1
|
Türkez H, Özdemir Tozlu Ö, Saraçoğlu M, Yıldız E, Baba C, Bayram C, Çınar B, Yıldırım S, Kılıçlıoğlu M, Gözegir B, Çadırcı K. Colemanite and biological disruptions: Behavioral, neurological, and physiological findings. Regul Toxicol Pharmacol 2025; 161:105840. [PMID: 40324558 DOI: 10.1016/j.yrtph.2025.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Colemanite (COL), a boron-containing mineral, has shown potential therapeutic applications, particularly in the fields of drug delivery and bone health. However, despite its promising bioactive properties, there is a lack of comprehensive toxicological data on its safety, especially regarding its potential medical use. Previous studies have primarily focused on its industrial applications, with limited investigation into its biological effects. This gap in knowledge prompted the current study, which aimed to investigate the subacute toxicity of colemanite in rats using behavioral, hematological, biochemical, genotoxic, and histopathological analyses. Over a 7-day period, rats were treated with doses of 10, 30, and 300 mg/kg. Behavioral assessments, including locomotor activity and elevated plus maze tests, indicated enhanced exploratory behaviors, indicating heightened curiosity or activity and no alterations in motor coordination or anxiety-like behaviors. Hematological findings revealed dose-dependent reductions in hematocrit, hemoglobin, and red blood cell counts, while biochemical analyses showed elevated aspartate aminotransferase, lactate dehydrogenase, and cholesterol levels at higher doses, suggesting hepatotoxicity and lipid metabolism disruption. Genotoxicity analysis demonstrated increased micronucleus formation at 30 and 300 mg/kg, indicative of chromosomal instability possibly linked to oxidative stress. Histopathological evaluations revealed mild hepatocyte degeneration and hyperemia in the liver and brain tissues at the highest dose. Importantly, no significant toxic effects were observed at the 10 mg/kg dose. These findings highlight the dose-dependent toxicity of colemanite, with low doses exhibiting a favorable safety profile. This study underscores the need for dose optimization and further research to elucidate the molecular mechanisms underlying colemanite's toxicological effects, including its impact on various organs over both short-term and long-term exposures. Additionally, future studies should focus on assessing the human relevance of these effects to ensure its safe and effective therapeutic application.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Melik Saraçoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çınar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey; Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
| | - Metin Kılıçlıoğlu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Berrah Gözegir
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| |
Collapse
|
2
|
Kale OE, Awodele O, Akindele AJ. Protective Effects of Acridocarpus smeathmannii (DC.) Guill. & Perr. Root Extract against Phenylhydrazine-Induced Haematotoxicity, Biochemical Changes, and Oxidative Stress in Rats. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419883243. [PMID: 35237044 PMCID: PMC8842322 DOI: 10.1177/1178626419883243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022]
Abstract
Several strategies for discovering drugs from unexplored natural products continue to strengthen research and development with current commercial evidence supporting their applications. We assessed the effects of the hydroethanolic extract of Acridocarpus smeathmannii root (HEASR) against phenylhydrazine (PHZ)-induced haematotoxicity, biochemical changes, and oxidative stress in male Wistar rats. Groups 1 and 2 controls received normal saline (10 mL/kg/day) and PHZ (60 mg/kg, day 4 and 5), respectively, via oral gavage. Groups 3, 4, and 5 were administered dexamethasone (DXM, 0.014 mg/kg/day, p.o.), HEASR1 (50 mg/kg/day, p.o.) and HEASR2 (200 mg/kg/day, p.o.), respectively. Groups 6, 7, and 8 received HEASR2 (200 mg/kg/day), DXM (0.014 mg/kg/day), or their combination, respectively, and further received PHZ (60 mg/kg/day) intervention on day 4 and 5 only. Treatments lasted for 7 days. Phenylhydrazine toxicity manifested as lowered haemoglobin, white blood cells, lymphocytes, red blood cells, and platelet levels by 45.86%, 53.47%, 75.69%, 46.89%, and 30.29%, respectively, in rats. This was accompanied by an increase in serum alanine (ALT; 108.25%) and aspartate (AST; 78.79%) aminotransferases, urea (84.36%), total cholesterol (81.55%), and triglycerides (123.42%) levels. Similarly, malondialdehyde levels and serum cyclooxygenase-2 activity were elevated (P < 0.05) in the rats liver and spleen, respectively. Just HEASR alone, or in combination with DXM, preserved haematological and biochemical parameters, cyclooxygenase-2 activity, and corticosterone levels during PHZ intoxication and restored renal histopathological alterations in rats. The HEASR was found to contain high flavonoid and phenolic phytochemicals and demonstrated better in vitro antioxidants inhibitory action.
