1
|
Han DT, Zhao W, Powell WH. Dioxin Disrupts Thyroid Hormone and Glucocorticoid Induction of klf9, a Master Regulator of Frog Metamorphosis. Toxicol Sci 2022; 187:150-161. [PMID: 35172007 PMCID: PMC9041550 DOI: 10.1093/toxsci/kfac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frog metamorphosis, the development of an air-breathing froglet from an aquatic tadpole, is controlled by thyroid hormone (TH) and glucocorticoids (GC). Metamorphosis is susceptible to disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AHR) agonist. Krüppel-like factor 9 (klf9), an immediate early gene in the endocrine-controlled cascade of expression changes governing metamorphosis, can be synergistically induced by both hormones. This process is mediated by an upstream enhancer cluster, the klf9 synergy module (KSM). klf9 is also an AHR target. We measured klf9 mRNA following exposures to triiodothyronine (T3), corticosterone (CORT), and TCDD in the Xenopus laevis cell line XLK-WG. klf9 was induced 6-fold by 50 nM T3, 4-fold by 100 nM CORT, and 3-fold by 175 nM TCDD. Cotreatments of CORT and TCDD or T3 and TCDD induced klf9 7- and 11-fold, respectively, whereas treatment with all 3 agents induced a 15-fold increase. Transactivation assays examined enhancers from the Xenopus tropicalis klf9 upstream region. KSM-containing segments mediated a strong T3 response and a larger T3/CORT response, whereas induction by TCDD was mediated by a region ∼1 kb farther upstream containing 5 AHR response elements (AHREs). This region also supported a CORT response in the absence of readily identifiable GC responsive elements, suggesting mediation by protein-protein interactions. A functional AHRE cluster is positionally conserved in the human genome, and klf9 was induced by TCDD and TH in HepG2 cells. These results indicate that AHR binding to upstream AHREs represents an early key event in TCDD's disruption of endocrine-regulated klf9 expression and metamorphosis.
Collapse
Affiliation(s)
| | | | - Wade H Powell
- To whom correspondence should be addressed at Biology Department, Kenyon College, 202 N College Rd, Gambier, OH 43022. E-mail:
| |
Collapse
|
2
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
3
|
Freeburg SH, Engelbrecht E, Powell WH. Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog Xenopus Laevis: Distinct Target Genes and Differential Responses to Specific Agonists in a Single Cell Type. Toxicol Sci 2016; 155:337-347. [PMID: 27994169 DOI: 10.1093/toxsci/kfw212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene duplication confers genetic redundancy that can facilitate subfunctionalization, the partitioning of ancestral functions between paralogs. We capitalize on a recent genome duplication in Xenopus laevis (African clawed frog) to interrogate possible functional differentiation between alloalleles of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates toxicity of dioxin-like compounds and plays a role in the physiology and development of the cardiovascular, hepatic, and immune systems in vertebrates. X. laevis has 2 AHR genes, AHR1α and AHR1β To test the hypothesis that the encoded proteins exhibit different molecular functions, we used TALENs in XLK-WG cells, generating mutant lines lacking functional versions of each AHR and measuring the transcriptional responsiveness of several target genes to the toxic xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the candidate endogenous ligand 6-formylindolo[3,2-b]carbazole (FICZ). Mutation of either AHR1α or AHR1β reduced TCDD induction of the canonical AHR target, Cytochrome P4501A6, by 75%, despite the much lower abundance of AHR1β in wild-type cells. More modestly induced target genes, encoding aryl hydrocarbon receptor repressor (AHRR), spectrin repeat-containing nuclear envelope protein 1 (SYNE-1), and gap junction protein gamma 1 (GJC1), were regulated solely by AHR1α. AHR1β was responsible for CYP1A6 induction by FICZ, while AHR1α mediated FICZ induction of AHRR We conclude that AHR1α and AHR1β have distinct transcriptional functions in response to specific agonists, even within a single cell type. Functional analysis of frog AHR paralogs advances the understanding of AHR evolution and as well as the use of frog models of developmental toxicology such as FETAX.
