1
|
Cucu RP, Hînganu MV, Costan VV, Lozneanu L, Boişteanu O, Tamaş C, Negru D, Hînganu D. Morphofunctional and histological patterns of blood vessels in the superficial cervicofacial musculoaponeurotic system in midlateral face regions. Ann Anat 2024; 253:152221. [PMID: 38309593 DOI: 10.1016/j.aanat.2024.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE The superficial cervicofacial musculoaponeurotic system (SMAS) is a complex network formed by mimic muscles and conjunctive tissue of the superficial fascia of the face.This study aimed to introduce new anatomofunctional data on the importance of the trans-SMAS distribution pattern of the skin microperfusion of the face and to underline the role of SMAS in maintaining the homeostasis of the vascular network that crosses it. Considering the fibrous and muscular matrix of the SMAS, using COLIII and MyoH2 antibodies, together with endothelial immunohistochemistry(IHC)intercellular adhesion molecule 2 marker, we determined the correlation of these structures and their interaction. METHODS This study included 33donors of SMAS tissues, which have been stained withregular hematoxylin and eosin (HE), and three different IHC markers have been used (collagen III, muscular tissue, and blood vessels). The samples were collected from parotid, masseteric, jugal, and zygomatic regions. Magnetic resonance angiography was used to identify the main vascular sources of the midlateral regions of the face of another 47 patients. RESULTS Significant differences in topographic arrangement, density, and relations of the microsopic vasculature were observed between each of the four regions. Major differences were identified between the role of SMAS in each of these regions, from the parotid capsule to masseteric fascia, transition mobile part, and attaching manners in the zygomatic subunit. CONCLUSIONS Blood vessel topography must be related with the surrounding conjunctive and muscular tissue, especially regarding facial SMAS. Intrinsic relations between these three components of the SMAS and nervous fibers can provide us important hints on the functionality of the whole system.
Collapse
Affiliation(s)
| | - Marius Valeriu Hînganu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Victor-Vlad Costan
- Department of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Ludmila Lozneanu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Otilia Boişteanu
- Department of Oral surgery, Anaesthesiology and Intensive Care, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Camelia Tamaş
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Dragoş Negru
- Radiology and imaging department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Hînganu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
2
|
Kaikai NE, Ba-M'hamed S, Ghanima A, Bennis M. Exposure to metam sodium-based pesticide impaired cognitive performances in adult mice: Involvement of oxidative damage and glial activation. Toxicol Appl Pharmacol 2023; 477:116677. [PMID: 37678439 DOI: 10.1016/j.taap.2023.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Cognitive integrity is a critical aspect of neurological function, and a decline in cognitive function is a hallmark of neurotoxicity. Oxidative stress is a significant pathological feature contributing to cognitive deficits that can arise from exposure to environmental pollutants such as pesticides. Among these, Metam sodium-based pesticides (MS-BP) are an emergent type of pesticide widely used in the agriculture and public health sectors for controlling pests and diseases. Our prior research has shown that animals exposed to MS-BP during the early stages of brain development caused cognitive impairments. In the present study, we tested whether exposure to this compound in a fully matured brain would affect cognitive performance and induce oxidative damage to the central nervous system. In this context, adult mice received chronic treatment with increasing doses of MS-BP and subjected to a set of behavioral paradigms. Following behavioral assessment, oxidative stress and glial activation were evaluated. Our main findings showed that MS-BP chronic exposure impaired recognition and short- and long-term memory. These alterations were accompanied by increased superoxide dismutase activity and malondialdehyde level and a marked decrease in catalase activity in specific brain areas. Moreover, exposure to MS-BP is associated with a significant rise in the density of astrocytic and microglial markers, indicating a possible glial cell response within the prefrontal cortex and hippocampus. The present work demonstrated that MS-BP altered cognitive performance likely through oxidative damage to the brain.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco; Department of Biology, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health, Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco.
