1
|
Maeda N, Taylor LS, Nassar-Guifarro M, Monawar MYS, Dunn SM, Devanney NA, Li F, Johnson LA, Kayashima Y. Genomic and cellular context-dependent expression of the human ELMO1 gene transcript variants. Gene 2025; 954:149438. [PMID: 40147730 DOI: 10.1016/j.gene.2025.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Engulfment and cell motility protein 1 (Elmo1) forms a complex with Dedicator of cytokinesis (Dock) 1-5 and promotes GTP-loading of Rac1, the major agent of cell movement. While the pathophysiological roles of Elmo1 have expanded from apoptotic cell engulfment to cancer, inflammation, diabetic nephropathy and cardiomyopathy, little information is available on its transcriptional regulation. Genome databases indicate at least five transcript variants for human ELMO1: the variants V1, V4 and V5 encode a full-length 727 aa protein, whereas V2 and V3 encode a truncated Elmo1 of 247 aa that lacks N-terminal domains. A CpG island promoter drives the major V1 transcript, while an LTR12 drives V5 in intron 1, one of the three LTR12 family of retroviral elements in ELMO1. In contrast, the short-forms V2 and V3 contain CAT-TATA type promoters. Examination of various cell lines by RT-qPCR designed to detect individual transcripts showed that basal transcriptions of the variants were very low to undetectable in cultured cells. However, treatments with Trichostatin A, a histone deacetylase inhibitor, or with 5-Aza-2'-deoxycytidine, a DNA methyl transferase inhibitor, significantly upregulated V1, V4, V5 and V2 expression in a cell line-specific manner, indicating that these transcripts are epigenetically regulated. Another LTR12D transposon in intron 13 also drives an unannotated transcript stimulated by these inhibitors. Finally, we found the levels of V2 transcripts in the mouse and human brain exceed those of V1, suggesting a brain-specific regulation and role of V2 protein.
Collapse
Affiliation(s)
- Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren S Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melanie Nassar-Guifarro
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohamed-Yahia S Monawar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sierra M Dunn
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas A Devanney
- Department of Physiology and Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lance A Johnson
- Department of Physiology and Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Henriquez JE, Badwaik VD, Bianchi E, Chen W, Corvaro M, LaRocca J, Lunsman TD, Zu C, Johnson KJ. From Pipeline to Plant Protection Products: Using New Approach Methodologies (NAMs) in Agrochemical Safety Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10710-10724. [PMID: 38688008 DOI: 10.1021/acs.jafc.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human population will be approximately 9.7 billion by 2050, and food security has been identified as one of the key issues facing the global population. Agrochemicals are an important tool available to farmers that enable high crop yields and continued access to healthy foods, but the average new agrochemical active ingredient takes more than ten years, 350 million dollars, and 20,000 animals to develop and register. The time, monetary, and animal costs incentivize the use of New Approach Methodologies (NAMs) in early-stage screening to prioritize chemical candidates. This review outlines NAMs that are currently available or can be adapted for use in early-stage screening agrochemical programs. It covers new in vitro screens that are on the horizon in key areas of regulatory concern. Overall, early-stage screening with NAMs enables the prioritization of development for agrochemicals without human and environmental health concerns through a more directed, agile, and iterative development program before animal-based regulatory testing is even considered.
Collapse
Affiliation(s)
| | - Vivek D Badwaik
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Wei Chen
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Chengli Zu
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Kamin J Johnson
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| |
Collapse
|
3
|
Lee JY, Ma HW, Kim JH, Park IS, Son M, Ryu KH, Shin J, Kim SW, Cheon JH. Novel Histone Deacetylase 6 Inhibitor Confers Anti-inflammatory Effects and Enhances Gut Barrier Function. Gut Liver 2023; 17:766-776. [PMID: 36167345 PMCID: PMC10502503 DOI: 10.5009/gnl220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
Background/Aims The purpose of the current study was to examine the anti-inflammatory effects of CKD-506, a novel histone deacetylase 6 inhibitor, on human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells and to explore the relationship between CKD-506 and gut epithelial barrier function. Methods Lipopolysaccharide-stimulated human PBMCs from inflammatory bowel disease (IBD) patients were treated with CKD-506, and tumor necrosis factor (TNF)-α expression was measured using an enzyme-linked immunosorbent assay. The proliferation of CD4+ T cells from IBD patients was evaluated using flow cytometric analysis. The effects of CKD-506 on gut barrier function in a cell line and colon organoids, based on examinations of mRNA production, goblet cell differentiation, and E-cadherin recovery, were investigated using quantitative reverse transcription polymerase chain reaction, immunofluorescence, and a fluorescein isothiocyanate-dextran permeability assay. Results Secretion of TNF-α, a pivotal pro-inflammatory mediator in IBD, by lipopolysaccharide-triggered PBMCs was markedly decreased by CKD-506 treatment in a dose-dependent manner and to a greater extent than by tofacitinib or tubastatin A treatment. E-cadherin mRNA expression and goblet cell differentiation increased significantly and dose-dependently in HT-29 cells in response to CKD-506, and inhibition of E-cadherin loss after TNF-α stimulation was significantly reduced both in HT-29 cells and gut organoids. Caco-2 cells treated with CKD-506 showed a significant reduction in barrier permeability in a dose-dependent manner. Conclusions The present study demonstrated that CKD-506 has anti-inflammatory effects on PBMCs and CD4 T cells and improves gut barrier function, suggesting its potential as a small-molecule therapeutic option for IBD.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyung Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Mijeong Son
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Keun Ho Ryu
- Department of Non-Clinical Study, CKD Research Institute, CKD Pharmaceutical Co., Yongin, Korea
| | - Jieun Shin
- Department of Non-Clinical Study, CKD Research Institute, CKD Pharmaceutical Co., Yongin, Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Sola-Sevilla N, Mesa-Lombardo A, Aleixo M, Expósito S, Diaz-Perdigón T, Azqueta A, Zamani F, Suzuki T, Maioli S, Eroli F, Matton A, Ramírez MJ, Solas M, Tordera RM, Martín ED, Puerta E. SIRT2 Inhibition Rescues Neurodegenerative Pathology but Increases Systemic Inflammation in a Transgenic Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2023; 18:529-550. [PMID: 37698780 PMCID: PMC10577113 DOI: 10.1007/s11481-023-10084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1β, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Alberto Mesa-Lombardo
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
- Department of Anatomy, Histology and Neurosciences, Medical School, Autonoma University of Madrid, 28029, Madrid, Spain
| | - Mikel Aleixo
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Sara Expósito
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Teresa Diaz-Perdigón
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | | | | | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Rosa M Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Cytotoxic evaluation of YSL-109 in a triple negative breast cancer cell line and toxicological evaluations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1211-1222. [PMID: 36694011 DOI: 10.1007/s00210-023-02396-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/26/2022] [Indexed: 01/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Triple negative breast cancer (TNBC) is the most aggressive form of BC being with the worst prognosis and the worst survival rates. There is no specific pharmacological target for the treatment of TNBC; conventional therapy includes the use of non-specific chemotherapy that generally has a poor prognosis. Therefore, the search of effective therapies against to TNBC continues at both preclinical and clinical level. In this sense, the exploration of different pharmacological targets is a continue task that pave the way to epigenetic modulation using novel small molecules. Lately, the inhibition of histone deacetylases (HDACs) has been explored to treat different BC, including TNBC. HDACs remove the acetyl groups from the ɛ-amino lysine resides on histone and non-histone proteins. In particular, the inhibition of HDAC6 has been suggested to be useful for the treatment of TNBC due to it is overexpressed in TNBC. Therefore, in this work, an HDAC6 selective inhibitor, the (S)-4-butyl-N-(1-(hydroxyamino)-3-(naphthalen-1-yl)-1-oxopropan-2-yl) benzamide (YSL-109), was assayed on TNBC cell line (MDA-MB231) showing an antiproliferative activity (IC50 = 50.34 ± 1.11 µM), whereas on fibroblast, it was lesser toxic. After corroborating the in vitro antiproliferative activity of YSL-109 in TNBC, the toxicological profile was explored using combined approach with in silico tools and experimental assays. YSL-109 shows moderate mutagenic activity on TA-98 strain at 30 and 100 µM in the Ames test, whereas YSL-109 did not show in vivo genotoxicity and its oral acute toxicity (LD50) in CD-1 female mice was higher than 2000 mg/kg, which is in agreement with our in silico predictions. According to these results, YSL-109 represents an interesting compound to be explored for the treatment of TNBC under preclinical in vivo models.