Collapse
Affiliation(s)
| | | | - Wade H Powell
- Biology Department, Kenyon College, Gambier, Ohio 43022
| |
Collapse
|
4
|
Li M, Cao C, Li S, Gui W, Zhu G. Thyroid endocrine disruption of azocyclotin to Xenopus laevis during metamorphosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:61-67. [PMID: 26970056 DOI: 10.1016/j.etap.2016.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Organotin compounds are ubiquitous contaminants that are frequently detected in the environment and in biota, which raises concern about their risk to wildlife and human health. In the present study, Nieuwkoop & Faber stage 51 Xenopus laevis tadpoles were exposed to different concentrations of azocyclotin (0, 0.02, 0.1 and 0.5μg/L) for 21 days, during which time the tadpoles underwent morphological development. Exposure to azocyclotin caused an inhibitory effect on the pre-metamorphic development of X. laevis (e.g., a shortened hind limb length). Azocyclotin induced an alteration of the triiodothyronine (T3) content, which indicated thyroid endocrine disruption. Real-time PCR was performed to examine the expression levels of the genes involved in the thyroid hormone (TH) signaling pathway. Significant down-regulation of the type 2 deiodinase gene was observed, which may be partially responsible for the decreased T3 concentrations. Furthermore, the expression of T3 responsive genes, including thyroid hormone receptor, basic transcription element binding protein, 2tromelysins-3 and matrix metalloproteinase 2, were down-regulated in tadpoles, suggesting that azocyclotin induced a decrease in the T3 contents and, in turn, affected the mRNA expression of downstream genes involved in multiple physiological responses. Chemical analysis showed that azocyclotin could accumulate in X. laevis after 21 days of exposure. In conclusion, the results of the present study showed that azocyclotin could alter the mRNA expression of genes involved in TH signaling as well as the thyroid hormone concentrations in X. laevis tadpoles, leading to endocrine disruption of thyroid system, and that azocyclotin had obvious inhibitory effects on X. laevis metamorphosis.
Collapse
Affiliation(s)
- Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Chuyan Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
5
|
Shoots J, Fraccalvieri D, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6993-7001. [PMID: 25941739 PMCID: PMC4454367 DOI: 10.1021/acs.est.5b01299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.
Collapse
Affiliation(s)
- Jenny Shoots
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| | - Domenico Fraccalvieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616 USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Wade H. Powell
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| |
Collapse
|
6
|
Ishihara A, Makita Y, Yamauchi K. Gene expression profiling to examine the thyroid hormone-disrupting activity of hydroxylated polychlorinated biphenyls in metamorphosing amphibian tadpole. J Biochem Mol Toxicol 2011; 25:303-11. [DOI: 10.1002/jbt.20390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/27/2011] [Accepted: 02/16/2011] [Indexed: 11/10/2022]
|
7
|
Lee JS, Kim EY, Iwabuchi K, Iwata H. Molecular and functional characterization of aryl hydrocarbon receptor nuclear translocator 1 (ARNT1) and ARNT2 in chicken (Gallus gallus). Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:269-79. [PMID: 21134488 DOI: 10.1016/j.cbpc.2010.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022]
Abstract
Our previous studies have provided evidence that birds have two isoforms of aryl hydrocarbon receptors (AHR1 and AHR2) and AHR nuclear translocators (ARNT1 and ARNT2) that potentially mediate toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. We have also shown that while both in vitro-expressed chicken AHR1 (ckAHR1) and AHR2 (ckAHR2) exhibit binding affinities to TCDD, only ckAHR1 but not ckAHR2 showed a TCDD-dose-dependent transactivation potency of chicken cytochrome P450 1A5 (ckCYP1A5) in in vitro reporter gene assays. To explore the molecular mechanism of functional difference in the two ckAHRs, the present study investigated the molecular characteristics and function of chicken ARNT (ckARNT) that is a potential dimerization partner for the activation of ckAHR. The full-length ckARNT1 and