| |
Collapse
|
3
|
Shen C, Sheng ZG, Shao J, Tang M, Mao L, Huang CH, Zhang ZH, Zhu BZ. Mechanistic investigation of the differential synergistic neurotoxicity between pesticide metam sodium and copper or zinc. CHEMOSPHERE 2023; 328:138430. [PMID: 36963585 DOI: 10.1016/j.chemosphere.2023.138430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological studies suggest neurological disorders have been associated with the co-exposure to certain pesticides and transition metals. The present study aims to investigate whether co-exposure to the widely-used pesticide metam sodium and copper (Cu2+) or zinc ion (Zn2+) is able to cause synergistic neurotoxicity in neural PC12 cells and its possible mechanism(s). We found that both metam/Cu2+ and metam/Zn2+ synergistically induced apoptosis, intracellular Cu2+/Zn2+ uptake, reactive oxygen species (ROS) accumulation, double-strand DNA breakage, mitochondrial membrane potential decrease, and nerve function disorder. In addition, metam/Cu2+ was shown to release cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to cytoplasm and nucleus, respectively, and activate the caspase 9, 8, 3, 7. However, metam/Zn2+ induced caspase 7 activation and AIF translocation and mildly activated cytochrome c/caspase 9/caspase 3 pathway. Furthermore, metam/Cu2+ activated caspase 3/7 by the p38 pathway, whereas metam/Zn2+ did so via both the p38 and JNK pathways. These results demonstrated that metam/Cu2+ or metam/Zn2+ co-exposure cause synergistic neurotoxicity via different mechanisms, indicating a potential risk to human health when they environmentally co-exist.
Collapse
Affiliation(s)
- Chen Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Hui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Stomatology, Peking University Third Hospital, Beijing, 100191, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Kaikai NE, Ba-M Hamed S, Slimani A, Dilagui I, Hanchi AL, Soraa N, Mezrioui NE, Bennis M, Ghanima A. Chronic exposure to metam sodium-based pesticide in mice during adulthood elevated anxiety and depression-like behaviors: Involvement of serotoninergic depletion and gut microbiota dysbiosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104066. [PMID: 36640922 DOI: 10.1016/j.etap.2023.104066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metam sodium-based pesticide (MS-BP) is widely used in agriculture and public health. We have previously demonstrated that maternal exposure to MS-BP resulted in sensorimotor alterations in mice offspring with long-lasting deficits including anxiety- and depression-like behaviors. Here, we project to verify whether these two neurobehavioral effects occur during adulthood following direct exposure to MS-BP and whether it results in changes in the serotoninergic system and gut microbiota. Our findings showed that chronic exposure to MS-BP increased anxiety- and depression-like behaviors, accompanied by a depletion of serotonin-like neurons within the dorsal raphe nucleus and a reduction in serotoninergic terminals in the infralimbic cortex and the basolateral amygdala. In addition, all MS-BP-exposed animals exhibited a reduced total bacterial number and diversity of gut microbiota. Taken together, our data demonstrated that MS-BP-induced behavioral changes could be related to the impairment of the serotoninergic system and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco; Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco
| | - Saadia Ba-M Hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Aiman Slimani
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Ilham Dilagui
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Asmae Lamrani Hanchi
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nour-Eddine Mezrioui
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco.
| |
Collapse
|
5
|
Başımoğlu Koca Y, Koca S, Öztel Z, Balcan E. Determination of histopathological effects and myoglobin, periostin gene-protein expression levels in Danio rerio muscle tissue after acaricide yoksorrun-5EC (hexythiazox) application. Drug Chem Toxicol 2023; 46:50-58. [PMID: 34879781 DOI: 10.1080/01480545.2021.2007945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although pesticides are essential agrochemicals to annihilate harmful organisms in agriculture, their uncontrolled use has become an important threat to environmental health. Exposure to pesticides can affect many biological systems including immune system, endocrine system, and nervous system. However, the potential side effects of pesticides to skeletal muscle system remain unclear. Present study has focused on the evaluation of this issue by using an acaricide, yoksorrun-5EC (hexythiazox), in an aquatic model organism, Danio rerio. The histological analyses revealed that increased concentrations of the acaricide cause degradation of skeletal muscle along with increased necrosis and atrophy in myocytes, intercellular edema, and increased infiltrations between perimysium sheaths of muscle fibers. The effects of acaricide on myoglobin and periostin, which are associated with oxygen transport and muscle regeneration, respectively, were investigated at the gene and protein levels. RT-PCR results suggested that high concentration yoksorrun-5EC (hexythiazox) can induce myoglobin and periostin genes. Similar results were also obtained in the protein levels of these genes by western blotting analysis. These results suggested that yoksorrun-5EC (hexythiazox)-dependent disruption of skeletal muscle architecture is closely associated with the expression levels of myoglobin and periostin genes in Danio rerio model.
