inflammation, due to the impaired effect of activating Nrf2/ARE pathway in renal IR injury at nighttime.
Collapse
Affiliation(s)
- Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Jing Li
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee, 1193053, Regensburg, Germany
| | - Qiao Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Sun Y, Yang X, Xu L, Jia M, Zhang L, Li P, Yang P. The Role of Nrf2 in Relieving Cerebral Ischemia-Reperfusion Injury. Curr Neuropharmacol 2023; 21:1405-1420. [PMID: 36453490 PMCID: PMC10324331 DOI: 10.2174/1570159x21666221129100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 12/05/2022] Open
Abstract
Ischemic stroke includes two related pathological damage processes: brain injury caused by primary ischemia and secondary ischemia reperfusion (I/R) injury. I/R injury has become a worldwide health problem. Unfortunately, there is still a lack of satisfactory drugs for ameliorating cerebral I/R damage. Nrf2 is a vital endogenous antioxidant protein, which combines with Keap1 to maintain a dormant state under physiological conditions. When pathological changes such as I/R occurs, Nrf2 dissociates from Keap1 and activates the expression of downstream antioxidant proteins to exert a protective effect. Recent research have shown that the activated Nrf2 not only effectively inhibits oxidative stress, but also performs the ability to repair the function of compromised mitochondria, alleviate endoplasmic reticulum stress, eliminate inflammatory response, reduce blood-brain barrier permeability, inhibit neuronal apoptosis, enhance the neural network remolding, thereby exerting significant protective effects in alleviating the injuries caused by cell oxygen-glucose deprivation, or animal cerebral I/R. However, no definite clinical application report demonstrated the efficacy of Nrf2 activators in the treatment of cerebral I/R. Therefore, further efforts are needed to elaborate the role of Nrf2 activators in the treatment of cerebral I/R. Here, we reviewed the possible mechanisms underlying its potential pharmacological benefits in alleviating cerebral I/R injury, so as to provide a theoretical basis for studying its mechanism and developing Nrf2 activators.
Collapse
Affiliation(s)
- Yu Sun
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Xu Yang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Lijun Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Mengxiao Jia
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Limeng Zhang
- School of Nursing, Pingdingshan Polytenchnic College, Pingdingshan, 467001, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Pengfei Yang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| |
Collapse
|
9
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
10
|
Nrf2 signaling activation by a small molecule activator compound 16 inhibits hydrogen peroxide-induced oxidative injury and death in osteoblasts. Cell Death Dis 2022; 8:353. [PMID: 35941127 PMCID: PMC9360014 DOI: 10.1038/s41420-022-01146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
We explored the potential activity of compound 16 (Cpd16), a novel small molecule Nrf2 activator, in hydrogen peroxide (H2O2)-stimulated osteoblasts. In the primary murine/human osteoblasts and MC3T3-E1 murine osteoblastic cells, Cpd16 treatment at micro-molar concentrations caused disassociation of Keap1-Nrf2 and Nrf2 cascade activation. Cpd16 induced stabilization of Nrf2 protein and its nuclear translocation, thereby increasing the antioxidant response elements (ARE) reporter activity and Nrf2 response genes transcription in murine and human osteoblasts. Significantly, Cpd16 mitigated oxidative injury in H2O2-stimulited osteoblasts. H2O2-provoked apoptosis as well as programmed necrosis in osteoblasts were significantly alleviated by the novel Nrf2 activator. Cpd16-induced Nrf2 activation and osteoblasts protection were stronger than other known Nrf2 activators. Dexamethasone- and nicotine-caused oxidative stress and death in osteoblasts were attenuated by Cpd16 as well. Cpd16-induced osteoblast cytoprotection was abolished by Nrf2 short hairpin RNA or knockout, but was mimicked by Keap1 knockout. Keap1 Cys151S mutation abolished Cpd16-induced Nrf2 cascade activation and osteoblasts protection against H2O2. Importantly, weekly Cpd16 administration largely ameliorated trabecular bone loss in ovariectomy mice. Together, Cpd16 alleviates H2O2-induced oxidative stress and death in osteoblasts by activating Nrf2 cascade.
Collapse
|
11
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
12
|
Bansal Y, Singh R, Sodhi RK, Khare P, Dhingra R, Dhingra N, Bishnoi M, Kondepudi KK, Kuhad A. Kynurenine monooxygenase inhibition and associated reduced quinolinic acid reverses depression-like behaviour by upregulating Nrf2/ARE pathway in mouse model of depression: In-vivo and In-silico studies. Neuropharmacology 2022; 215:109169. [PMID: 35753430 DOI: 10.1016/j.neuropharm.2022.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Kynurenine pathway, a neuroimmunological pathway plays a substantial role in depression. Consistently, increased levels of neurotoxic metabolite of kynurenine pathway; quinolinic acid (QA) found in the suicidal patients and remitted major depressive patients. QA, an endogenous modulator of N-methyl-d-aspartate receptor is produced by microglial cells, may serve as a potential candidate for a link between antioxidant defence system and immune changes in depression. Further, nuclear factor (erythroid-derived 2) like 2 (Nrf2), an endogenous antioxidant transcription factor plays a significant role in maintaining antioxidant homeostasis during basal and stress conditions. The present study was designed to explore the effects of KMO-inhibition (Kynurenine monooxygenase) and association of reduced QA on Keap1/Nrf2/ARE pathway activity in olfactory bulbectomized mice (OBX-mice). KMO catalysis the neurotoxic branch of kynurenine pathway directing the synthesis of QA. KMO inhibitionshowed significant reversal of depressive-like behaviour, restored Keap-1 and Nrf2 mRNA expression, and associated antioxidant levels in cortex and hippocampus of OBX-mice. KMO inhibition also increased PI3K/AKT mRNA expression in OBX-mice. KMO inhibition and associated reduced QA significantly decreased inflammatory markers, kynurenine and increased the 5-HT, 5-HIAA and tryptophan levels in OBX-mice. Furthermore, molecular docking studies has shown good binding affinity of QA towards ubiquitin proteasome complex and PI3K protein involved in Keap-1 dependent and independent proteasome degradation of Nrf2 respectively supporting our in-vivo findings. Hence, QA might act as pro-oxidant through downregulating Nrf2/ARE pathway along with modulating other pathways and KMO inhibition could be a potential therapeutic target for depression treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Richa Dhingra
- Pharmachemistry Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- Pharmachemistry Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
13
|
Streptococcus pneumoniae exerts oxidative stress, subverts antioxidant signaling and autophagy in human corneal epithelial cells that is alleviated by tert-Butylhydroquinone. Med Microbiol Immunol 2022; 211:119-132. [PMID: 35325292 DOI: 10.1007/s00430-022-00731-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is one of the leading causes of bacterial keratitis in the developing world and globally. In the current study, we have determined oxidative stress as pathogenesis of S. pneumoniae infection in corneal tissues and human corneal epithelial cells (HCEC) and explored host immune response of HCEC towards S. pneumoniae. We also determined whether treatment with tert-Butylhydroquinone (tBHQ), a Nrf2 inducer, could alleviate oxidative stress and reduce bacterial cytotoxicity in these cells. Oxidative stress was determined in corneal tissues of patients and HCEC by immunohistochemistry and immunofluorescence analysis, respectively. The expression of antioxidant genes, cytokines and antimicrobial peptides was determined by quantitative PCR. Infection of HCEC by S. pneumoniae was determined by colony-forming units. The autophagy and cell death were determined by fluorescence microscopy. The phosphorylation of signaling proteins was evaluated by immunoblot analysis. S. pneumoniae induced oxidative stress during corneal infections and inhibited antioxidant signaling pathways and immune responses like autophagy. tBHQ aided in restoring Nrf2 activation, reduced reactive oxygen species generation and prevented cytotoxicity and cell death in S. pneumoniae-infected HCEC. tBHQ also induced autophagy in a Nrf2-dependent manner and reduced bacterial survival in HCEC. Increased expression of antimicrobial peptides by tBHQ might have contributed to a reduction of bacterial load and cytotoxicity, as exemplified in LL-37 depleted corneal epithelial cells exposed to S. pneumoniae compared to control siRNA-transfected cells. tBHQ mediates alleviation of oxidative stress induced by S. pneumoniae by activating Nrf2-mediated antioxidant signaling in corneal epithelial cells. tBHQ also enhances expression of antimicrobial peptides in corneal cells and aids in inhibition of bacterial survival and cytotoxicity of HCEC.