Collapse
|
6
|
Parrella E, Porrini V, Scambi I, Gennari MM, Gussago C, Bankole O, Benarese M, Mariotti R, Pizzi M. Synergistic association of resveratrol and histone deacetylase inhibitors as treatment in amyotrophic lateral sclerosis. Front Pharmacol 2022; 13:1017364. [PMID: 36339574 PMCID: PMC9633661 DOI: 10.3389/fphar.2022.1017364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.
Collapse
Affiliation(s)
- Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele M. Gennari
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Gussago
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Oluwamolakun Bankole
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Benarese
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Mariotti
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
8
|
Smith AS, Kim JH, Chun C, Gharai A, Moon HW, Kim EY, Nam SH, Ha N, Song JY, Chung KW, Doo HM, Hesson J, Mathieu J, Bothwell M, Choi BO, Kim DH. HDAC6 Inhibition Corrects Electrophysiological and Axonal Transport Deficits in a Human Stem Cell-Based Model of Charcot-Marie-Tooth Disease (Type 2D). Adv Biol (Weinh) 2022; 6:e2101308. [PMID: 34958183 PMCID: PMC8849597 DOI: 10.1002/adbi.202101308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D), is a hereditary peripheral neuropathy caused by mutations in the gene encoding glycyl-tRNA synthetase (GARS1). Here, human induced pluripotent stem cell (hiPSC)-based models of CMT2D bearing mutations in GARS1 and their use for the identification of predictive biomarkers amenable to therapeutic efficacy screening is described. Cultures containing spinal cord motor neurons generated from this line exhibit network activity marked by significant deficiencies in spontaneous action potential firing and burst fire behavior. This result matches clinical data collected from a patient bearing a GARS1P724H mutation and is coupled with significant decreases in acetylated α-tubulin levels and mitochondrial movement within axons. Treatment with histone deacetylase 6 inhibitors, tubastatin A and CKD504, improves mitochondrial movement and α-tubulin acetylation in these cells. Furthermore, CKD504 treatment enhances population-level electrophysiological activity, highlighting its potential as an effective treatment for CMT2D.
Collapse
Affiliation(s)
| | | | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ava Gharai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hyo Won Moon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nina Ha
- CKD Research Institute, Yongin, 16995, Republic of Korea
| | - Ju Yong Song
- CKD Research Institute, Yongin, 16995, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Byung-Ok Choi
- Authors share corresponding authorship: To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University, Ross Research Building, 724B, 720 Rutland Avenue, Baltimore, MD 21205, , Dr. Byung-Ok Choi, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea,
| | - Deok-Ho Kim
- Authors share corresponding authorship: To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University, Ross Research Building, 724B, 720 Rutland Avenue, Baltimore, MD 21205, , Dr. Byung-Ok Choi, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea,
| |
Collapse
|
9
|
Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y, Sun H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem 2021; 226:113874. [PMID: 34619465 DOI: 10.1016/j.ejmech.2021.113874] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is characterized by the primary risk factor, age. Several attempts have been made to treat AD, while most of them end in failure. However, with the deepening study of pathogenesis of AD, the expression of HDAC6 in the hippocampus, which plays a major role of the memory formation, is becoming worth of notice. Neurofibrillary tangles (NFTs), a remarkable lesion in AD, has been characterized in association with the abnormal accumulation of hyperphosphorylated Tau, which is mainly caused by the high expression of HDAC6. On the other hand, the hypoacetylated tubulin induced by HDAC6 is also fatal for the neuronal transport, which is the key impact of the formation of axons and dendrites. Overall, the significantly increased expression of HDAC6 in brain regions is deleterious to neuron survival in AD patients. Based on the above research, the inhibition of HDAC6 seems to be a potential therapeutic method for the treatment of AD. Up to now, various types of HDAC6 inhibitors have been discovered. This review mainly analyzes the HDAC6 inhibitors reported amid 2010-2020 in terms of their structure, selectivity and pharmacological impact towards AD. And we aim at facilitating the design and development of better HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Yunheng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Hauser SR, Mulholland PJ, Truitt WA, Waeiss RA, Engleman EA, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. Int J Mol Sci 2021; 22:11733. [PMID: 34769161 PMCID: PMC8584082 DOI: 10.3390/ijms222111733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.