Collapse
Affiliation(s)
- Yücel Başımoğlu Koca
- Department of Biology, Zoology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Serdar Koca
- Department of Biology, General Biology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Zübeyde Öztel
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| | - Erdal Balcan
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
6
|
Jin B, Xie L, Zhan D, Zhou L, Feng Z, He J, Qin J, Zhao C, Luo L, Li L. Nrf2 dictates the neuronal survival and differentiation of embryonic zebrafish harboring compromised alanyl-tRNA synthetase. Development 2022; 149:276217. [DOI: 10.1242/dev.200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Binbin Jin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Liqin Xie
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Dan Zhan
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Luping Zhou
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Zhi Feng
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and informatics, Chongqing University of Posts and Telecommunications 2 , Chongqing 40065 , China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences 3 , Chongqing 400714 , China
| |
Collapse
|
7
|
Wei J, Liu J, Liang S, Sun M, Duan J. Low-Dose Exposure of Silica Nanoparticles Induces Neurotoxicity via Neuroactive Ligand-Receptor Interaction Signaling Pathway in Zebrafish Embryos. Int J Nanomedicine 2020; 15:4407-4415. [PMID: 32606685 PMCID: PMC7310985 DOI: 10.2147/ijn.s254480] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Silica nanoparticles (SiO2 NPs) have been extensively employed in biomedical field. SiO2 NPs are primarily designed to enter the circulatory system; however, little information is available on potential adverse effects of SiO2 NPs on the nervous system. Methods The neurotoxicity of SiO2 NPs at different concentrations (3, 6, 12 ng/nL) on zebrafish embryos was determined using immunofluorescence and microarray techniques, and subsequently confirmed by qRT-PCR. Results SiO2 NPs disrupt the axonal integrity and decrease the length of axons in Tg (NBT: EGFP) transgenic lines. The number of apoptotic cells in the brain and central nervous system of zebrafish embryos was increased in the presence of 12 ng/nL of SiO2 NPs, but the difference did not reach statistical significance. Screening for changes in the expression of genes involved in the neuroactive ligand–receptor interaction pathway was performed by microarray and confirmed by qRT-PCR. These analyses demonstrated that SiO2 NPs markedly downregulated genes associated with neural function (grm6a, drd1b, chrnb3b, adrb2a, grin2ab, npffr2.1, npy8br, gabrd, chrma3, gabrg3, gria3a, grm1a, adra2b, and glra3). Conclusion The obtained results documented that SiO2 NPs can induce developmental neurotoxicity by affecting the neuroactive ligand–receptor interaction signaling pathway. This new evidence may help to clarify the mechanism of SiO2 NPs-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianhui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, Sun Z. Multi-organ toxicity induced by fine particulate matter PM 2.5 in zebrafish (Danio rerio) model. CHEMOSPHERE 2017; 180:24-32. [PMID: 28391149 DOI: 10.1016/j.chemosphere.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The fine particulate matter (PM2.5) in air pollution is a major public health concern and now known to contribute to severe diseases, therefore, a comprehensive understanding of PM2.5-induced adverse effects in living organisms is needed urgently. This study was aimed to evaluate the toxicity of PM2.5 on multi-organ systems in a zebrafish (Danio rerio) model. The embryonic toxicity induced by PM2.5 was demonstrated by an increase in mortality and inhibition of hatching rate, in a dose- and time-dependent manner. PM2.5 caused the pericardial edema, as well as reducing heart rate and cardiac output. The area of sub-intestinal vessels (SIVs) was significant reduced in Tg(fli-1:EGFP) transgenic zebrafish lines. Morphological defects and yolk sac retention were associated with hepatocyte injury. In addition, PM2.5 disrupted the axonal integrity, altering of axon length and pattern in Tg(NBT:EGFP) transgenic lines. Genes involved in cardiac function (spaw, supt6h, cmlc1), angiogenesis (vegfr2a, vegfr2b), and neural function (gabrd, chrna3, npy8br) were markedly down-regulated; while genes linked to hepatic metabolism (cyp1a, cyp1b1, cyp1c1) were significantly up-regulated by PM2.5. In summary, our data showed that PM2.5 induced the cardiovascular toxicity, hepatotoxicity and neurotoxicity in zebrafish, suggested that PM2.5 could cause multi-organ toxicity in aquatic organism.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