Collapse
|
14
|
Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon JC, Oesterling J, Rico MC. Multiplex Gene Tagging with CRISPR-Cas9 for Live-Cell Microscopy and Application to Study the Role of SARS-CoV-2 Proteins in Autophagy, Mitochondrial Dynamics, and Cell Growth. CRISPR J 2021; 4:854-871. [PMID: 34847745 PMCID: PMC8742308 DOI: 10.1089/crispr.2021.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lack of efficient tools to label multiple endogenous targets in cell lines without staining or fixation has limited our ability to track physiological and pathological changes in cells over time via live-cell studies. Here, we outline the FAST-HDR vector system to be used in combination with CRISPR-Cas9 to allow visual live-cell studies of up to three endogenous proteins within the same cell line. Our approach utilizes a novel set of advanced donor plasmids for homology-directed repair and a streamlined workflow optimized for microscopy-based cell screening to create genetically modified cell lines that do not require staining or fixation to accommodate microscopy-based studies. We validated this new methodology by developing two advanced cell lines with three fluorescent-labeled endogenous proteins that support high-content imaging without using antibodies or exogenous staining. We applied this technology to study seven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) viral proteins to understand better their effects on autophagy, mitochondrial dynamics, and cell growth. Using these two cell lines, we were able to identify the protein ORF3a successfully as a potent inhibitor of autophagy, inducer of mitochondrial relocalization, and a growth inhibitor, which highlights the effectiveness of live-cell studies using this technology.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - Jonathon Nixon-Abell
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, Virginia, USA
| | - Carlos A Barrero
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - John C Gordon
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - James Oesterling
- Flow Cytometry and Cell Sorting Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Mario C Rico
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Tassotti M, Mena P, Del Rio D, Palestini P. Study of the Antioxidant Effects of Coffee Phenolic Metabolites on C6 Glioma Cells Exposed to Diesel Exhaust Particles. Antioxidants (Basel) 2021; 10:antiox10081169. [PMID: 34439417 PMCID: PMC8388867 DOI: 10.3390/antiox10081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
The contributing role of environmental factors to the development of neurodegenerative diseases has become increasingly evident. Here, we report that exposure of C6 glioma cells to diesel exhaust particles (DEPs), a major constituent of urban air pollution, causes intracellular reactive oxygen species (ROS) production. In this scenario, we suggest employing the possible protective role that coffee phenolic metabolites may have. Coffee is a commonly consumed hot beverage and a major contributor to the dietary intake of (poly) phenols. Taking into account physiological concentrations, we analysed the effects of two different coffee phenolic metabolites mixes consisting of compounds derived from bacterial metabolization reactions or phase II conjugations, as well as caffeic acid. The results showed that these mixes were able to counteract DEP-induced oxidative stress. The cellular components mediating the downregulation of ROS included extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and uncoupling protein 2 (UCP2). Contrary to coffee phenolic metabolites, the treatment with N-acetylcysteine (NAC), a known antioxidant, was found to be ineffective in preventing the DEP exposure oxidant effect. These results revealed that coffee phenolic metabolites could be promising candidates to protect against some adverse health effects of daily exposure to air pollution.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
- Correspondence:
| |
Collapse
|
16
|
Dodson M, Anandhan A, Zhang DD, Madhavan L. An NRF2 Perspective on Stem Cells and Ageing. FRONTIERS IN AGING 2021; 2:690686. [PMID: 36213179 PMCID: PMC9536878 DOI: 10.3389/fragi.2021.690686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 04/24/2023]
Abstract
Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute and Bio5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
17
|
Hwang I, Tang D, Paik J. Oxidative stress sensing and response in neural stem cell fate. Free Radic Biol Med 2021; 169:74-83. [PMID: 33862161 PMCID: PMC9594080 DOI: 10.1016/j.freeradbiomed.2021.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.
Collapse
Affiliation(s)
- Inah Hwang
- R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Deanna Tang
- University of Chicago, Chicago, IL, 60637, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
18
|
Rahman Z, Dwivedi DK, Jena GB. The intervention of tert-butylhydroquinone protects ethanol-induced gastric ulcer in type II diabetic rats: the role of Nrf2 pathway. Can J Physiol Pharmacol 2021; 99:522-535. [PMID: 33095998 DOI: 10.1139/cjpp-2020-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ethanol consumption increases the prevalence of gastric ulcer (GU) in rats with type II diabetes (T2D). Induction of GU by absolute ethanol (5 mL/kg or 3.94 g/kg) in the animal model resembles human ulcer characteristics. The aim was to investigate the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the treatment of GU in diabetic condition. The rats were exposed to absolute ethanol 1 h before sacrifice and T2D was induced by combined exposure of high-fat diet and low dose streptozotocin. Pretreatment of tert-butylhydroquinone (tBHQ) (25 and 50 mg/kg), metformin (500 mg/kg), and omeprazole (20 mg/kg) were given once daily for last three consecutive weeks. In ethanol-exposed diabetic rats, pretreatment with tBHQ, omeprazole, and metformin reduced gastric mucosal lesion, ulcer index, histological alterations, malondialdehyde level, and apoptosis. Furthermore, the intervention of tBHQ, omeprazole, and metformin improved the integrity of the stomach mucosa, glutathione, gastric pH, collagen, and goblet cells. tBHQ treatment improved ethanol-induced alterations of Nrf2, catalase, heat shock protein 70 (HSP70), NF-κB, and endothelin-1 expressions in diabetic rats. In diabetic conditions, the incidence of GU is increased due to elevated levels of reactive oxygen species, inflammatory mediators, depleted levels of cellular antioxidants, and altered gastric parameters. The tBHQ intervention could be a rational strategy to protect these changes.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - G B Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
19
|
Tessier SN, Breedon SA, Storey KB. Modulating Nrf2 transcription factor activity: Revealing the regulatory mechanisms of antioxidant defenses during hibernation in 13-lined ground squirrels. Cell Biochem Funct 2021; 39:623-635. [PMID: 33624895 DOI: 10.1002/cbf.3627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
Mammalian hibernators undergo major behavioural, physiological and biochemical changes to survive hypothermia, ischaemia-reperfusion and finite fuel reserves during days or weeks of continuous torpor. During hibernation, the 13-lined ground squirrel (Ictidomys tridecemlineatus) undergoes a global suppression of energetically expensive processes such as transcription and translation, while selectively upregulating certain genes/proteins to mitigate torpor-related damage. Antioxidant defenses are critical for preventing damage caused by reactive oxygen species (ROS) during torpor and arousal, and Nrf2 is a critical regulator of these antioxidant genes. This study analysed the relative protein expression levels of Nrf2, KEAP1, small Mafs (MafF, MafK and MafG) and catalase and the regulation of Nrf2 transcription factors by post-translational modifications (PTMs) and protein-protein interactions with a negative regulator (KEAP1) during hibernation. It was found that a significant increase in MafK during late torpor predicated an increase in relative Nrf2 and catalase levels seen in arousal. Additionally, Nrf2-KEAP1 protein-protein interactions and Nrf2 PTMs, including serine phosphorylation and lysine acetylation, were responsive to cycles of torpor-arousal with peak responses occurring during arousal. These peaks seen during arousal correspond to a surge in oxygen consumption, which causes increased ROS production. Thus, these regulatory mechanisms could be important during hibernation because they provide mechanisms for mitigating the deleterious effects of oxidative stress by modifying Nrf2 expression and function in an energetically inexpensive manner.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine and Surgery, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sarah A Breedon
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Kahroba H, Ramezani B, Maadi H, Sadeghi MR, Jaberie H, Ramezani F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 2021; 65:101211. [PMID: 33186670 DOI: 10.1016/j.arr.2020.101211] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neurons in nervous system. NDs are categorized as acute NDs such as stroke and head injury, besides chronic NDs including Alzheimer's, Parkinson's, Huntington's diseases, Friedreich's Ataxia, Multiple Sclerosis. The exact etiology of NDs is not understood but oxidative stress, inflammation and synaptic dysfunction are main hallmarks. Oxidative stress leads to free radical attack on neural cells which contributes to protein misfolding, glia cell activation, mitochondrial dysfunction, impairment of DNA repair system and subsequently cellular death. Neural stem cells (NSCs) support adult neurogenesis in nervous system during injuries which is limited to certain regions in brain. NSCs can differentiate into the neurons, astrocytes or oligodendrocytes. Impaired neurogenesis and inadequate induction of neurogenesis are the main obstacles in treatment of NDs. Protection of neural cells from oxidative damages and supporting neurogenesis are promising strategies to treat NDs. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional master regulator that maintains the redox homeostasis in cells by provoking expression of antioxidant, anti-inflammatory and cytoprotective genes. Nrf2 can strongly influence the NSCs function and fate determination by reducing levels of reactive oxygen species in benefit of NSC survival and neurogenesis. In this review we will summarize the role of Nrf2 in NSC function, and exogenous and endogenous therapeutic strategies in treatment of NDs.