Collapse
Affiliation(s)
- Sheketha R. Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Patrick J. Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - William A. Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - R. Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Eric A. Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| |
Collapse
|
11
|
Cho E, Rowan-Carroll A, Williams A, Corton JC, Li HH, Fornace AJ, Hobbs CA, Yauk CL. Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol 2021; 95:1631-1645. [PMID: 33770205 DOI: 10.1007/s00204-021-03014-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Transcriptomic biomarkers can be used to inform molecular initiating and key events involved in a toxicant's mode of action. To address the limited approaches available for identifying epigenotoxicants, we developed and assessed a transcriptomic biomarker of histone deacetylase inhibition (HDACi). First, we assembled a set of ten prototypical HDACi and ten non-HDACi reference compounds. Concentration-response experiments were performed for each chemical to collect TK6 human lymphoblastoid cell samples after 4 h of exposure and to assess cell viability following a 20-h recovery period in fresh media. One concentration was selected for each chemical for whole transcriptome profiling and transcriptomic signature derivation, based on cell viability at the 24-h time point and on maximal induction of HDACi-response genes (RGL1, NEU1, GPR183) or cellular stress-response genes (ATF3, CDKN1A, GADD45A) analyzed by TaqMan qPCR assays after 4 h of exposure. Whole transcriptomes were profiled after 4 h exposures by Templated Oligo-Sequencing (TempO-Seq). By applying the nearest shrunken centroid (NSC) method to the whole transcriptome profiles of the reference compounds, we derived an 81-gene toxicogenomic (TGx) signature, referred to as TGx-HDACi, that classified all 20 reference compounds correctly using NSC classification and the Running Fisher test. An additional 4 HDACi and 7 non-HDACi were profiled and analyzed using TGx-HDACi to further assess classification performance; the biomarker accurately classified all 11 compounds, including 3 non-HDACi epigenotoxicants, suggesting a promising specificity toward HDACi. The availability of TGx-HDACi increases the diversity of tools that can facilitate mode of action analysis of toxicants using gene expression profiling.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, USA
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC, Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
13
|
Anticancer Ruthenium Complexes with HDAC Isoform Selectivity. Molecules 2020; 25:molecules25102383. [PMID: 32455529 PMCID: PMC7287671 DOI: 10.3390/molecules25102383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes have emerged as an important class of molecular targets in cancer therapy, with five inhibitors in clinical use. Recently, it has been shown that a lack of selectivity between the 11 Zn-dependent HDAC isoforms may lead to unwanted side-effects. In this paper, we show that piano stool Ru complexes can act as HDAC inhibitors, and variation in the capping arene leads to differences in HDAC isoform selectivity.
Collapse
|
14
|
Miles MA, Harris MA, Hawkins CJ. Proteasome inhibitors trigger mutations via activation of caspases and CAD, but mutagenesis provoked by the HDAC inhibitors vorinostat and romidepsin is caspase/CAD-independent. Apoptosis 2020; 24:404-413. [PMID: 30997620 DOI: 10.1007/s10495-019-01543-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genotoxic anti-cancer therapies such as chemotherapy and radiotherapy can contribute to an increase in second malignancies in cancer survivors due to their oncogenic effects on non-cancerous cells. Inhibition of histone deacetylase (HDAC) proteins or the proteasome differ from chemotherapy in that they eliminate cancer cells by regulating gene expression or cellular protein equilibrium, respectively. As members of these drug classes have been approved for clinical use in recent times, we investigated whether these two drug classes exhibit similar mutagenic capabilities as chemotherapy. The HDAC inhibitors vorinostat/SAHA and romidepsin/FK288 were found to induce DNA damage, and mis-repair of this damage manifested into mutations in clonogenically viable surviving cells. DNA damage and mutations were also detected in cells treated with the proteasome inhibitor bortezomib. Exposure to both drug classes stimulated caspase activation consistent with apoptotic cell death. Inhibition of caspases protected cells from bortezomib-induced acute (but not clonogenic) death and mutagenesis, implying caspases were required for the mutagenic action of bortezomib. This was also observed for second generation proteasome inhibitors. Cells deficient in caspase-activated DNase (CAD) also failed to acquire DNA damage or mutations following treatment with bortezomib. Surprisingly, vorinostat and romidepsin maintained an equivalent level of killing and mutagenic ability regardless of caspase or CAD activity. Our findings indicate that both drug classes harbour mutagenic potential in vitro. If recapitulated in vivo, the mutagenicity of these agents may influence the treatment of cancer patients who are more susceptible to oncogenic mutations due to dysfunctional DNA repair pathways.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| | - Michael A Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| |
Collapse
|
15
|
Chen X, Gong G, Chen X, Song R, Duan M, Qiao R, Jiao Y, Qi J, Chen Y, Zhu Y. Design, Synthesis and Biological Evaluation of Novel Benzoylimidazole Derivatives as Raf and Histone Deacetylases Dual Inhibitors. Chem Pharm Bull (Tokyo) 2019; 67:1116-1122. [PMID: 31582631 DOI: 10.1248/cpb.c19-00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent studies, combinations of histone deacetylases (HDACs) inhibitor with kinase inhibitor showed additive and synergistic effects. BRafV600E as an attractive target in many diseases treatments has been studied extensively. Herein, we present a novel design approach though incorporating the pharmacophores of BRafV600E inhibitor and HDACs inhibitor in one molecule. Several synthesized compounds exhibited distinct BRafV600E and HDAC1 inhibitory activities. The representative dual Raf/HDAC inhibitor, 7a, showed better antiproliferative activities against A549 and SK-Mel-2 in cellular assay than SAHA and sorafenib, with IC50 values of 9.11 µM and 5.40 µM, respectively. This work may lay the foundation for the further development of dual Raf/HDAC inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Guoliang Gong
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Xinyang Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Ruihu Song
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Mei Duan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Ruizhi Qiao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Yu Jiao
- School of Science, China Pharmaceutical University
| | - Jianzhao Qi
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Yadong Chen
- School of Science, China Pharmaceutical University
| | - Yong Zhu
- School of Science, China Pharmaceutical University
| |
Collapse
|
16
|
Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, De Bock K, Moisse M, Van Den Bosch L. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun 2019; 7:107. [PMID: 31277703 PMCID: PMC6612190 DOI: 10.1186/s40478-019-0750-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of epigenetic mechanisms is emerging as a central event in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In many models of neurodegeneration, global histone acetylation is decreased in the affected neuronal tissues. Histone acetylation is controlled by the antagonistic actions of two protein families -the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). Drugs inhibiting HDAC activity are already used in the clinic as anti-cancer agents. The aim of this study was to explore the therapeutic potential of HDAC inhibition in the context of ALS. We discovered that transgenic mice overexpressing wild-type FUS ("Tg FUS+/+"), which recapitulate many aspects of human ALS, showed reduced global histone acetylation and alterations in metabolic gene expression, resulting in a dysregulated metabolic homeostasis. Chronic treatment of Tg FUS+/+ mice with ACY-738, a potent HDAC inhibitor that can cross the blood-brain barrier, ameliorated the motor phenotype and substantially extended the life span of the Tg FUS+/+ mice. At the molecular level, ACY-738 restored global histone acetylation and metabolic gene expression, thereby re-establishing metabolite levels in the spinal cord. Taken together, our findings link epigenetic alterations to metabolic dysregulation in ALS pathology, and highlight ACY-738 as a potential therapeutic strategy to treat this devastating disease.