9
|
Tian J, Hu J, Chen M, Yin H, Miao P, Bai P, Yin J. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:123-133. [PMID: 28282619 DOI: 10.1016/j.aquatox.2017.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/01/2017] [Indexed: 05/13/2023]
Abstract
Previous studies in our lab have revealed that both P-glycoprotein (Pgp) and multi-resistance associated protein (Mrp) 1 played important roles in the detoxification of heavy metals and polycyclic aromatic hydrocarbon (PAH) in zebrafish embryos. This paper aims to extend this research by using mrp1-deficient model to illustrate the individual function of Mrp1. In this respect, CRISPR/Cas9 system was employed to generate a frameshift mutation in zebrafish mrp1 causing premature translational stops in Mrp1. Significant reduction on the efflux function of Mrps was found in mutant zebrafish embryos, which correlated well with the significantly enhanced accumulation and toxicity of cadmium chloride (CdCl2) and benzo[a]pyrene (BαP), indicating the protective role of the corresponding protein. The different alteration on the accumulation and toxicity of Cd2+ and BαP could be attributed to the fact that Cd2+ and its metabolites were mainly excreted by Mrp1, while BαP was primarily pumped out by Pgp. More importantly, the compensation mechanism for the absence of Mrp1, including elevated glutathione (GSH) level and up-regulated expression of pgp and mrp2 were also found. Thus, mrp1-deficient zebrafish embryo could be a useful tool in the investigation of Mrp1 functions in the early life stages of aquatic organisms. However, compensation mechanism should be taken into consideration in the interpretation of results obtained with mrp1-deficient fish.
Collapse
Affiliation(s)
- Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mingli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| |
Collapse
|
10
|
Thomas-Jinu S, Gordon PM, Fielding T, Taylor R, Smith BN, Snowden V, Blanc E, Vance C, Topp S, Wong CH, Bielen H, Williams KL, McCann EP, Nicholson GA, Pan-Vazquez A, Fox AH, Bond CS, Talbot WS, Blair IP, Shaw CE, Houart C. Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development. Neuron 2017; 94:322-336.e5. [PMID: 28392072 PMCID: PMC5405110 DOI: 10.1016/j.neuron.2017.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/02/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
Abstract
Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. Video Abstract
SFPQ splicing factor is present in motor axons Non-nuclear SFPQ is able to drive axon maturation and connectivity Loss of axonal SFPQ affects axonal morphology Coiled-coil domain of the protein is important for non-nuclear localization
Collapse
Affiliation(s)
- Swapna Thomas-Jinu
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Patricia M Gordon
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Victoria Snowden
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Eric Blanc
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Caroline Vance
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Chun-Hao Wong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Holger Bielen
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Kelly L Williams
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily P McCann
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Garth A Nicholson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Alejandro Pan-Vazquez
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Archa H Fox
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Crawley, WA 6009, Australia; Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian P Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
11
|
Fan RM, Zhu BZ, Huang CP, Sheng ZG, Mao L, Li MX. Different modes of synergistic toxicities between metam/copper (II) and metam/zinc (II) in HepG2 cells: apoptosis vs. necrosis. ENVIRONMENTAL TOXICOLOGY 2016; 31:1964-1973. [PMID: 26420683 DOI: 10.1002/tox.22197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Both metam sodium and copper/zinc-containing compounds are widely used as fungicides. They therefore may co-occur in the biosphere. Despite certain studies of individual toxicity for either metam or copper (II)/zinc (II), their synergistic toxicity has not been examined. In this paper, a remarkable synergistic toxicity was observed in HepG2 cells when metam and copper (II)/zinc (II) at non-toxic and sub-toxic levels were combined. Unexpectedly, cell death modes between metam/copper (II) and metam/zinc (II) were