Collapse
Affiliation(s)
- Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Ramezani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Maadi
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020. [PMCID: PMC7445017 DOI: 10.1002/sctm.20-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020; 9:E659. [PMID: 32722164 PMCID: PMC7463602 DOI: 10.3390/antiox9080659] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The Nrf2-Keap1-ARE pathway is the principal regulator of antioxidant and phase II detoxification genes. Its activation increases the expression of antioxidant and cytoprotective proteins, protecting cells against infections. Nrf2 modulates virus-induced oxidative stress, ROS generation, and disease pathogenesis, which are vital in the viral life cycle. During respiratory viral infections, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an inflammatory process, and oxidative stress of the epithelium lining cells activate the transcription factor Nrf2, which protects cells from oxidative stress and inflammation. Nrf2 reduces angiotensin-converting enzyme 2 (ACE2) receptors expression in respiratory epithelial cells. SARS-CoV2 has a high affinity for ACE2 that works as receptors for coronavirus surface spike glycoprotein, facilitating viral entry. Disease severity may also be modulated by pre-existing conditions, such as impaired immune response, obesity, and age, where decreased level of Nrf2 is a common feature. Consequently, Nrf2 activators may increase Nrf2 levels and enhance antiviral mediators' expression, which could initiate an "antiviral state", priming cells against viral infection. Therefore, this hypothesis paper describes the use of flavonoid supplements combined with vitamin D3 to activate Nrf2, which may be a potential target to prevent and/or decrease SARS-CoV-2 infection severity, reducing oxidative stress and inflammation, enhancing innate immunity, and downregulating ACE2 receptors.
Collapse
Affiliation(s)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
23
|
Badr CE, da Hora CC, Kirov AB, Tabet E, Amante R, Maksoud S, Nibbs AE, Fitzsimons E, Boukhali M, Chen JW, Chiu NHL, Nakano I, Haas W, Mazitschek R, Tannous BA. Obtusaquinone: A Cysteine-Modifying Compound That Targets Keap1 for Degradation. ACS Chem Biol 2020; 15:1445-1454. [PMID: 32338864 DOI: 10.1021/acschembio.0c00104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously identified the natural product obtusaquinone (OBT) as a potent antineoplastic agent with promising in vivo activity in glioblastoma and breast cancer through the activation of oxidative stress; however, the molecular properties of this compound remained elusive. We used a multidisciplinary approach comprising medicinal chemistry, quantitative mass spectrometry-based proteomics, functional studies in cancer cells, and pharmacokinetic analysis, as well as mouse xenograft models to develop and validate novel OBT analogs and characterize the molecular mechanism of action of OBT. We show here that OBT binds to cysteine residues with a particular affinity to cysteine-rich Keap1, a member of the CUL3 ubiquitin ligase complex. This binding promotes an overall stress response and results in ubiquitination and proteasomal degradation of Keap1 and downstream activation of the Nrf2 pathway. Using positron emission tomography (PET) imaging with the PET-tracer 2-[18F]fluoro-2-deoxy-d-glucose (FDG), we confirm that OBT is able to penetrate the brain and functionally target brain tumors. Finally, we show that an OBT analog with improved pharmacological properties, including enhanced potency, stability, and solubility, retains the antineoplastic properties in a xenograft mouse model.
Collapse
Affiliation(s)
- Christian E. Badr
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Cintia Carla da Hora
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Aleksandar B. Kirov
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Elie Tabet
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Romain Amante
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Antoinette E. Nibbs
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Evelyn Fitzsimons
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - John W. Chen
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Norman H. L. Chiu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Caroline 27402, United States
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Broad Institute of Harvard & Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
24
|
tBHQ Induces a Hormetic Response That Protects L6 Myoblasts against the Toxic Effect of Palmitate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3123268. [PMID: 32509140 PMCID: PMC7246405 DOI: 10.1155/2020/3123268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
Nutritional status, in particular overweight and obesity, as well as sedentarism and high-fat diet consumption, are important risk factors to develop chronic diseases, which have a higher impact on the elderly's health. Therefore, these nutritional problems have become a concern to human healthspan and longevity. The fatty acids obtained thru the diet or due to fatty acid synthesis during obesity accumulate within the body generating toxicity and cell death. Fat is not only stored in adipose tissue, but it can also be stored in skeletal muscle. Palmitic acid (PA) has been reported as one of the most important saturated free fatty acids; it is associated to chronic oxidative stress and increased mitochondrial ROS production causing cell death by apoptosis. In skeletal muscle, palmitate has been associated with various pathophysiological consequences, which lead to muscle deterioration during aging and obesity. Since molecules that modify redox state have been proven to prevent cellular damage by inducing a hormetic response, the aim of this study was to evaluate if tert-butylhydroquinone (tBHQ) could activate an antioxidant hormetic response that would be able to protect L6 myoblasts from palmitate toxic effect. Our results provide evidence that tBHQ is able to protect L6 myoblasts against the toxicity induced by sodium palmitate due to a synergistic activation of different signaling pathways such as Nrf2 and NF-κB.