Collapse
|
17
|
Wilde S, Queisser N, Holz C, Raschke M, Sutter A. Differentiation of Aneugens and Clastogens in the In Vitro Micronucleus Test by Kinetochore Scoring Using Automated Image Analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:227-242. [PMID: 30561837 DOI: 10.1002/em.22259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/30/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
The in vitro micronucleus test according to OECD Test Guideline 487 (TG 487) is widely used to investigate the genotoxic potential of drugs. Besides the identification of in vitro genotoxicants, the assay can be complemented with kinetochore staining for the differentiation between clastogens and aneugens. This differentiation constitutes a major contribution to risk assessment as especially aneugens show a threshold response. Thus, a novel method for automated MN plus kinetochore (k+) scoring by image analysis was developed based on the OECD TG 487. Compound-induced increases in MN frequency can be detected using the cytokinesis-block (cytochalasin B) method in V79 cells after 24 h in a 96-well format. Nuclei, MN, and kinetochores were labeled with nuclear counterstain and anti-kinetochore antibodies, respectively, to score MN in binuclear or multinuclear cells and to differentiate compound-induced MN by the presence of kinetochores. First, a reference data set was created by manual scoring using two clastogens and aneugens. After developing the automated scoring process, a set of 14 reference genotoxicants were studied. The automated image analysis yielded the expected results: 5/5 clastogens and 6/6 aneugens (sensitivity: 100%) as well as 3/3 non-genotoxicants (specificity: 100%) were correctly identified. Further, a threshold was determined for identifying aneugens. Based on the data for our internally characterized reference compounds, unknown compounds that induce ≥53.8% k+ MN are classified as aneugens. The current data demonstrate excellent specificity and sensitivity and the methodology is superior to manual microscopic analysis in terms of speed and throughput as well as the absence of human bias. Environ. Mol. Mutagen. 60:227-242, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina Wilde
- Bayer AG, Investigational Toxicology, Berlin, Germany
- Fraunhofer ITEM, Preclinical Pharmacology and In Vitro Toxicology, Hannover, Germany
| | - Nina Queisser
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Modulation of chromatin conformation by the histone deacetylase inhibitor trichostatin A promotes the removal of radiation-induced lesions in ataxia telangiectasia cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:109-116. [DOI: 10.1016/j.mrgentox.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022]
|
19
|
CKD-506, a novel HDAC6-selective inhibitor, improves renal outcomes and survival in a mouse model of systemic lupus erythematosus. Sci Rep 2018; 8:17297. [PMID: 30470828 PMCID: PMC6251916 DOI: 10.1038/s41598-018-35602-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystemic autoimmune disease with an unknown etiology. Recently, it has been elucidated that dysregulated histone deacetylase (HDAC) activity is related to the pathogenesis of inflammatory and autoimmune diseases. Broad-spectrum HDAC inhibitors are effective for the treatment of allergy, cancer, and autoimmune diseases, but they have several adverse side effects. Thus, the purpose of this study was to evaluate the effects of a novel HDAC 6-specific inhibitor, CKD-506, in a murine SLE model. CKD-506 significantly improved survival rate and significantly decreased the incidence of severe proteinuria, blood urea nitrogen, kidney inflammation, and glomerular infiltration of IgG and C3. In addition, CKD 506 reduced the proportions of CD138+ plasma cells, CD4−CD8− T cells, and CD25+ cells and the Th1/Th2 ratio in the spleen. CKD-506 significantly reduced inflammatory cytokines such as IL-10, IL-15, IL-17, TNF-α, and IFN-inducible protein (IP-10) and significantly increased TGF-β in serum. CKD-506 also significantly reduced IFN-γ, IL-1β, IL-4, IL-6, IP-10, MCP-1, and CCL4 levels in kidney. CKD-506 decreased the production of various pro-inflammatory cytokines and chemokines in the serum and kidneys, resulting in inhibition of cell migration and suppression of lupus nephritis without adverse effects.
Collapse
|
20
|
Andrade SN, Evangelista FCG, Seckler D, Marques DR, Freitas TR, Nunes RR, Oliveira JT, Ribeiro RIMA, Santos HB, Thomé RG, Taranto AG, Santos FV, Viana GHR, Freitas RP, Humberto JL, Sabino ADP, Hilário FF, Varotti FP. Synthesis, cytotoxic activity, and mode of action of new Santacruzamate A analogs. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2244-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Moggs J, Terranova R. Chromatin dynamics underlying latent responses to xenobiotics. Toxicol Res (Camb) 2018; 7:606-617. [PMID: 30090610 PMCID: PMC6062062 DOI: 10.1039/c7tx00317j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Pleiotropic xenobiotics can trigger dynamic alterations in mammalian chromatin structure and function but many of these are likely non-adverse and simply reflect short-term changes in DNA transactions underlying normal homeostatic, adaptive and protective cellular responses. However, it is plausible that a subset of xenobiotic-induced perturbations of somatic tissue or germline epigenomes result in delayed-onset and long-lasting adverse effects, in particular if they occur during critical stages of growth and development. These could include reprogramming, dedifferentiation, uncontrolled growth, and cumulative toxicity effects through molecular memory of prior xenobiotic exposures or altered susceptibility to subsequent xenobiotic exposures. Here we discuss the current evidence for epigenetic mechanisms underlying latent responses to xenobiotics, and the potential for identifying molecular epigenetic changes that are prodromal to overt morphologic or functional toxicity phenotypes.
Collapse
Affiliation(s)
- Jonathan Moggs
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| | - Rémi Terranova
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| |
Collapse
|
22
|
Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018; 24:4295-4304. [PMID: 29933360 PMCID: PMC6045917 DOI: 10.12659/msm.908425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. Material/Methods The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. Results The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. Conclusions Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.
Collapse
Affiliation(s)
- Xiangquan Liu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingying Wu
- Department of Preventive Medicine, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Wenyan Shi
- Department of Clinical Nutrition, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Wenhua Shi
- Department of Occupational Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Hekun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaonan Wu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
23
|
Walczyk M, Paradowska-Gorycka A, Olesinska M. Epigenetics: The Future Direction in Systemic Sclerosis. Scand J Immunol 2017; 86:427-435. [DOI: 10.1111/sji.12595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Walczyk
- Department of Connective Tissue Diseases; National Institute of Geriatrics, Rheumatology and Rehabilitation; Warsaw Poland
| | - A. Paradowska-Gorycka
- Department of Biochemistry and Molecular Biology; National Institute of Geriatrics, Rheumatology and Rehabilitation; Warsaw Poland
| | - M. Olesinska
- Department of Connective Tissue Diseases; National Institute of Geriatrics, Rheumatology and Rehabilitation; Warsaw Poland
| |
Collapse
|
24
|
Battistuzzi G, Giannini G. Synthesis of ST7612AA1, a Novel Oral HDAC Inhibitor, via Radical
Thioacetic Acid Addition. ACTA ACUST UNITED AC 2016; 12:282-288. [PMID: 27917100 PMCID: PMC5101637 DOI: 10.2174/1573407212666160504160556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
Abstract: Background In the expanding field of anticancer drugs, HDAC inhibitors are playing an increasingly important role. To date, four/five HDAC inhibitors have been approved by FDA. All these compounds fit the widely accepted HDAC inhibitors pharmacophore model characterized by a cap group, a linker chain and a zinc binding group (ZBG), able to bind the Zn2+ ion in a pocket of the HDAC active site. Romidepsin, a natural compound, is the only thiol derivative. We have selected a new class of synthetic HDAC inhibitors, the thio-ω(lactam-carboxamide) derivatives, with ST7612AA1 as drug candidate, pan-inhibitor active in the range of single- to two-digit nanomolar concentrations. Preliminary results of a synthetic optimization attempt towards a fast scale-up process are here proposed. Methods In the four steps of synthesis, from unsaturated amino acid intermediate to the final product, we explored different synthetic conditions in order to have a transferable process for a scale-up synthetic laboratory. Results In the first step, isobutyl chloroformate was used and, after a simple work up with 1M HCl, 2 (96% yield) was obtained as a white solid, which was used directly in the next step. For thioacetic acid addition to the double bond of intermediate 2, two different routes were possible, with addition reaction in the first (D’) or last step (D). Reactions of 2 to give 5 or of 4 to give ST7612AA1 were both performed in dioxane. Reactions were fast and did not need the usually advised radical quenching with cyclohexene. The corresponding products were obtained in good yields (step D’, 89%; step D, 81%) after a flash chromatography. Conclusion: ST7612AA1 , a thiol derivative prodrug of ST7464AA1, is the first of a new generation of HDAC inhibitors, very potent, orally administered, and well tolerated. Here, we have identified a synthetic route, competitive, versatile and easily transferable to industrial processes.