different: For metam/copper (II), apoptosis was evident from morphological characteristics including cytoplasm-chromatin condensation, phosphatidylserine (PS) exposure, SubG0 /G1 DNA fragmentation, mitochondrial membrane potential decrease, pro/anti-apoptotic protein activation, and cytochrome c release; for metam/zinc (II), necrosis was evident from organelle swelling and uncontrolled collapse. To our knowledge, this work first not only demonstrates the synergistic toxicities of metam and both copper (II)/zinc (II), but also verifies the different modes of apoptosis/necrosis between metam/copper (II) and metam/zinc (II). © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1964-1973, 2016.
Collapse
Affiliation(s)
- Rui-Mei Fan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Environmental Engineering, Civil and Environmental Engineering Department, University of Delaware, USA
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chin-Pao Huang
- Environmental Engineering, Civil and Environmental Engineering Department, University of Delaware, USA
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ming-Xin Li
- Environmental Engineering, Civil and Environmental Engineering Department, University of Delaware, USA
| |
Collapse
|
12
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
13
|
Truong L, Bugel SM, Chlebowski A, Usenko CY, Simonich MT, Simonich SLM, Tanguay RL. Optimizing multi-dimensional high throughput screening using zebrafish. Reprod Toxicol 2016; 65:139-147. [PMID: 27453428 DOI: 10.1016/j.reprotox.2016.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022]
Abstract
The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories.
Collapse
Affiliation(s)
- Lisa Truong
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Anna Chlebowski
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | | | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
14
|
Yin H, Bai P, Miao P, Chen M, Hu J, Deng X, Yin J. Functional expressions of adenosine triphosphate-binding cassette transporters during the development of zebrafish embryos and their effects on the detoxification of cadmium chloride and β-naphthoflavone. J Appl Toxicol 2015; 36:925-35. [DOI: 10.1002/jat.3225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou Jiangsu 215163 People's Republic of China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou Jiangsu 215163 People's Republic of China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou Jiangsu 215163 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Mingli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou Jiangsu 215163 People's Republic of China
| | - Jun Hu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou Jiangsu 215163 People's Republic of China
| | - Xudong Deng
- Department of Chemical Engineering; McMaster University; Hamilton Ontario L8S 4L7 Canada
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou Jiangsu 215163 People's Republic of China
| |
Collapse
|
15
|
High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 2015; 90:1459-70. [PMID: 26126630 PMCID: PMC4701642 DOI: 10.1007/s00204-015-1554-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022]
Abstract
New strategies are needed to address the data gap between the bioactivity of chemicals in the environment versus existing hazard information. We address whether a high-throughput screening (HTS) system using a vertebrate organism (embryonic zebrafish) can characterize chemical-elicited behavioral responses at an early, 24 hours post-fertilization (hpf) stage that predict teratogenic consequences at a later developmental stage. The system was used to generate full concentration–response behavioral profiles at 24 hpf across 1060 ToxCast™ chemicals. Detailed, morphological evaluation of all individuals was performed as experimental follow-up at 5 days post-fertilization (dpf). Chemicals eliciting behavioral responses were also mapped against external HTS in vitro results to identify specific molecular targets and neurosignalling pathways. We found that, as an integrative measure of normal development, significant alterations in movement highlighted active chemicals representing several modes of action. These early behavioral responses were predictive for 17 specific developmental abnormalities and mortality measured at 5 dpf, often at lower (i.e., more potent) concentrations than those at which morphological effects were observed. Therefore, this system can provide rapid characterization of chemical-elicited behavioral responses at an early developmental stage that are predictive of observable adverse effects later in life.