Collapse
Affiliation(s)
- Oluwafemi Ezekiel Kale
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Pharmacology, Benjamin Carson School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Olufunsho Awodele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
3
|
Du G, Xiao M, Wei X, Zhou C, Li S, Cai W. Hepatic transcriptional profiling response to fava bean-induced oxidative stress in glucose-6-phosphate dehydrogenase-deficient mice. Gene 2018; 652:66-77. [PMID: 29428800 DOI: 10.1016/j.gene.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 11/24/2022]
Abstract
Favism is an acute hemolytic syndrome caused by the ingestion of fava bean (FB) in glucose 6-phosphate dehydrogenase (G6PD) deficient individuals. However, little is known about the global transcripts alteration in liver tissue after FB ingestion in G6PD-normal and -deficient states. In this study, deep sequencing was used to analyze liver genes expression alterations underlying the effects of FB in C3H (Wild Type, WT) and G6PD-deficient (G6PDx) mice and to evaluate and visualize the collective annotation of a list of genes to Gene Ontology (GO) terms associated with favism. Our results showed that FB resulted in a decrease of glutathione (GSH)-to-oxidized glutathione (GSSG) ratio and an increase of malondialdehyde (MDA) both in the G6PDx and WT-control check (CK) mice plasma. Significantly, liver transcript differences were observed between the control and FB-treated groups of both WT and G6PDx mice. A total of 320 differentially expressed transcripts were identified by comparison of G6PDx-CK with WT-CK and were associated with immune response and oxidation-reduction function. A total of 149 differentially expressed genes were identified by comparison of WT-FB with WT-CK. These genes were associated with immune response, steroid metabolic process, creatine kinase activity, and fatty acid metabolic process. A total of 438 differential genes were identified by comparing G6PDx-FB with G6PD-CK, associated with the negative regulation of fatty acid metabolic process, endoplasmic reticulum, iron binding, and glutathione transferase activity. These findings indicate that G6PD mutations may affect the functional categories such as immune response and oxidation-reduction.
Collapse
Affiliation(s)
- Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China.
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China
| | - Xiuyu Wei
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Chen Zhou
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Shuoshuo Li
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
4
|
Lee JS, Ward WO, Knapp G, Ren H, Vallanat B, Abbott B, Ho K, Karp SJ, Corton JC. Transcriptional ontogeny of the developing liver. BMC Genomics 2012; 13:33. [PMID: 22260730 PMCID: PMC3306746 DOI: 10.1186/1471-2164-13-33] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 01/19/2012] [Indexed: 01/01/2023] Open
Abstract
Background During embryogenesis the liver is derived from endodermal cells lining the digestive tract. These endodermal progenitor cells contribute to forming the parenchyma of a number of organs including the liver and pancreas. Early in organogenesis the fetal liver is populated by hematopoietic stem cells, the source for a number of blood cells including nucleated erythrocytes. A comprehensive analysis of the transcriptional changes that occur during the early stages of development to adulthood in the liver was carried out. Results We characterized gene expression changes in the developing mouse liver at gestational days (GD) 11.5, 12.5, 13.5, 14.5, 16.5, and 19 and in the neonate (postnatal day (PND) 7 and 32) compared to that in the adult liver (PND67) using full-genome microarrays. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were under expressed. Comparison of the dataset to a number of previously published microarray datasets revealed 1) a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2) a nucleated erythrocyte signature in the fetus and 3) under expression of most xenobiotic metabolism genes throughout development, with the exception of a number of transporters associated with either hematopoietic cells or cell proliferation in hepatocytes. Conclusions Overall, these findings reveal the complexity of gene expression changes during liver development and maturation, and provide a foundation to predict responses to chemical and drug exposure as a function of early life-stages.
Collapse
Affiliation(s)
- Janice S Lee
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Uehara T, Kondo C, Yamate J, Torii M, Maruyama T. A toxicogenomic approach for identifying biomarkers for myelosuppressive anemia in rats. Toxicology 2011; 282:139-45. [DOI: 10.1016/j.tox.2011.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 01/27/2023]
|
6
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
7
|
Blood cell oxidative stress precedes hemolysis in whole blood–liver slice co-cultures of rat, dog, and human tissues. Toxicol Appl Pharmacol 2010; 244:354-65. [DOI: 10.1016/j.taap.2010.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/27/2010] [Accepted: 01/30/2010] [Indexed: 02/02/2023]
|
8
|
Berger J. New Haemolytic Potential Assay on an Alternative Insect Model. Basic Clin Pharmacol Toxicol 2009; 105:315-8. [DOI: 10.1111/j.1742-7843.2009.00446.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kiyosawa N, Ando Y, Manabe S, Yamoto T. Toxicogenomic biomarkers for liver toxicity. J Toxicol Pathol 2009; 22:35-52. [PMID: 22271975 PMCID: PMC3246017 DOI: 10.1293/tox.22.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022] Open
Abstract
Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment.