Collapse
Affiliation(s)
| | - Giuseppe Giannini
- R&D Sigma-Tau IFR S.p.A., Via Pontina Km 30,400, I-00071 Pomezia, Rome, Italy
| |
Collapse
|
25
|
Bahhaj FE, Denis I, Pichavant L, Delatouche R, Collette F, Linot C, Pouliquen D, Grégoire M, Héroguez V, Blanquart C, Bertrand P. Histone Deacetylase Inhibitors Delivery using Nanoparticles with Intrinsic Passive Tumor Targeting Properties for Tumor Therapy. Am J Cancer Res 2016; 6:795-807. [PMID: 27162550 PMCID: PMC4860888 DOI: 10.7150/thno.13725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/31/2015] [Indexed: 01/14/2023] Open
Abstract
Fast clearance, metabolism and systemic toxicity are major limits for the clinical use of anti-cancer drugs. Histone deacetylase inhibitors (HDACi) present these defects despite displaying promising anti-tumor properties on tumor cells in vitro and in in vivo model of cancers. Specific delivery of anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity and by increasing the anti-tumor effect. In this work, we describe a simple and flexible polymeric nanoparticle platform highly targeting the tumor in vivo and triggering impressive tumor weight reduction when functionalized with HDACi. Our nanoparticles were produced by Ring-Opening Metathesis Polymerization of azido-polyethylene oxide-norbornene macromonomers and functionalized using click chemistry. Using an orthotopic model of peritoneal invasive cancer, a highly selective accumulation of the particles in the tumor was obtained. A combination of epigenetic drugs involving a pH-responsive histone deacetylase inhibitor (HDACi) polymer conjugated to these particles gave 80% reduction of tumor weight without toxicity whereas the free HDACi has no effect. Our work demonstrates that the use of a nanovector with theranostic properties leads to an optimized delivery of potent HDACi in tumor and then, to an improvement of their anti-tumor properties in vivo.
Collapse
|
26
|
Yoon S, Eom GH. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med J 2016; 52:1-11. [PMID: 26865995 PMCID: PMC4742605 DOI: 10.4068/cmj.2016.52.1.1] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction, and even transcription. HDACs are also post-transcriptional modifiers that regulate the protein acetylation implicated in several pathophysiologic states. HDAC inhibitors have been highlighted as a novel category of anti-cancer drugs. To date, four HDAC inhibitors, Vorinostat, Romidepsin, Panobinostat, and Belinostat, have been approved by the United States Food and Drug Administration. Principally, these HDAC inhibitors are used for hematologic cancers in clinic with less severe side effects. Clinical trials are continuously expanding to address other types of cancer and also nonmalignant diseases. HDAC inhibition also results in beneficial outcomes in various types of neurodegenerative diseases, inflammation disorders, and cardiovascular diseases. In this review, we will briefly discuss 1) the roles of HDACs in the acquisition of a cancer's phenotype and the general outcome of the HDAC inhibitors in cancer, 2) the functional relevance of HDACs in cardiovascular diseases and the possible therapeutic implications of HDAC inhibitors in cardiovascular disease.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
27
|
Shen S, Kozikowski AP. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors--What Some May Have Forgotten or Would Rather Forget? ChemMedChem 2015; 11:15-21. [PMID: 26603496 DOI: 10.1002/cmdc.201500486] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Hydroxamate-based histone deacetylase inhibitors (HDACIs) have been approved as therapeutic agents by the US Food and Drug Administration for use in oncology applications. While the potential utility of such HDACIs in other areas of medicinal chemistry is tremendous, there are significant concerns that "pan-HDAC inhibitors" may be too broadly acting and/or toxic for clinical use beyond oncology. In addition to the isozyme selectivity challenge, the potential mutagenicity of hydroxamate-containing HDAC inhibitors represents a major hindrance in their application to other therapeutic areas. Herein we report on the mutagenicity of known hydroxamates, discuss the mechanisms responsible for their genotoxicity, and review some of the current alternatives to hydroxamates. We conclude that the hydroxamate group, while providing high-potency HDACIs, is not necessarily the best zinc-binding group for HDACI drug discovery.
Collapse
Affiliation(s)
- Sida Shen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alan P Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Segretti MCF, Vallerini GP, Brochier C, Langley B, Wang L, Hancock WW, Kozikowski AP. Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function. ACS Med Chem Lett 2015; 6:1156-61. [PMID: 26617971 DOI: 10.1021/acsmedchemlett.5b00303] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 01/20/2023] Open
Abstract
Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 μM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro.
Collapse
Affiliation(s)
- Mariana C. F. Segretti
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gian Paolo Vallerini
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Camille Brochier
- Burke-Cornell Medical Research Institute, White Plains, New York 10605, United States
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Brett Langley
- Burke-Cornell Medical Research Institute, White Plains, New York 10605, United States
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Liqing Wang
- Department
of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wayne W. Hancock
- Department
of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alan P. Kozikowski
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
29
|
Meschini R, Morucci E, Berni A, Lopez-Martinez W, Palitti F. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia. Mutat Res 2015; 777:52-59. [PMID: 25942615 DOI: 10.1016/j.mrfmmm.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post-treatment is favouring the slow component of DSB repair pathway, the one impaired in absence of a functionally ATM protein. Data obtained suggest a fundamental role of chromatin compaction on chromosomal instability in A-T cells.