Collapse
|
16
|
Yin J, Yang JM, Zhang F, Miao P, Lin Y, Chen ML. Individual and joint toxic effects of cadmium sulfate and α-naphthoflavone on the development of zebrafish embryo. J Zhejiang Univ Sci B 2015; 15:766-75. [PMID: 25183031 DOI: 10.1631/jzus.b1400091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This paper aims to evaluate the individual and joint toxicities of cadmium sulfate (CdSO4) and α-naphthoflavone (ANF) in zebrafish embryos. As a result, CdSO4 caused both lethal and sub-lethal effects, such as 24 h post-fertilization (hpf) death and 72 hpf delayed hatching. However, ANF only caused sub-lethal effects, including 48 hpf cardiac edema and 72 hpf delayed hatching. Taking 24 hpf death and 48 hpf cardiac edema as endpoints, the toxicities of CdSO4 and ANF were significantly enhanced by each other. Consistently, both CdSO4 and ANF caused significant oxidative stress, including decreases in the reduced glutathione (GSH) level, inhibition of superoxide dismutase (SOD) activity, as well as increases in malondialdehyde (MDA) content in zebrafish embryos, but these mixtures produced much more significant alterations on the biomarkers. Co-treatment of CdSO4 and ANF significantly down-regulated the mRNA level of multidrug resistance-associated protein (mrp) 1 and cytochrome P450 (cyp) 1a, which constituted the protective mechanisms for zebrafish embryos to chemical toxins. In conclusion, co-treatment of CdSO4 and ANF exhibited a much more severe damage in zebrafish embryos than individual treatment. Meanwhile, production of oxidative stress and altered expression of mrp1 and cyp1a could be important components of such joint toxicity.
Collapse
Affiliation(s)
- Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academic of Sciences, Suzhou 215163, China; Suzhou Xiexin Photovoltaic Technology Co., Ltd., Suzhou 215163, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | |
Collapse
|
17
|
Truong L, Reif DM, St Mary L, Geier MC, Truong HD, Tanguay RL. Multidimensional in vivo hazard assessment using zebrafish. Toxicol Sci 2013; 137:212-33. [PMID: 24136191 DOI: 10.1093/toxsci/kft235] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors. We evaluated all 1060 unique U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic zebrafish and found that 487 induced significant adverse biological responses. The utilization of 18 simultaneously measured endpoints means that the entire system serves as a robust biological sensor for chemical hazard. The experimental design enabled us to describe global patterns of variation across tested compounds, evaluate the concordance of the available in vitro and in vivo phase 1 data with this study, highlight specific mechanisms/value-added/novel biology related to notochord development, and demonstrate that the developmental zebrafish detects adverse responses that would be missed by less comprehensive testing strategies.