Collapse
|
25
|
Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity independent on mitochondrial ROS production. Toxicol Lett 2020; 331:1-10. [PMID: 32428544 DOI: 10.1016/j.toxlet.2020.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Cisplatin is a well-known and commonly used chemotherapeutic agent. However, cisplatin-induced ototoxicity limits its clinical use. Previous studies have shown an important role of reactive oxygen species (ROS) accumulation in the pathogenesis of cisplatin-induced ototoxicity. In many cell types, the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE) protect against oxidative stress by suppressing ROS. Here our results showed that cisplatin injury reduced Nrf2 expression and inhibited Nrf2 translocation in HEI-OC1 cells and Nrf2 activator tert-butylhydroquinone (TBHQ) rescued hair cells from cisplatin induced apoptosis by suppressing the total cellular ROS accumulation. Moreover, we found that decreased ROS accumulation induced by TBHQ didn't depend on mitochondrial derived ROS production, indicating that Nrf2 activation alleviated cisplatin induced oxidative stress and apoptosis through mitochondrial-independent ROS production. Therefore, we provide a potential strategy of prevention and treatment for cisplatin-induced ototoxicity by Nrf2 activation. In conclusion, Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity through suppressing the total cellular ROS levels which arise from sources other than mitochondria.
Collapse
|
26
|
NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection. J Virol 2020; 94:JVI.00016-20. [PMID: 32161178 DOI: 10.1128/jvi.00016-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-κB transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-κB complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection.IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-κB p50 subunit partners with Keap1 to form the Keap1-NF-κB complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV.
Collapse
|
27
|
Abstract
Activation of the transcription factor Nrf2 via the Keap1-Nrf2-ARE signaling system regulates the transcription and subsequent expression of cellular cytoprotective proteins and plays a crucial role in preventing pathological conditions exacerbated by the overproduction of oxidative stress. In addition to electrophilic modulators, direct non-covalent inhibitors that interrupt the Keap1-Nrf2 protein-protein interaction (PPI) leading to Nrf2 activation have attracted a great deal of attention as potential preventive and therapeutic agents for oxidative stress-related diseases. Structural studies of Keap1-binding ligands, development of biochemical and cellular assays, and new structure-based design approaches have facilitated the discovery of small molecule PPI inhibitors. This perspective reviews the Keap1-Nrf2-ARE system, its physiological functions, and the recent progress in the discovery and the potential applications of direct inhibitors of Keap1-Nrf2 PPI.
Collapse
|
28
|
Ostrand-Rosenberg S, Beury DW, Parker KH, Horn LA. Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol Immunother 2020; 69:215-221. [PMID: 31501954 PMCID: PMC7004852 DOI: 10.1007/s00262-019-02388-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are present in most cancer patients where they are significant contributors to the immune suppressive tumor microenvironment (TME). The TME is a hostile locale due to deficiencies in oxygen (hypoxia) and nutrients, and the presence of reactive oxygen species (ROS). The survival of tumor cells within the TME is partially governed by two mechanisms: (1) Activation of the transcription factor Nuclear Factor Erythroid-derived 2-like 2 (Nrf2) which turns on genes that attenuate oxidative stress; and (2) The presence of High Mobility Group Box Protein-1 (HMGB1), a damage-associated molecular pattern molecule (DAMP) that induces autophagy and protects against apoptosis. Because Nrf2 and HMGB1 promote tumor cell survival, we speculated that Nrf2 and HMGB1 may facilitate MDSC survival. We tested this hypothesis using Nrf2+/+ and Nrf2-/- BALB/c and C57BL/6 mice and pharmacological inhibitors of HMGB1. In vitro and in vivo studies demonstrated that Nrf2 increased the suppressive potency and quantity of tumor-infiltrating MDSC by up-regulating MDSC production of H2O2 and decreasing MDSC apoptosis. Decreased apoptosis was accompanied by a decrease in the production of MDSC, demonstrating that MDSC levels are homeostatically regulated. Pharmacological inhibition of autophagy increased MDSC apoptosis, indicating that autophagy increases MDSC half-life. Inhibition of HMGB1 also increased MDSC apoptosis and reduced MDSC autophagy. These results combined with our previous findings that HMGB1 drives the accumulation of MDSC demonstrate that HMGB1 maintains MDSC viability by inducing autophagy. Collectively, these findings identify Nrf2 and HMGB1 as important factors that enable MDSC to survive in the TME.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA.
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, 15 North Medical Drive East, Ste. #1100, Salt Lake City, UT, 84112, USA.
| | - Daniel W Beury
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Katherine H Parker
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Lucas A Horn
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| |
Collapse
|
29
|
Borella R, Forti L, Gibellini L, De Gaetano A, De Biasi S, Nasi M, Cossarizza A, Pinti M. Synthesis and Anticancer Activity of CDDO and CDDO-Me, Two Derivatives of Natural Triterpenoids. Molecules 2019; 24:molecules24224097. [PMID: 31766211 PMCID: PMC6891335 DOI: 10.3390/molecules24224097] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 01/05/2023] Open
Abstract
Triterpenoids are natural compounds synthesized by plants through cyclization of squalene, known for their weak anti-inflammatory activity. 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), and its C28 modified derivative, methyl-ester (CDDO-Me, also known as bardoxolone methyl), are two synthetic derivatives of oleanolic acid, synthesized more than 20 years ago, in an attempt to enhance the anti-inflammatory behavior of the natural compound. These molecules have been extensively investigated for their strong ability to exert antiproliferative, antiangiogenic, and antimetastatic activities, and to induce apoptosis and differentiation in cancer cells. Here, we discuss the chemical properties of natural triterpenoids, the pathways of synthesis and the biological effects of CDDO and its derivative CDDO-Me. At nanomolar doses, CDDO and CDDO-Me have been shown to protect cells and tissues from oxidative stress by increasing the transcriptional activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). At doses higher than 100 nM, CDDO and CDDO-Me are able to modulate the differentiation of a variety of cell types, both tumor cell lines or primary culture cell, while at micromolar doses these compounds exert an anticancer effect in multiple manners; by inducing extrinsic or intrinsic apoptotic pathways, or autophagic cell death, by inhibiting telomerase activity, by disrupting mitochondrial functions through Lon protease inhibition, and by blocking the deubiquitylating enzyme USP7. CDDO-Me demonstrated its efficacy as anticancer drugs in different mouse models, and versus several types of cancer. Several clinical trials have been started in humans for evaluating CDDO-Me efficacy as anticancer and anti-inflammatory drug; despite promising results, significant increase in heart failure events represented an obstacle for the clinical use of CDDO-Me.
Collapse
Affiliation(s)
- Rebecca Borella
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Luca Forti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (S.D.B.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (S.D.B.)
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.N.); (A.C.)
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.N.); (A.C.)
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
- Correspondence: ; Tel.: +39 059 205 5386; Fax: +39 059 205 5426
| |
Collapse
|
30
|
Tert-butylhydroquinone enhanced angiogenesis and astrocyte activation by activating nuclear factor-E2-related factor 2/heme oxygenase-1 after focal cerebral ischemia in mice. Microvasc Res 2019; 126:103891. [DOI: 10.1016/j.mvr.2019.103891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/07/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
|
31
|
Cai Z, Zheng F, Ding Y, Zhan Y, Gong R, Li J, Aschner M, Zhang Q, Wu S, Li H. Nrf2-regulated miR-380-3p Blocks the Translation of Sp3 Protein and Its Mediation of Paraquat-Induced Toxicity in Mouse Neuroblastoma N2a Cells. Toxicol Sci 2019; 171:515-529. [PMID: 31368498 PMCID: PMC6760285 DOI: 10.1093/toxsci/kfz162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Laboratorial and epidemiological research has established a relationship between paraquat (PQ) exposure and a risk for Parkinson's disease. Previously, we have investigated the effects of nuclear factor erythroid 2 related factor 2 (Nrf2) and microRNAs in PQ-induced neurotoxicity, addressing the function of miR-380-3p, a microRNA dysregulated by PQ, as well as Nrf2 deficiency. Nrf2 is known to mediate the expression of a variety of genes, including noncoding genes. By chromatin immunoprecipitation, we identified the relationship between Nrf2 and miR-380-3p in transcriptional regulation. qRT-PCR, Western blots, and dual-luciferase reporter gene assay showed that miR-380-3p blocked the translation of the transcription factor specificity protein-3 (Sp3) in the absence of degradation of Sp3 mRNA. Results based on cell counting analysis, annexin v-fluorescein isothiocyanate/propidium iodide double-staining assay, and propidium iodide staining showed that overexpression of miR-380-3p inhibited cell proliferation, increased the apoptotic rate, induced cell cycle arrest, and intensified the toxicity of PQ in mouse neuroblastoma (N2a [Neuro2a]) cells. Knockdown of Sp3 inhibited cell proliferation and eclipsed the alterations induced by miR-380-3p in cell proliferation. Two mediators of apoptosis and cell cycle identified in previous studies as Sp3-regulated, namely cyclin-dependent kinase inhibitor 1 (p21) and calmodulin (CaM), were dysregulated by PQ, but not Sp3 deficiency. In conclusion, Nrf2-regulated miR-380-3p inhibited cell proliferation and enhanced the PQ-induced toxicity in N2a cells potentially by blocking the translation Sp3 mRNA. We conclude that CaM and p21 were involved in PQ-induced toxicity.