Collapse
Affiliation(s)
- Roberta Meschini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy.
| | - Elisa Morucci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Andrea Berni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Wilner Lopez-Martinez
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Fabrizio Palitti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
30
|
Wang JX, Yi Y, Li YW, Cai XY, He HW, Ni XC, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection. BMC Cancer 2014; 14:297. [PMID: 24774224 PMCID: PMC4021365 DOI: 10.1186/1471-2407-14-297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/17/2014] [Indexed: 01/13/2023] Open
Abstract
Background Sirtuin 3 (Sirt3), one of the seven Sirtuins family members, plays critical roles in the progression of multiple cancer types. However, its role in the prognosis of hepatocellular carcinoma (HCC) has not yet been investigated systematically. Methods The correlation of Sirtuins expression with prognosis of HCC was determined by immunohistochemistry (IHC) in a large HCC patient cohort (n = 342). Expression of Sirt3 in tumoral and peritumoral tissues of HCC patients were further determined by western blotting (WB). Results IHC and WB studies both showed a decreased expression of Sirt3 in tumoral tissues compared with peritumoral tissues (P = 0.003 for IHC, P = 0.0042 for WB). Decreased expression of Sirt3 in both tumoral and peritumoral tissues was associated with increased recurrence probability and decreased overall survival rate by univariate analyses (intratumoral Sirt3: P = 0.011 for TTR, P = 0.001 for OS; peritumoral Sirt3: P = 0.017 for TTR, P = 0.023 for OS), the prognostic value was strengthened by multivariate analyses (intratumoral Sirt3: P = 0.031 for TTR, P = 0.001 for OS; peritumoral Sirt3: P = 0.047 for TTR, P = 0.031 for OS). Intratumoral Sirt3 also showed a favorable prognostic value in patients with BCLC stage A (TTR, P = 0.011; OS, P < 0.001). In addition, we found that IHC studies of other sirtuin members showed a decreased expression of Sirt2, Sirt4 and Sirt5 and an increased expression of Sirt1, Sirt6 and Sirt7 in intratumoral tissues compared with peritumoral tissues. In contrast to Sirt3, other members did not showed a remarkable correlation with HCC prognosis. Conclusions Down-regulation of intratumoral and peritumoral Sirt3 were both associated with poor outcome in HCC, moreover, intratumoral Sirt3 was a favorable prognostic predictor in early stage patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China.
| |
Collapse
|
31
|
Smith S, Fox J, Mejia M, Ruangpradit W, Saberi A, Kim S, Choi Y, Oh S, Wang Y, Choi K, Li L, Hendrickson EA, Takeda S, Muller M, Myung K. Histone deacetylase inhibitors selectively target homology dependent DNA repair defective cells and elevate non-homologous endjoining activity. PLoS One 2014; 9:e87203. [PMID: 24466340 PMCID: PMC3900704 DOI: 10.1371/journal.pone.0087203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023] Open
Abstract
Background We have previously used the ATAD5-luciferase high-throughput screening assay to identify genotoxic compounds with potential chemotherapeutic capabilities. The successful identification of known genotoxic agents, including the histone deacetylase inhibitor (HDACi) trichostatin A (TSA), confirmed the specificity of the screen since TSA has been widely studied for its ability to cause apoptosis in cancer cells. Because many cancers have acquired mutations in DNA damage checkpoints or repair pathways, we hypothesized that these cancers may be susceptible to treatments that target compensatory pathways. Here, we used a panel of isogenic chicken DT40 B lymphocyte mutant and human cell lines to investigate the ability of TSA to define selective pathways that promote HDACi toxicity. Results HDACi induced a DNA damage response and reduced viability in all repair deficient DT40 mutants although ATM-nulls were least affected. The most dramatic sensitivity was observed in mutants lacking the homology dependent repair (HDR) factor BLM or the non-homologous end-joining (NHEJ) and HDR factors, KU/RAD54, suggesting an involvement of either HDR or NHEJ in HDACi-induced cell death. To extend these findings, we measured the frequencies of HDR and NHEJ after HDACi treatment and monitored viability in human cell lines comparably deficient in HDR or NHEJ. Although no difference in HDR frequency was observed between HDACi treated and untreated cells, HDR-defective human cell lines were clearly more sensitive than wild type. Unexpectedly, cells treated with HDACis showed a significantly elevated NHEJ frequency. Conclusions HDACi targeting drugs induced significant increases in NHEJ activity in human cell lines but did not alter HDR frequency. Moreover, HDR is required for cellular resistance to HDACi therapy; therefore, NHEJ does not appear to be a critical axis for HDACi resistance. Rather, HDACi compounds induced DNA damage, most likely double strand breaks (DSBs), and HDR proficiency is correlated with cell survival.
Collapse
Affiliation(s)
- Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jennifer Fox
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marco Mejia
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Wanvipa Ruangpradit
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Alihossein Saberi
- Department of Radiation Genetics Kyoto University, Medical School, Kyoto, 606-8501 Japan
| | - Sunmi Kim
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Radiation Genetics Kyoto University, Medical School, Kyoto, 606-8501 Japan
- Department of Environmental Health School of Public Hearth, Seoul National University, Seoul, Korea
| | - Yongjun Choi
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sehyun Oh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yucai Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston Texas, United States of America
| | - Kyungho Choi
- Department of Environmental Health School of Public Hearth, Seoul National University, Seoul, Korea
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Shunichi Takeda
- Department of Radiation Genetics Kyoto University, Medical School, Kyoto, 606-8501 Japan
| | - Mark Muller
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Guan P, Olaharski A, Fielden M, Roome N, Dragan Y, Sina J. Biomarkers of carcinogenicity and their roles in drug discovery and development. Expert Rev Clin Pharmacol 2014; 1:759-71. [DOI: 10.1586/17512433.1.6.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol Cancer 2013; 12:9. [PMID: 23379261 PMCID: PMC3577460 DOI: 10.1186/1476-4598-12-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Estrogen receptor-α (ERα)-negative breast cancer is clinically aggressive and normally does not respond to conventional estrogen target-directed therapies. The soybean isoflavone, genistein (GE), has been shown to prevent and inhibit breast cancer and recent studies have suggested that GE can enhance the anticancer capacity of an estrogen antagonist, tamoxifen (TAM), especially in ERα-positive breast cancer cells. However, the role of GE in ERα-negative breast cancer remains unknown. METHODS We have evaluated the in vitro and in vivo epigenetic effects of GE on ERα reactivation by using MTT assay, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, western-blot assay, immunoprecipitation (ChIP) assay, immunohistochemistry and epigenetic enzymatic activity analysis. Preclinical mouse models including xenograft and spontaneous breast cancer mouse models were used to test the efficacy of GE in vivo. RESULTS We found that GE can reactivate ERα expression and this effect was synergistically enhanced when combined with a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), in ERα-negative MDA-MB-231 breast cancer cells. GE treatment also re-sensitized ERα-dependent cellular responses to activator 17β-estradiol (E2) and antagonist TAM. Further studies revealed that GE can lead to remodeling of the chromatin structure in the ERα promoter thereby contributing to ERα reactivation. Consistently, dietary GE significantly prevented cancer development and reduced the growth of ERα-negative mouse breast tumors. Dietary GE further enhanced TAM-induced anti-cancer efficacy due at least in part to epigenetic ERα reactivation. CONCLUSIONS Our studies suggest that soybean genistein can epigenetically restore ERα expression, which in turn increases TAM-dependent anti-estrogen therapeutic sensitivity in vitro and in vivo. The results from our studies reveal a novel therapeutic combination approach using bioactive soybean product and anti-hormone therapy in refractory ERα-negative breast cancer which will provide more effective options in breast cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Johnson D, Walmsley R. Histone-deacetylase inhibitors produce positive results in the GADD45a-GFP GreenScreen HC assay. Mutat Res 2013; 751:96-100. [PMID: 23340162 DOI: 10.1016/j.mrgentox.2012.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/29/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
Abstract
Histone-deacetylase inhibitors (HDACi) are able to induce cell-cycle arrest, apoptosis and differentiation in a variety of tumour cell lines. The mechanisms leading to these cellular outcomes are not fully understood, however, it is has been proposed that induction of cell-cycle arrest might be a result of genotoxic stress. Despite the potential for genotoxic activity of this class of compounds, there are very few data available to provide evidence for this, either in vitro or in vivo. In this study, four HDACi, viz. trichostatin A, sodium butyrate, APHA compound 8 and apicidin, were tested in the human lymphoblastoid TK6 cell line-hosted GADD45a-GFP assay, which has high sensitivity and specificity in the detection of genotoxic carcinogens and in vivo genotoxicants. All four compounds produced positive genotoxicity results within the acceptable toxic dose range of the assay, with APHA compound 8 producing the weakest response. Taken alongside recent evidence demonstrating that GADD45a is not induced by non-genotoxic apoptogens, this study suggests that genotoxicity contributes to the anti-tumour activity of HDACi drugs.