Collapse
Affiliation(s)
- Lisa Truong
- * Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University, Corvallis, Oregon 97333
| | | | | | | | | | | |
Collapse
|
18
|
Yanicostas C, Barbieri E, Hibi M, Brice A, Stevanin G, Soussi-Yanicostas N. Requirement for zebrafish ataxin-7 in differentiation of photoreceptors and cerebellar neurons. PLoS One 2012; 7:e50705. [PMID: 23226359 PMCID: PMC3511343 DOI: 10.1371/journal.pone.0050705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022] Open
Abstract
The expansion of a polyglutamine (polyQ) tract in the N-terminal region of ataxin-7 (atxn7) is the causative event in spinocerebellar ataxia type 7 (SCA7), an autosomal dominant neurodegenerative disorder mainly characterized by progressive, selective loss of rod-cone photoreceptors and cerebellar Purkinje and granule cells. The molecular and cellular processes underlying this restricted neuronal vulnerability, which contrasts with the broad expression pattern of atxn7, remains one of the most enigmatic features of SCA7, and more generally of all polyQ disorders. To gain insight into this specific neuronal vulnerability and achieve a better understanding of atxn7 function, we carried out a functional analysis of this protein in the teleost fish Danio rerio. We characterized the zebrafish atxn7 gene and its transcription pattern, and by making use of morpholino-oligonucleotide-mediated gene inactivation, we analysed the phenotypes induced following mild or severe zebrafish atxn7 depletion. Severe or nearly complete zebrafish atxn7 loss-of-function markedly impaired embryonic development, leading to both early embryonic lethality and severely deformed embryos. More importantly, in relation to SCA7, moderate depletion of the protein specifically, albeit partially, prevented the differentiation of both retina photoreceptors and cerebellar Purkinje and granule cells. In addition, [1–232] human atxn7 fragment rescued these phenotypes showing strong function conservation of this protein through evolution. The specific requirement for zebrafish atxn7 in the proper differentiation of cerebellar neurons provides, to our knowledge, the first in vivo evidence of a direct functional relationship between atxn7 and the differentiation of Purkinje and granule cells, the most crucial neurons affected in SCA7 and most other polyQ-mediated SCAs. These findings further suggest that altered protein function may play a role in the pathophysiology of the disease, an important step toward the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Constantin Yanicostas
- INSERM, U676, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisa Barbieri
- INSERM, U676, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- INSERM, U975, Paris, France
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR_S975, GHU Pitié-Salpêtrière, Paris, France
- CNRS, UMR7225, Paris, France
| | - Masahiko Hibi
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Alexis Brice
- INSERM, U975, Paris, France
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR_S975, GHU Pitié-Salpêtrière, Paris, France
- CNRS, UMR7225, Paris, France
| | - Giovanni Stevanin
- INSERM, U975, Paris, France
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR_S975, GHU Pitié-Salpêtrière, Paris, France
- CNRS, UMR7225, Paris, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Nadia Soussi-Yanicostas
- INSERM, U676, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH. Triazole-induced gene expression changes in the zebrafish embryo. Reprod Toxicol 2012; 34:216-24. [DOI: 10.1016/j.reprotox.2012.05.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
20
|
Muth-Köhne E, Wichmann A, Delov V, Fenske M. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity. Neurotoxicol Teratol 2012; 34:413-24. [DOI: 10.1016/j.ntt.2012.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/13/2012] [Accepted: 04/10/2012] [Indexed: 02/04/2023]
|
21
|
Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH. Chemical class-specific gene expression changes in the zebrafish embryo after exposure to glycol ether alkoxy acids and 1,2,4-triazole antifungals. Reprod Toxicol 2011; 32:245-52. [DOI: 10.1016/j.reprotox.2011.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/24/2022]
|
22
|
Steffens AA, Hong GM, Bain LJ. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin. Toxicol Appl Pharmacol 2010; 250:154-61. [PMID: 20965206 DOI: 10.1016/j.taap.2010.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 12/01/2022]
Abstract
Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to +90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.
Collapse
Affiliation(s)
- Amanda A Steffens
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | | | | |
Collapse
|
23
|
van Boxtel AL, Pieterse B, Cenijn P, Kamstra JH, Brouwer A, van Wieringen W, de Boer J, Legler J. Dithiocarbamates induce craniofacial abnormalities and downregulate sox9a during zebrafish development. Toxicol Sci 2010; 117:209-17. [PMID: 20530235 DOI: 10.1093/toxsci/kfq169] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dithiocarbamates (DTCs) have a wide variety of applications in diverse fields ranging from agriculture to medicine. DTCs are teratogenic to vertebrates but the mechanisms by which they exert these effects are poorly understood. Here, we show that low nanomolar exposure to three DTCs, tetraethylthiuram (thiram), tetramethylthiuram (disulfiram), and sodium metam (metam), leads to craniofacial abnormalities in developing zebrafish embryos that are reminiscent of DTC-induced abnormalities found in higher vertebrates. In order to better understand the molecular events underlying DTC teratogenesis, we exposed embryonic zebrafish (PAC2) cells to thiram and disulfiram and measured changes in gene expression with microarrays. We found differential expression of 166 genes that were specific for exposure to DTCs and identified a network of genes related to connective tissue development and function. Additionally, we found eight downregulated genes related to transforming growth factor beta-1 (TGF-beta1) signaling, including an essential transcription factor for zebrafish craniofacial development, SRY-box-containing gene 9a (sox9a). Finally, we show that sox9a expression is perturbed in the ceratobranchial arches of DTC-exposed zebrafish, suggesting that this is an important event in the development of DTC-induced craniofacial abnormalities. Together, we provide evidence for a novel teratogenic endpoint and a molecular basis for a better understanding of DTC-induced teratogenesis in vertebrates.