ckARNT2 cDNAs were isolated and their alternative splice variants were also identified. The ckARNT1 transcript was ubiquitously expressed in various tissues, but ckARNT2 showed restricted expressions in brain, kidney and eye, indicating a similar expression pattern to mammalian ARNTs. The expressions of tagged-ckARNT1 and -ckARNT2 were confirmed in a chicken hepatoma LMH cells by western blot analyses, and their interactions with each ckAHR and a specific recognition DNA element, xenobiotic response element (XRE), were examined by gel shift assays. The result showed that ckARNT1 and ckARNT2 dimerize with each ckAHR isoform and bind with the XRE in a TCDD-dependent manner. Hence, we conclude that functional loss on the dimerization with ckARNTs or the XRE binding is not the major cause of the deficient TCDD-dependency of ckAHR2 for the transactivation. Furthermore, in vitro reporter gene assays showed that transfected ckARNT1 failed to modulate the transcriptional induction of ckAHR-mediated ckCYP1A5 gene by TCDD in COS-7 and LMH cells, whereas ckARNT2 could potentiate the TCDD-dependent response in COS-7 but not in LMH cells. This suggests that ckARNT2 has a distinct role from ckARNT1 in AHR signaling pathway and in a cell-specific mode of action.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Laboratory of Environmental Toxicology, Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | |
Collapse
|
8
|
Lee JS, Kim EY, Nomaru K, Iwata H. Molecular and functional characterization of Aryl hydrocarbon receptor repressor from the chicken (Gallus gallus): interspecies similarities and differences. Toxicol Sci 2010; 119:319-34. [PMID: 21047992 DOI: 10.1093/toxsci/kfq336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) has been recognized as a negative feedback modulator of AHR-mediated responses in fish and mammals. However, the repressive mechanism by the AHRR has not been investigated in other animals. To understand the molecular mechanism of dioxin toxicity and the evolutionary history of the AHR signaling pathway in avian species, the present study addresses chicken AHRR (ckAHRR). The complementary DNA sequence of ckAHRR encodes an 84-kDa protein sharing 29-52% identities with other AHRRs. High levels of ckAHRR messenger RNA were recorded in the kidney and intestine of nontreated chicks. In hepatoma LMH cells, the 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) 50% effective concentration value for ckAHRR induction (0.0016nM) was the same as that for chicken cytochrome P450 1A5 (ckCYP1A5), implying a shared transcriptional regulation of ckAHRR and ckCYP1A5 by chicken AHR (ckAHR). In ckAHRR transient transfection assays, ckAHRR repressed both ckAHR1- and ckAHR2-mediated transcriptional activities. Deletion and mutation assays revealed that basic helix-loop-helix/Per-ARNT-Sim A domains of ckAHRR, particularly 217-402 amino acid residues, are indispensable for the repression, but the AHR nuclear translocator sequestration by ckAHRR and SUMOylation of ckAHRR are not involved in its repressive mechanism. Additionally, subcellular localization assay of ckAHR1-enhanced green fluorescent protein fusion protein showed that ckAHRR did not affect nuclear translocation of the ckAHR1. Furthermore, ckAHRR inhibited the TCDD- and 17β estradiol-enhanced ckCYP1A5 transcription through AHR-estrogen receptor α (ERα) cross talk. Taken together, the function of AHRR is conserved in chicken in terms of the negative regulation of AHR and ERα activities, but its functional mechanism is likely distinct from those of the mammalian and fish homologues.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Japan
| | | | | | | |
Collapse
|
9
|
New CYP1 genes in the frog Xenopus (Silurana) tropicalis: induction patterns and effects of AHR agonists during development. Toxicol Appl Pharmacol 2010; 250:170-83. [PMID: 20965207 DOI: 10.1016/j.taap.2010.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 11/22/2022]
Abstract
The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), β-naphthoflavone (βNF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). βNF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and βNF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 μM PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 μM PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.