Collapse
Affiliation(s)
- Donna Johnson
- Harper Adams University College, Newport, Shropshire, UK.
| | | |
Collapse
|
35
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
36
|
Dang L, Lisowska H, Manesh SS, Sollazzo A, Deperas-Kaminska M, Staaf E, Haghdoost S, Brehwens K, Wojcik A. Radioprotective effect of hypothermia on cells - a multiparametric approach to delineate the mechanisms. Int J Radiat Biol 2012; 88:507-14. [PMID: 22449004 DOI: 10.3109/09553002.2012.679383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Low temperature (hypothermia) during irradiation of cells has been reported to have a radioprotective effect. The mechanisms are not fully understood. This study further investigates the possible mechanisms behind hypothermia-mediated radioprotection. MATERIALS AND METHODS Human lymphoblastoid TK6 cells were incubated for 20 min at 0.8 or 37°C and subsequently exposed to 1 Gy of γ- or X-rays. The influence of ataxia telangiectasia mutated (ATM)-mediated double-strand break signalling and histone deacetylase-dependent chromatin condensation was investigated using the micronucleus assay. Furthermore, the effect of hypothermia was investigated at the level of phosphorylated histone 2AX (γH2AX) foci, clonogenic cell survival and micronuclei in sequentially-harvested cells. RESULTS The radioprotective effect of hypothermia (called the temperature effect [TE]) was evident only at the level of micronuclei at a single fixation time, was not influenced by the inhibition of ATM kinase activity and completely abolished by the histone deacetylase inhibition. No TE was seen at the level of γH2AX foci and cell survival. CONCLUSIONS We suggest that low temperature during irradiation can induce a temporary cell cycle shift, which could lead to a reduced micronucleus frequency. Future experiments focused on cell cycle progression are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Li Dang
- Centre for Radiation Protection Research, GMT Department, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jüngel A, Distler JHW, Gay S, Distler O. Epigenetic modifications: novel therapeutic strategies for systemic sclerosis? Expert Rev Clin Immunol 2011; 7:475-80. [PMID: 21790290 DOI: 10.1586/eci.11.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications of gene expression comprise modifications of DNA by DNA methylation and modifications of the histone proteins by acetylation, methylation, SUMOylation or phosphorylation. DNA methylation in the promoter region of genes represses gene transcription. Histone modifications influence the structure of DNA and regulate gene expression by changing the availability of DNA for the transcriptional machinery or DNA-binding proteins. Histone modifications are mediated by enzymes and induce or repress gene expression. Aberrant expression of single enzymes disturb the normal balance of these modifiers leading to cancer or autoimmune diseases. We show in this article that epigenetic modifications contribute to the massive production of extracellular matrix proteins in systemic sclerosis skin fibroblasts. Both DNA methylation and histone modifications contribute to the activated phenotype of systemic sclerosis fibroblasts. In vitro and in vivo experiments demonstrate that the use of epigenetic-based drugs on these cells is able to reverse their activated phenotype.
Collapse
Affiliation(s)
- Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich Center of Integrative Human Physiology, Switzerland
| | | | | | | |
Collapse
|
38
|
Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries. J Comput Aided Mol Des 2011; 25:455-67. [DOI: 10.1007/s10822-011-9431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
|
39
|
Genetic Polymorphisms in Metabolizing Enzymes and Susceptibility of Chromosomal Damage Induced by Vinyl Chloride Monomer in a Chinese Worker Population. J Occup Environ Med 2010; 52:163-8. [DOI: 10.1097/jom.0b013e3181cac00b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Kerr JS, Galloway S, Lagrutta A, Armstrong M, Miller T, Richon VM, Andrews PA. Nonclinical safety assessment of the histone deacetylase inhibitor vorinostat. Int J Toxicol 2009; 29:3-19. [PMID: 19903873 DOI: 10.1177/1091581809352111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vorinostat (SAHA, Zolinza), a histone deacetylase inhibitor, is assessed in nonclinical studies to support its approval for cutaneous T-cell lymphoma. Vorinostat is weakly mutagenic in the Ames assay; is clastogenic in rodent (ie, CHO) cells but not in normal human lymphocytes; and is weakly positive in an in vivo mouse micronucleus assay. No effects are observed on potassium ion currents in the hERG assay up to 300 microM (safety margin approximately 300-fold the approximately 1 microM serum concentration associated with the 400 mg/d maximum recommended human dose. No rat respiratory or central nervous system effects are found at 150 mg/kg (>2-fold maximum recommended human dose). No cardiovascular effects, including effects on QTc interval, are observed after a single oral dose (150 mg/kg) in dogs. Vorinostat is orally dosed daily in rats (controls, 20, 50, or 150 mg/kg/d) and dogs (controls, 60, 80, or 100/125/160 mg/kg/d) for 26 weeks with a 4-week recovery. Rat vorinostat-related adverse findings are decreased food consumption, weight loss, and hematologic changes; a no observed adverse effects level is not established. In dogs, adverse effects are primarily gastrointestinal; the no observed adverse effects level is 60 mg/kg/d (approximately 6-fold maximum recommended human dose). Toxicities are reversible and can be monitored in the clinic.