Collapse
|
24
|
Fetterer RH, Jenkins MC, Miska KB, Cain GD. Metam Sodium Reduces Viability and Infectivity of Eimeria Oocysts. J Parasitol 2010; 96:632-7. [DOI: 10.1645/ge-2345.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 2009; 28:245-53. [PMID: 19406227 DOI: 10.1016/j.reprotox.2009.04.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/07/2009] [Accepted: 04/20/2009] [Indexed: 01/04/2023]
Abstract
The experimental virtues of the zebrafish embryo such as small size, development outside of the mother, cheap maintenance of the adult made the zebrafish an excellent model for phenotypic genetic and more recently also chemical screens. The availability of a genome sequence and several thousand mutants and transgenic lines together with gene arrays and a broad spectrum of techniques to manipulate gene functions add further to the experimental strength of this model. Pioneering studies suggest that chemicals can have in many cases very similar toxicological and teratological effects in zebrafish embryos and humans. In certain areas such as cardiotoxicity, the zebrafish appears to outplay the traditional rodent models of toxicity testing. Several pilot projects used zebrafish embryos to identify new chemical entities with specific biological functions. In combination with the establishment of transgenic sensor lines and the further development of existing and new automated imaging systems, the zebrafish embryos could therefore be used as cost-effective and ethically acceptable animal models for drug screening as well as toxicity testing.
Collapse
Affiliation(s)
- Lixin Yang
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe in the Helmholtz Association, Karlsruhe Institute of Technology, PO Box 3640, Karlsruhe 76021, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tilton F, La Du JK, Tanguay RL. Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamate sodium metam (NaM). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:121-127. [PMID: 18823668 PMCID: PMC3270488 DOI: 10.1016/j.aquatox.2008.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Dithiocarbamates (DTCs) are sulfhydryls (thiol)-containing compounds, often associated with metals, and have both antioxidant and pro-oxidant abilities depending on the compound, experimental system and condition. In this study we investigated whether cell death plays a role in the manifestation of DTC-induced notochord distortions in the developing zebrafish and if thiol-containing compounds or antioxidants could modify this developmental toxicity. Sodium metam (NaM) induced notochord distortions could not be protected with the antioxidants ascorbic acid, trolox (synthetic vitamin E) or lipoic acid. However, NaM-induced distortions could be protected with co-exposure to glutathione or N-Acetyl Cysteine. Staggering the NaM and glutathione exposures in consecutive 10h developmental windows also resulted in protection. There were no discernable changes in TUNEL positive cells, a marker of apoptotic cells, at 24h post-fertilization (hpf) in NaM, dimethyl-dithiocarbamate, carbon disulfide, or neocuproine exposed embryos. Live NaM-exposed embryos incubated with acridine orange, a general stain for cell death, for 1h beginning at 11, 18 and 24hpf showed clusters of stained nuclei near the somitogenic front but not in the cells making up the notochord. Overall, induction of apoptotic pathways and widespread cell death are not involved in the manifestation of the adverse developmental outcomes following NaM exposure. However, cellular thiol status or critical sulfhydryl moieties are important considerations in the mechanisms of DTC developmental toxicity.
Collapse
Affiliation(s)
- Fred Tilton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, United States
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
- Environmental Health Sciences Center and Marine & Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331, United States
| | - Jane K. La Du
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, United States
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Robert L. Tanguay
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, United States
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
- Environmental Health Sciences Center and Marine & Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|