Collapse
Affiliation(s)
- Zhipeng Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Center for Drug Non-Clinical Evaluation
- Research of Guangdong Institute of Applied Bio-resources, Guangzhou 510000, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yan Ding
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yanting Zhan
- Department of Management, Fujian Health College, Fuzhou 350101, China
| | - Ruijie Gong
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
| | - Jing Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky 40202
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
32
|
Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells. Cells 2019; 8:cells8101159. [PMID: 31569690 PMCID: PMC6829349 DOI: 10.3390/cells8101159] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Sulforaphane (SFN), an activator of transcription factor Nrf2 (NFE2-related factor), modulates antioxidant defense by Nrf2-mediated regulation of antioxidant genes like Peroxiredoxin 6 (Prdx6) and affects cellular homeostasis. We previously observed that dose levels of SFN are crucial in determining life or death of lens epithelial cells (LECs). Herein, we demonstrated that higher doses of SFN (>6 μM) activated death signaling by overstimulation of Nrf2/ARE (antioxidant response element)-mediated Kruppel-like factor (Klf9) repression of Prdx6 expression, which increased reactive oxygen species (ROS) load and cell death. Mechanistically, Klf9 bound to its repressive Klf9 binding elements (RKBE; 5-CA/GCCC-3) in the Prdx6 promoter, and repressed Prdx6 transcription. Under the condition of higher dose of SFN, excessive Nrf2 abundance caused death signaling by enforcing Klf9 activation through ARE (5-RTGAYnnnGC-3) in Klf9 promoter that suppress antioxidant genes such as Prdx6 via a Klf9-dependent fashion. Klf9-depletion showed that Klf9 independently caused ROS reduction and subsequent cell survival, demonstrating that Klf9 upregulation caused cell death. Our work revealed the molecular mechanism of dose-dependent altered activity of SFN in LECs, and demonstrated that SFN activity was linked to levels of Nrf2/Klf9/Prdx6 axis. We proposed that in the development of therapeutic interventions for aging/oxidative disorders, combinations of Klf9-ShRNA and Nrf2 inducers may prove to be a promising strategy.
Collapse
|
33
|
Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging. Biogerontology 2019; 20:583-603. [DOI: 10.1007/s10522-019-09817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
|
34
|
Sambon M, Napp A, Demelenne A, Vignisse J, Wins P, Fillet M, Bettendorff L. Thiamine and benfotiamine protect neuroblastoma cells against paraquat and β-amyloid toxicity by a coenzyme-independent mechanism. Heliyon 2019; 5:e01710. [PMID: 31193162 PMCID: PMC6520661 DOI: 10.1016/j.heliyon.2019.e01710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Background Benfotiamine (BFT) is a synthetic thiamine precursor with high bioavailability. It is efficient in treating complications of type 2 diabetes and has beneficial effects in mouse models of neurodegenerative diseases. The mechanism of action of BFT remains unknown, though it is sometimes suggested that it may be linked to increased thiamine diphosphate (ThDP) coenzyme function. Methods We used a mouse neuroblastoma cell line (Neuro2a) grown in thiamine-restricted medium. The cells were stressed by exposure to paraquat (PQ) or amyloid β1-42 peptide in the presence or absence of BFT and the cell survival was measured using the MTT method. In each case, BFT was compared with sulbutiamine (SuBT), an unrelated thiamine precursor, and thiamine. Metabolites of BFT were determined by HPLC and mass spectrometry. Results At 50 μM, BFT protects the cells against PQ and amyloid β1-42 peptide-induced toxicity with the same efficacy. Protective effects were also observed with SuBT and with higher concentrations of thiamine. The main metabolites of BFT were thiamine and S-benzoylthiamine (S-BT). Treatment with both precursors induces a strong increase in intracellular content of thiamine. Protective effects of BFT and SuBT are directly related to thiamine (but not ThDP) levels in Neuro2a cells. Conclusions BFT, SuBT and thiamine all protect the cells against oxidative stress, suggesting an antioxidant effect of thiamine. Our results are not in favor of a direct ROS scavenging effect of thiamine but rather an indirect effect possibly mediated by some antioxidant signaling pathway. It is however not clear whether this effect is due to thiamine itself, its thiol form or an unknown metabolite. General significance Our results suggest a role of thiamine in protection against oxidative stress, independent of the coenzyme function of thiamine diphosphate.
Collapse
Key Words
- ARE, antioxidant response element
- BFT, benfotiamine
- Cell biology
- FBS, fetal bovine serum
- Neuroscience
- O-BT, O-benzoylthiamine
- PQ, paraquat
- ROS, reactive oxygen species
- S-BT, S-benzoylthiamine
- SuBT, sulbutiamine
- TPK, thiamine pyrophosphokinase
- ThDP, thiamine diphosphate
- ThMP, thiamine monophosphate
Collapse
Affiliation(s)
- Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Aurore Napp
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Julie Vignisse
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Sulforaphane - role in aging and neurodegeneration. GeroScience 2019; 41:655-670. [PMID: 30941620 DOI: 10.1007/s11357-019-00061-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the last several years, numerous molecules derived from plants and vegetables have been tested for their antioxidant, anti-inflammatory, and anti-aging properties. One of them is sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables. SFN activates the antioxidant and anti-inflammatory responses by inducing Nrf2 pathway and inhibiting NF-κB. It also has an epigenetic effect by inhibiting HDAC and DNA methyltransferases and modifies mitochondrial dynamics. Moreover, SFN preserves proteome homeostasis (proteostasis) by activating the proteasome, which has been shown to lead to increased cellular lifespan and prevent neurodegeneration. In this review, we describe some of the molecular and physical characteristics of SFN, its mechanisms of action, and the effects that SFN treatment induces in order to discuss its relevance as a "miraculous" drug to prevent aging and neurodegeneration.