Collapse
Affiliation(s)
- Janet S Kerr
- Safety Assessment, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Olaharski AJ, Gonzaludo N, Bitter H, Goldstein D, Kirchner S, Uppal H, Kolaja K. Identification of a kinase profile that predicts chromosome damage induced by small molecule kinase inhibitors. PLoS Comput Biol 2009; 5:e1000446. [PMID: 19629159 PMCID: PMC2704959 DOI: 10.1371/journal.pcbi.1000446] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 06/24/2009] [Indexed: 12/27/2022] Open
Abstract
Kinases are heavily pursued pharmaceutical targets because of their mechanistic role in many diseases. Small molecule kinase inhibitors (SMKIs) are a compound class that includes marketed drugs and compounds in various stages of drug development. While effective, many SMKIs have been associated with toxicity including chromosomal damage. Screening for kinase-mediated toxicity as early as possible is crucial, as is a better understanding of how off-target kinase inhibition may give rise to chromosomal damage. To that end, we employed a competitive binding assay and an analytical method to predict the toxicity of SMKIs. Specifically, we developed a model based on the binding affinity of SMKIs to a panel of kinases to predict whether a compound tests positive for chromosome damage. As training data, we used the binding affinity of 113 SMKIs against a representative subset of all kinases (290 kinases), yielding a 113x290 data matrix. Additionally, these 113 SMKIs were tested for genotoxicity in an in vitro micronucleus test (MNT). Among a variety of models from our analytical toolbox, we selected using cross-validation a combination of feature selection and pattern recognition techniques: Kolmogorov-Smirnov/T-test hybrid as a univariate filter, followed by Random Forests for feature selection and Support Vector Machines (SVM) for pattern recognition. Feature selection identified 21 kinases predictive of MNT. Using the corresponding binding affinities, the SVM could accurately predict MNT results with 85% accuracy (68% sensitivity, 91% specificity). This indicates that kinase inhibition profiles are predictive of SMKI genotoxicity. While in vitro testing is required for regulatory review, our analysis identified a fast and cost-efficient method for screening out compounds earlier in drug development. Equally important, by identifying a panel of kinases predictive of genotoxicity, we provide medicinal chemists a set of kinases to avoid when designing compounds, thereby providing a basis for rational drug design away from genotoxicity.
Collapse
Affiliation(s)
- Andrew J Olaharski
- Non Clinical Safety, Roche Palo Alto LLC, Palo Alto, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
42
|
Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 2007; 117:147-57. [PMID: 17999076 DOI: 10.1007/s00412-007-0133-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Extensive epidemiological data indicate that inorganic arsenic is associated with several types of human cancer. Nevertheless, the underlying mechanisms are poorly understood. Among its mode of action are the alterations on DNA methylation, which provoke aberrant gene expression. However, beyond DNA methylation, little is known about arsenic's effects on chromatin. In this study, we investigated the effects of sodium arsenite (NaAsO(2)) on global histone modifications and nucleosome-associated proteins. Our findings revealed that NaAsO(2) exposure significantly increases global histone acetylation. This effect was related to the inhibition of histone deacetylase (HDAC) activity because NaAsO(2) was able to inhibit HDACs comparable to the well-known HDAC inhibitor trichostatin A (TSA). Furthermore, analyses of the dynamic properties of the nucleosome-associated high mobility group N proteins demonstrate that NaAsO(2) elevates their mobility. Thus, our data suggest that NaAsO(2) induces chromatin opening by histone hyperacetylation due to HDAC inhibition and increase of the mobility of nucleosome-associated proteins. As the chromatin compaction is crucial for the regulation of gene expression as well as for genome stability, we propose that chromatin opening by NaAsO(2) may play a significant role to impart its genotoxic effects.
Collapse
|
43
|
Khaw AK, Silasudjana M, Banerjee B, Suzuki M, Baskar R, Hande MP. Inhibition of telomerase activity and human telomerase reverse transcriptase gene expression by histone deacetylase inhibitor in human brain cancer cells. Mutat Res 2007; 625:134-44. [PMID: 17669439 DOI: 10.1016/j.mrfmmm.2007.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 06/07/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
The aim of the present study is to investigate the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the cell growth, apoptosis, genomic DNA damage and the expression of telomerase and associated factors in human normal and brain cancer cells. Here, human normal un-transformed fibroblasts (MRC-5), human normal hTERT-immortalised fibroblasts (hTERT-BJ1) and human brain cancer cell lines (glioblastoma cell line, A-172 and medulloblastoma cell line, ONS-76) were treated with 0.5-3.0microM TSA for 24h. Exposure to TSA resulted in apoptosis in a dose-dependent manner in the brain cancer cells. Glioblastoma cell line (A-172) displayed higher sensitivity to TSA-induced cell killing effect and apoptosis than the medulloblastoma cell line (ONS-76). The brain cancer cell lines and hTERT-BJ1 cell line displayed significant inhibition in telomerase activity and hTERT mRNA level after 2microM TSA treatment. Elevated expressions of p53 and p21 with a decrease in cyclin-D level supported the observation on cell cycle arrest following TSA treatment. Upregulation of Bax and cytochrome c correlated with the apoptotic events in TSA-treated cells. This study suggests that telomerase and hTERT might be the primary targets of TSA which may have the potential to be used as a telomerase inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Aik Kia Khaw
- Genome Stability Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
44
|
Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res 2007; 630:78-91. [PMID: 17434794 PMCID: PMC1950716 DOI: 10.1016/j.mrgentox.2007.03.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/29/2022]
Abstract
This laboratory has previously reported on the development of a flow cytometry-based method for scoring in vitro micronuclei in mouse lymphoma (L5178Y) cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Molec. Mutagen. 47 (2006) 56-66]. With this method, necrotic and mid/late stage apoptotic cells are labeled with the fluorescent dye ethidium monoazide. Cells are then washed, stripped of their cytoplasmic membranes, and incubated with RNase plus a pan-nucleic acid dye (SYTOX Green). This process provides a suspension of free nuclei and micronuclei that are differentially stained relative to chromatin associated with dead/dying cells. The current report extends this line of investigation to include the human cell line TK6. Additionally, methods are described that facilitate simultaneous quantitative analysis of cytotoxicity, perturbations to the cell cycle, and what we hypothesize is aneuploidization. This comprehensive cytogenetic damage assay was evaluated with the following diverse agents: etoposide, ionizing radiation, methyl methanesulfonate, vinblastine, ethanol, and staurosporine. Cells were harvested after 30h of continuous treatment (in the case of chemicals), or following graded doses of radiation up to 1Gy. Key findings include the following: (1) Significant discrepancies in top dose selection were found for five of the six agents studied when relative survival measurements were based on Coulter counting versus flow cytometry. (2) Both microscopy- and flow cytometry-based scoring methods detected dose-dependent micronucleus formation for the four genotoxic agents studied, whereas no significant increases were observed for the presumed non-genotoxicants ethanol and staurosporine when top dose selection was based on flow cytometric indices of cytotoxicity. (3) SYTOX and ethidium monoazide fluorescence signals conveyed cell cycle and cell death information, respectively, and appear to represent valuable aids for interpreting micronucleus data. (4) The frequency of hypodiploid nuclei increased in response to each of the genotoxic agents studied, but not following exposure to ethanol or staurosporine. Collectively, these results indicate that a comprehensive assessment of genotoxicity and other test article-induced toxicities can be acquired simultaneously using a simple two-color flow cytometry-based technique.
Collapse
|