Collapse
Affiliation(s)
- Naoki Kiyosawa
- Medicinal Safety Research Labs., Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan
| | | | | | | |
Collapse
|
10
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
11
|
Vickers A. Toxicogenomics in Non-Clinical Safety Studies. Genomics 2008. [DOI: 10.3109/9781420067064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Rice AC, Shapiro SM. A new animal model of hemolytic hyperbilirubinemia-induced bilirubin encephalopathy (kernicterus). Pediatr Res 2008; 64:265-9. [PMID: 18458656 DOI: 10.1203/pdr.0b013e31817d9be0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal hyperbilirubinemia can cause bilirubin encephalopathy (kernicterus). Spontaneously jaundiced (jj) Gunn rats treated with sulfonamide (sulfa) to displace bilirubin from serum albumin, develop bilirubin encephalopathy and abnormal brainstem auditory evoked potentials (BAEPs) comparable with human newborns. We hypothesized phenylhydrazine (PHZ)-induced hemolysis would significantly elevate total plasma bilirubin (TB) in jj Gunn rat pups and produce BAEP abnormalities similar to those observed after sulfa. PHZ 0, 25, 50, or 75 mg/kg was administered intraperitonealy to 15-d-old jjs. An initial TB was recorded in each animal, and a second recorded 1-4 d postinjection to generate a dose-response curve. After PHZ 75 mg/kg, TB peaked at about 30 mg/dL at 48-72 h. A second group of jjs injected with PHZ (0, 25, 50, or 75 mg/kg) and nonjaundiced controls given PHZ 75 mg/kg had HCT and TB at baseline, and HCT, TB, and BAEPs recorded at 48 h. BAEP wave II and III amplitudes decreased, and I-II and I-III interwave intervals increased indicating abnormal central (brainstem) auditory function. PHZ-induced hemolysis in jaundiced Gunn rat pups produces sufficiently elevated TB levels to produce bilirubin encephalopathy. This new model may be a more clinically relevant experimental model of kernicterus- and bilirubin-induced neurologic disorders.
Collapse
Affiliation(s)
- Ann C Rice
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
13
|
Rokushima M, Omi K, Imura K, Araki A, Furukawa N, Itoh F, Miyazaki M, Yamamoto J, Rokushima M, Okada M, Torii M, Kato I, Ishizaki J. Toxicogenomics of Drug-Induced Hemolytic Anemia by Analyzing Gene Expression Profiles in the Spleen. Toxicol Sci 2007; 100:290-302. [PMID: 17698508 DOI: 10.1093/toxsci/kfm216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hemolytic anemia is a serious adverse effect of therapeutic drugs that is caused by increased destruction of drug-damaged erythrocytes by macrophages in the spleen and liver. We previously applied a toxicogenomic approach to the toxicity by analyzing microarray data of the liver of rats dosed with two hemolytic agents: phenylhydrazine and phenacetin. In the present study, we analyzed gene expression profiles in the spleen, the primary organ for destruction of damaged erythrocytes, of the same models in order to identify splenic gene expression alterations that could be used to predict the hematotoxicity. Microarray analyses revealed hundreds of genes commonly deregulated under all severe hemolytic conditions, which included genes related to splenic events characteristic of the hematotoxicity, such as proteolysis and iron metabolism. Eleven upregulated genes were selected as biomarker candidates, and their expression changes were validated by quantitative real-time PCR. The transcript levels of most of these genes showed strong correlation with the results of classical toxicological assays (e.g., histopathology and hematology). Furthermore, hierarchical clustering analysis suggested that altered expression patterns of the 11 genes sensitively reflected the erythrocyte damage even under a condition that caused no decrease in erythrocyte counts. Among the selected genes, heme oxygenase 1 was one of the most promising biomarker candidates, the upregulation of which on the protein level was confirmed by immunohistochemistry. These results indicate that altered splenic expression of a subset of genes may allow detection of drug-induced hemolytic anemia, with better sensitivity than that of erythrocyte counts in the blood.
Collapse
Affiliation(s)
- Masatomo Rokushima
- Discovery Technologies 1, Discovery Research Laboratories, Shionogi & Co., Ltd, 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|