Collapse
|
36
|
Tian L, Lu Y, Yang T, Deng Z, Xu L, Yao W, Ma C, Li X, Zhang J, Liu Y, Wang J. aPKCι promotes gallbladder cancer tumorigenesis and gemcitabine resistance by competing with Nrf2 for binding to Keap1. Redox Biol 2019; 22:101149. [PMID: 30822690 PMCID: PMC6395946 DOI: 10.1016/j.redox.2019.101149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Gallbladder cancer (GBC) is a highly malignant bile duct cancer with poor prognosis characterized by its insensitivity to chemotherapy. Emerging evidence indicates that cytoprotective antioxidation is involved in drug resistance of various cancers; however, the underlying molecular mechanisms remain obscure. Here, we demonstrated that atypical protein kinase Cι (aPKCι) mediated reactive oxygen species (ROS) inhibition in a kinase-independent manner, which played a crucial role in tumorigenesis and chemoresistance. Mechanistically, we found that aPKCι facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation, nuclear translocation and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) through a highly conserved DLL motif. In addition, the aPKCι-Keap1 interaction was required for antioxidant effect, cell growth and gemcitabine resistance in GBC. Importantly, we further confirmed that aPKCι was frequently upregulated and correlated with poor prognosis in patients with GBC. Collectively, our findings suggested that aPKCι positively modulated the Keap1-Nrf2 pathway to enhance GBC growth and gemcitabine resistance, implying that the aPKCι-Keap1-Nrf2 axis may be a potential approach to overcome the drug resistance for the treatment of GBC. aPKCι inhibits ROS in a kinase-independent manner. aPKCι competes with Nrf2 for binding to Keap1 via a DLL motif. The aPKCι-Keap1 interaction promotes cell growth and gemcitabine resistance. Upregulation of aPKCι was linked to poor prognosis in patients with GBC. aPKCι-Keap1-Nrf2 axis may be a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Li Tian
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Yao
- Department of Oncology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaoqun Ma
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liu
- Department of Geriatrics, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
37
|
Dong Y, Xu W, Liu C, Liu P, Li P, Wang K. Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. Int J Biol Sci 2019; 15:680-687. [PMID: 30745854 PMCID: PMC6367576 DOI: 10.7150/ijbs.30464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are a class of reactive molecules that have been implicated in a variety of cardiovascular diseases, accompanied by disorder of multiple signaling events. As cardiomyocytes maintain abundant of mitochondria, which supply the major source of endogenous ROS, oxidative damage to mitochondria often drives apoptotic cell death and initiates cardiac pathology. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in regulating gene expression during those pathological events in the heart, such as myocardial infarction, cardiac hypertrophy, and heart failure. Emerging evidences have highlighted that different ROS levels in response to diverse cardiac stresses result in differential expression of ncRNAs, subsequently altering the expression of pathogenetic genes. However, the knowledge about the ncRNA-linked ROS regulatory mechanisms in cardiac pathologies is still largely unexplored. In this review, we summarize the connections that exist among ROS, ncRNAs, and cardiac diseases to understand the interactions among the molecular entities underlying cardiac pathological events in the hopes of guiding novel therapies for heart diseases in the future.
Collapse
Affiliation(s)
- Yanhan Dong
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Wenhua Xu
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Cuiyun Liu
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Peijun Liu
- Biochemistry Department No.2 Middle School Qingdao Shandong P.R. China 266000
| | - Peifeng Li
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
38
|
Östreicher C, Gensberger-Reigl S, Pischetsrieder M. Targeted mass spectrometry to monitor nuclear accumulation of endogenous Nrf2 and its application to SH-SY5Y cells stimulated with food components. Anal Bioanal Chem 2019; 411:1273-1286. [PMID: 30637439 DOI: 10.1007/s00216-018-1560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The Nrf2 signaling pathway is highly significant for redox homeostasis. Hence, nutrients and drugs activating Nrf2 can prevent oxidative stress-mediated medical conditions. After activation, Nrf2 accumulates in the cell nucleus; therefore, stimulation of Nrf2 by food components and drugs is usually monitored by measuring nuclear Nrf2 levels. The present study developed a targeted mass spectrometry method for the highly reliable quantification of nuclear Nrf2 levels. Three Nrf2-specific peptides were detected after enzymatic digestion of the nuclear fraction by the developed protocol for micro-liquid chromatography-tandem mass spectrometry in scheduled multiple reaction monitoring mode (microLC-MS/MS-sMRM). The method also identified nuclear Nrf2 unequivocally and specifically in the SDS-PAGE fraction of 100-150 kDa. Moreover, highly precise and linear relative quantification was achieved (mean relative standard deviation 8.3%; coefficient of determination 0.998). Incubation experiments in SH-SY5Y neuroblastoma cells revealed significantly up to 6-fold elevated nuclear Nrf2 levels after stimulation with 10 μM carnosol (rosemary), 10 μM sulforaphane (broccoli), or 20 μM cinnamaldehyde (cinnamon). Our results were in very good accordance with conventional Nrf2 western blotting and were highly correlated with the food components' effect on the expression levels of NAD(P)H dehydrogenase [quinone] 1 and thioredoxin reductase 1, two major Nrf2-regulated cytoprotective enzymes. The newly developed microLC-MS/MS-sMRM method shows broad applicability and can serve as a highly selective and reliable method to analyze Nrf2 activation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Christiane Östreicher
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Sabrina Gensberger-Reigl
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
39
|
Zhou B, Zhang X, Wang G, Barbour KW, Berger FG, Wang Q. Drug screening assay based on the interaction of intact Keap1 and Nrf2 proteins in cancer cells. Bioorg Med Chem 2019; 27:92-99. [PMID: 30473361 DOI: 10.1016/j.bmc.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Nrf2-Keap1 interaction is the major regulatory pathway for cytoprotective responses against oxidative and electrophilic stresses. Keap1, a substrate protein of a Cul3-dependent E3 ubiquitin ligase complex, is a negative regulator of Nrf2. The use of chemicals to regulate the interaction between Keap1 and Nrf2 has been proposed as a strategy for the chemoprevention of degenerative diseases and cancers. RESULTS The interactions between Keap1 and Nrf2 in vitro and in vivo were investigated using fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) strategies in our study. Nrf2 with its N-terminal fused to eGFP and Keap1 with its C-terminal fused to mCherry were expressed and purified in vitro. When purified eGFP-Nrf2 and Keap1-mChrry proteins were mixed together, a strong FRET signal could be detected, indicating an efficient energy transfer from eGFP to mCherry. Moreover, the FRET was detected in vivo using confocal microscopy in colon cancer HCT-116 cells that were co-transfected with eGFP-Nrf2 and Keap1-mCherry. Finally, using an eGFP BiFC approach, the Keap1-Nrf2 interaction was also detected in MCF7 cells by transfecting eGFP N-terminal fused to Nrf2 (eN158-Nrf2) and eGFP C-terminal fused to Keap1 (eC159-Keap1). Using the BiFC and FRET systems, we demonstrated that the prototypical Nrf2-activiting compound tBHQ and the antitumor drug F-dUrd might interfere with the intracellular interaction between Keap1 and Nrf2 whereas the 5-Fu have little role in activating the protective response of Nrf2 pathway in cancer cells. CONCLUSIONS By analyzing the perturbation of the energy transfer between the donor and acceptor fluorophores and the bimolecular fluorescence complementation of eGFP, we can screen potential inhibitors for the interaction between Keap1 and Nrf2.