Collapse
|
10
|
The active form of human aryl hydrocarbon receptor (AHR) repressor lacks exon 8, and its Pro 185 and Ala 185 variants repress both AHR and hypoxia-inducible factor. Mol Cell Biol 2009; 29:3465-77. [PMID: 19380484 DOI: 10.1128/mcb.00206-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) inhibits AHR-mediated transcription and has been associated with reproductive dysfunction and tumorigenesis in humans. Previous studies have characterized the repressor function of AHRRs from mice and fish, but the human AHRR ortholog (AHRR(715)) appeared to be nonfunctional in vitro. Here, we report a novel human AHRR cDNA (AHRRDelta8) that lacks exon 8 of AHRR(715). AHRRDelta8 was the predominant AHRR form expressed in human tissues and cell lines. AHRRDelta8 effectively repressed AHR-dependent transactivation, whereas AHRR(715) was much less active. Similarly, AHRRDelta8, but not AHRR(715), formed a complex with AHR nuclear translocator (ARNT). Repression of AHR by AHRRDelta8 was not relieved by overexpression of ARNT or AHR coactivators, suggesting that competition for these cofactors is not the mechanism of repression. AHRRDelta8 interacted weakly with AHR but did not inhibit its nuclear translocation. In a survey of transcription factor specificity, AHRRDelta8 did not repress the nuclear receptor pregnane X receptor or estrogen receptor alpha but did repress hypoxia-inducible factor (HIF)-dependent signaling. AHRRDelta8-Pro(185) and -Ala(185) variants, which have been linked to human reproductive disorders, both were capable of repressing AHR or HIF. Together, these results identify AHRRDelta8 as the active form of human AHRR and reveal novel aspects of its function and specificity as a repressor.
Collapse
|
11
|
Collier A, Orr L, Morris J, Blank J. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the mortality and growth of two amphibian species (Xenopus laevis and Pseudacris triseriata). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2008; 5:368-77. [PMID: 19151431 PMCID: PMC3699996 DOI: 10.3390/ijerph5050368] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
We observed a slight drop in the growth of Xenopus laevis and Pseudacris triseriata larvae following acute exposure (24-48 h) during egg development to three concentrations of TCDD (0.3, 3.0, 30.0 microg/l). Our exposure protocol was modeled on a previous investigation that was designed to mimic the effects of maternal deposition of TCDD. The doses selected were consistent with known rates of maternal transfer between mother and egg using actual adult body burdens from contaminated habitats. Egg and embryonic mortality immediately following exposure increased only among 48 h X. laevis treatments. Control P. triseriata and X. laevis completed metamorphosis more quickly than TCDDtreated animals. The snout-vent length of recently transformed P. triseriata did not differ between treatments although controls were heavier than high-dosed animals. Likewise, the snout-vent length and weight of transformed X. laevis did not differ between control and TCDD treatments. These findings provide additional evidence that amphibians, including P. triseriata and X. laevis are relatively insensitive to acute exposure to TCDD during egg and embryonic development. Although the concentrations selected for this study were relatively high, they were not inconsistent with our current understanding of bioaccumulation via maternal transfer.
Collapse
Affiliation(s)
- Alex Collier
- Department of Biology, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, GA 31419, USA.
| | | | | | | |
Collapse
|
12
|
Hahn ME, Allan LL, Sherr DH. Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. Biochem Pharmacol 2008; 77:485-97. [PMID: 18848529 DOI: 10.1016/j.bcp.2008.09.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/13/2023]
Abstract
The AHR is well known for regulating responses to an array of environmental chemicals. A growing body of evidence supports the hypothesis that the AHR also plays perhaps an even more important role in modulating critical aspects of cell function including cell growth, death, and migration. As these and other important AHR activities continue to be elucidated, it becomes apparent that attention now must be directed towards the mechanisms through which the AHR itself is regulated. Here, we review what is known of and what biological outcomes have been attributed to the AHR repressor (AHRR), an evolutionarily conserved bHLH-PAS protein that inhibits both xenobiotic-induced and constitutively active AHR transcriptional activity in multiple species. We discuss the structure and evolution of the AHRR and the dominant paradigm of a xenobiotic-inducible negative feedback loop comprised of AHR-mediated transcriptional up-regulation of AHRR and the subsequent AHRR-mediated suppression of AHR activity. We highlight the role of the AHRR in limiting AHR activity in the absence of xenobiotic AHR ligands and the important contribution of constitutively repressive AHRR to cancer biology. In this context, we also suggest a new hypothesis proposing that, under some circumstances, constitutively active AHR may repress AHRR transcription, resulting in unbridled AHR activity. We also review the predominant hypotheses on the molecular mechanisms through which AHRR inhibits AHR as well as novel mechanisms through which the AHRR may exert AHR-independent effects. Collectively, this discussion emphasizes the importance of this understudied bHLH-PAS protein in tissue development, normal cell biology, xenobiotic responsiveness, and AHR-regulated malignancy.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | |
Collapse
|