Collapse
Affiliation(s)
- Bo Zhou
- College of Life Science, Northeast Forestry University, Harbin, China; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Xiaolei Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Guiren Wang
- Biomedical Engineering Program and Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA.
| | - Karen W Barbour
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
40
|
Chen C, Zhong Y, Wang JJ, Yu Q, Plafker K, Plafker S, Zhang SX. Regulation of Nrf2 by X Box-Binding Protein 1 in Retinal Pigment Epithelium. Front Genet 2018; 9:658. [PMID: 30619478 PMCID: PMC6306429 DOI: 10.3389/fgene.2018.00658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023] Open
Abstract
Normal function of the retinal pigment epithelium (RPE) is essential for maintaining the structural integrity of retinal photoreceptors and the visual process. Sustained oxidative damage of the RPE due to aging and other risk factors contributes to the development of age-related macular degeneration (AMD). The transcription factor NF-E2-related factor 2 (Nrf2) is a central regulator of cellular antioxidant and detoxification responses. Enhancing Nrf2 function protects RPE cells from oxidation-related apoptosis and cell death. Previously, we demonstrated that Nrf2 activation can be induced by endoplasmic reticulum (ER) stress; however, the mechanisms are not fully understood. In the present study, we examined the role of X box-binding protein 1 (XBP1), an ER stress-inducible transcription factor, in regulation of Nrf2 in the RPE. We found that RPE-specific XBP1 conditional knockout (cKO) mice exhibit a significant reduction in Nrf2 mRNA and protein levels, along with decreased expression of major Nrf2 target genes, in the RPE/choroid complex. Using primary RPE cells isolated from XBP1 cKO mice and human ARPE-19 cell line, we confirmed that loss of XBP1 gene or pharmacological inhibition of XBP1 splicing drastically reduces Nrf2 levels in the RPE. Conversely, overexpression of spliced XBP1 results in a modest but significant increase in cytosolic and nuclear Nrf2 protein levels without affecting the transcription of Nrf2 gene. Moreover, induction of ER stress by tunicamycin and thapsigargin markedly increases Nrf2 expression, which is abolished in cells pretreated with XBP1 splicing inhibitors 4μ8C and quinotrierixin. Mechanistic studies indicate that quinotrierixin reduces Nrf2 expression likely through inhibition of protein translation. Finally, we demonstrate that overexpression of Nrf2 protected RPE cells against oxidative injury but appeared to be insufficient to rescue from XBP1 deficiency-induced cell death. Taken together, our results indicate that XBP1 modulates Nrf2 activity in RPE cells and that XBP1 deficiency contributes to oxidative injury of the RPE.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmic Diseases, Yunnan Eye Institute, Kunming, China.,Department of Medicine, The University of Oklahoma, Oklahoma City, OK, United States
| | - Yimin Zhong
- Department of Medicine, The University of Oklahoma, Oklahoma City, OK, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Joshua J Wang
- Department of Medicine, The University of Oklahoma, Oklahoma City, OK, United States.,Department of Ophthalmology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kendra Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Scott Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Sarah X Zhang
- Department of Medicine, The University of Oklahoma, Oklahoma City, OK, United States.,Department of Ophthalmology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
41
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med 2018; 129:394-406. [PMID: 30315936 DOI: 10.1016/j.freeradbiomed.2018.10.409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/30/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor that activates the antioxidant cellular defense in response to oxidative stress, leading to neuroprotective effects in Parkinson's disease (PD) models. We have previously shown that Angiotensin II (AngII) induces an increase in reactive oxygen species (ROS) via AngII receptor type 1 and NADPH oxidase (NOX), which may activate the NRF2 pathway. However, controversial data suggest that AngII induces a decrease in NRF2 signaling leading to an increase in oxidative stress. We analyzed the effect of AngII and the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in culture and in vivo, and examined the effects on the expression of NRF2-related genes. Treatment of neuronal cell lines Mes23.5, N27 and SH-SY5Y with AngII, 6-OHDA or a combination of both increased ROS production and reduced cell viability. Simultaneously, these treatments induced an increase in expression in the NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Moreover, overexpression of KLF9 transcription factor caused a reduction in the production of ROS induced by treatment with AngII or 6-OHDA and improved the survival of these neuronal cells. Rats treated with AngII, 6-OHDA or a combination of both also showed an increased expression of NRF2 related genes and KLF9. In conclusion, our data indicate that AngII induces a damaging effect in neuronal cells, but also acts as a signaling molecule to activate NRF2 and KLF9 neuroprotective pathways in cellular and animal models of PD.
Collapse
Affiliation(s)
- Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
42
|
Nrf2: Molecular and epigenetic regulation during aging. Ageing Res Rev 2018; 47:31-40. [PMID: 29913211 DOI: 10.1016/j.arr.2018.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
Abstract
Increase in life-span is commonly related with age-related diseases and with gradual loss of genomic, proteomic and metabolic integrity. Nrf2 (Nuclear factor-erythroid 2-p45 derived factor 2) controls the expression of genes whose products include antioxidant proteins, detoxifying enzymes, drug transporters and numerous cytoprotective proteins. Several experimental approaches have evaluated the potential regulation of the transcription factor Nrf2 to enhance the expression of genes that contend against accumulative oxidative stress and promote healthy aging. Negative regulators of Nrf2 that act preventing it´s binding to DNA-responsive elements, have been identified in young and adult animal models. However, it is not clearly established if Nrf2 decreased activity in several models of aging results from disruption of that regulation. In this review, we present a compilation of evidences showing that changes in the levels or activity of Keap1 (Kelch-like ECH associated protein 1), GSK-3β (glycogen synthase kinase-3), Bach1, p53, Hrd1 (E3 ubiquitin ligase) and miRNAs might impact on Nrf2 activity during elderly. We conclude that understanding Nrf2 regulatory mechanisms is essential to develop a rational strategy to prevent the loss of cellular protection response during aging.
Collapse
|
43
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 DOI: 10.3389/fnmol.2018.00310/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 05/26/2023] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual's brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 PMCID: PMC6180192 DOI: 10.3389/fnmol.2018.00310] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual’s brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Abu-Bakar A, Hu H, Lang MA. Cyp2a5
Promoter-based Gene Reporter Assay: A Novel Design of Cell-based Bioassay for Toxicity Prediction. Basic Clin Pharmacol Toxicol 2018; 123 Suppl 5:72-80. [DOI: 10.1111/bcpt.13046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Affiliation(s)
- A'edah Abu-Bakar
- Faculty of Pharmacy; University Technology MARA Selangor; Puncak Alam Malaysia
- Queensland Alliance for Environmental Health Science (QAEHS); The University of Queensland; Brisbane QLD Australia
| | - Hao Hu
- Pharmacogenetics Section; Reproductive and Developmental Biology Laboratory; National Institute of Environmental Health Sciences; National Institutes of Health; Research Triangle Park North Carolina USA
| | - Matti A. Lang
- Alaric-Consultants; Centre for Molecular Genetics; Espoo Finland
| |
Collapse
|
46
|
Liu X, Gu X, Yu M, Zi Y, Yu H, Wang Y, Xie Y, Xiang L. Effects of ginsenoside Rb1 on oxidative stress injury in rat spinal cords by regulating the eNOS/Nrf2/HO-1 signaling pathway. Exp Ther Med 2018; 16:1079-1086. [PMID: 30116359 PMCID: PMC6090283 DOI: 10.3892/etm.2018.6286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate whether ginsenoside Rb1 (G-Rb1) attenuates spinal cord injury-associated oxidative stress in rats by regulating the endothelial nitric oxide synthase eNOS/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway. Sprague Dawley rats were randomly divided into the sham operation group (S group), spinal cord injury group (SCI group), G-Rb1 treatment group (G-Rb1 group) and SCI+G-Rb1+Inhibitor L-name group (L-name group). The posterior limb function was evaluated via the Basso, Beattie and Bresnahan scoring method. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and glutathione (GSH) in serum were measured by ELISA. The pathological changes in the spinal cord were observed by H&E staining. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were used to detect eNOS, phosphorylated (p)-eNOS, heat shock protein (HSP)90, Nrf2 and NAD(P)H quinone dehydrogenase 1 (Nqo1) at the mRNA and protein level. Immunohistochemistry was used to detect the expression of Nrf2 and p-eNOS. Compared with the S group, the scores of spinal cord function in the SCI group were significantly lower, and the levels of MDA were significantly increased, while the levels of SOD, CAT and GSH protein in spinal cord were significantly decreased (P<0.05). The spinal cord tissue exhibited hemorrhage, neuronal degeneration/necrosis, as well as mononuclear cell and lymphocyte infiltration. The eNOS, HSP90, Nrf2, Nqo1 and HO-1 mRNA levels were decreased (P<0.05). Compared with those in the SCI group, the spinal cord function score in the G-Rb1 group were significantly higher and the serum MDA content was significantly decreased, while the activity of SOD, CAT and GSH was significantly increased (P<0.05). The degeneration/necrosis of spinal cord neurons was attenuated, inflammatory cell infiltration was significantly reduced and the levels of eNOS, HSP90, Nrf2, Nqo1 and HO-1 were significantly upregulated (P<0.05). In the group that was administered the eNOS inhibitor L-name, the levels of eNOS, HSP90, Nrf2, Nqo1 and HO-1 were significantly decreased. In conclusion, G-Rb1 attenuates oxidative stress in injured spinal cords. The mechanism may at least in part involve the eNOS/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xinwei Liu
- Department of Orthopedics, Rescue Center of Severe Wound and Trauma of the PLA, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiaochuan Gu
- Department of Orthopedics, Changhai Hospital Αffiliated to The Second Military Medical University, Shanghai 200433, P.R. China
| | - Miaomiao Yu
- Department of Orthopedics, Rescue Center of Severe Wound and Trauma of the PLA, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Ying Zi
- Department of Emergency, Hospital 463 of the PLA, Shenyang, Liaoning 110042, P.R. China
| | - Hailong Yu
- Department of Orthopedics, Rescue Center of Severe Wound and Trauma of the PLA, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yu Wang
- Department of Orthopedics, Rescue Center of Severe Wound and Trauma of the PLA, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yanchun Xie
- Department of Orthopedics, Rescue Center of Severe Wound and Trauma of the PLA, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Liangbi Xiang
- Department of Orthopedics, Rescue Center of Severe Wound and Trauma of the PLA, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
47
|
Canella R, Benedusi M, Martini M, Cervellati F, Cavicchio C, Valacchi G. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells. J Cell Physiol 2018; 233:6018-6027. [PMID: 29271475 DOI: 10.1002/jcp.26416] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O3 exposure alters the Cl- current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O3 byproducts (4hydroxynonenal (HNE) and/or H2 O2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O3 effect, H2 O2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O3 response. This result was confirmed treating the cell with catalase (CAT) before O3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl- current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl- current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H2 O2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect.
Collapse
Affiliation(s)
- Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Martini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Cavicchio
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Animal Science, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| |
Collapse
|
48
|
Ehrnhoefer DE, Southwell AL, Sivasubramanian M, Qiu X, Villanueva EB, Xie Y, Waltl S, Anderson L, Fazeli A, Casal L, Felczak B, Tsang M, Hayden MR. HACE1 is essential for astrocyte mitochondrial function and influences Huntington disease phenotypes in vivo. Hum Mol Genet 2018; 27:239-253. [PMID: 29121340 PMCID: PMC5886116 DOI: 10.1093/hmg/ddx394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress is a prominent feature of Huntington disease (HD), and we have shown previously that reduced levels of hace1 (HECT domain and Ankyrin repeat containing E3 ubiquitin protein ligase 1) in patient striatum may contribute to the pathogenesis of HD. Hace1 promotes the stability of Nrf2 and thus plays an important role in antioxidant response mechanisms, which are dysfunctional in HD. Moreover, hace1 overexpression mitigates mutant huntingtin (mHTT)-induced oxidative stress in vitro through promotion of the Nrf2 antioxidant response. Here, we show that the genetic ablation of hace1 in the YAC128 mouse model of HD accelerates motor deficits and exacerbates cognitive and psychiatric phenotypes in vivo. We find that both the expression of mHTT and the ablation of hace1 alone are sufficient to cause deficits in astrocytic mitochondrial respiration. We confirm the crucial role of hace1 in astrocytes in vivo, since its ablation is sufficient to cause dramatic astrogliosis in wild-type FVB/N mice. Astrogliosis is not observed in the presence of mHTT but a strong dysregulation in the expression of astrocytic markers in HACE1-/- x YAC128 striatum suggests an additive effect of mHTT expression and hace1 loss on this cell type. HACE1-/- x YAC128 mice and primary cells derived from these animals therefore provide model systems that will allow for the further dissection of Nrf2 pathways and astrocyte dysfunction in the context of HD.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amber L Southwell
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Meenalochani Sivasubramanian
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Xiaofan Qiu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Erika B Villanueva
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Yuanyun Xie
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sabine Waltl
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Lisa Anderson
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Anita Fazeli
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Lorenzo Casal
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Boguslaw Felczak
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michelle Tsang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics (CMMT), CFRI, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
49
|
S IP, Varanasi MB, Mohammed I. Bioanalysis of monomethyl fumarate in human plasma by a sensitive and rapid LC-MS/MS method and its pharmacokinetic application. J Pharm Biomed Anal 2017; 146:109-116. [PMID: 28873360 DOI: 10.1016/j.jpba.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
Abstract
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid, after oral administration completely converts to its active metabolite monomethyl fumarate (MMF). A simple, rapid and sensitive LC-MS/MS method was developed and validated for the quantification of MMF in human plasma. Monomethyl fumarate d3 was used as an internal standard (IS). The analyte and the IS were extracted from plasma using a selective solid phase extraction technique. The clean samples were chromatographed on a C18 column using formic acid and acetonitrile (25:75, v/v) as mobile phase. An API-4000 LC-MS/MS system equipped with turbo ion spray (TIS) source and operated in multiple reactions monitoring (MRM) mode was used for the study. The method was validated for linearity in the range of 5.03-2006.92ng/mL. Also, a number of stability tests were conducted to evaluate the stability of analyte, IS in plasma samples and in neat samples, the results comply with recent bioanalytical guidelines. A shortest run time helped us to analyze more than 300 samples in a day. The method was applied to a pharmacokinetic study in ten healthy male Indian subjects and the study data was authenticated by conducting incurred sample reanalysis (ISR).
Collapse
Affiliation(s)
- Imam Pasha S
- Sultan Ul Uloom college of Pharmacy, Banjara Hills, Hyderabad 500 034, Telangana, India.
| | | | - Ibrahim Mohammed
- Pratap Narendar Reddy College of Pharmacy, Shamshabad, Hyderabad 509 325, Telangana, India
| |
Collapse
|
50
|
Ge W, Zhao K, Wang X, Li H, Yu M, He M, Xue X, Zhu Y, Zhang C, Cheng Y, Jiang S, Hu Y. iASPP Is an Antioxidative Factor and Drives Cancer Growth and Drug Resistance by Competing with Nrf2 for Keap1 Binding. Cancer Cell 2017; 32:561-573.e6. [PMID: 29033244 DOI: 10.1016/j.ccell.2017.09.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) have emerged as important signaling molecules that play crucial roles in carcinogenesis and cytotoxic responses. Nrf2 is the master regulator of ROS balance. Thus, uncovering mechanisms of Nrf2 regulation is important for the development of alternative treatment strategies for cancers. Here, we demonstrate that iASPP, a known p53 inhibitor, lowers ROS independently of p53. Mechanistically, iASPP competes with Nrf2 for Keap1 binding via a DLT motif, leading to decreased Nrf2 ubiquitination and increased Nrf2 accumulation, nuclear translocation, and antioxidative transactivation. This iASPP-Keap1-Nrf2 axis promotes cancer growth and drug resistance both in vitro and in vivo. Thus, iASPP is an antioxidative factor and represents a promising target to improve cancer treatment, regardless of p53 status.
Collapse
Affiliation(s)
- Wenjie Ge
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Huayi Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Miao Yu
- School of Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Mengmeng He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xuting Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Yifu Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150006, China
| | - Yiwei Cheng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150006, China
| | - Shijian Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China; Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|