1
|
Yang L, Liu S, Song P, Liu Z, Peng Z, Kong D, Zhou J, Yan X, Ma K, Yu Y, Liu X, Dong Q. DEHP-mediated oxidative stress leads to impaired testosterone synthesis in Leydig cells through the cAMP/PKA/SF-1/StAR pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125503. [PMID: 39657860 DOI: 10.1016/j.envpol.2024.125503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Leydig cells (LCs) injury is often irreversible upon discovery; hence, early identification of risk factors for injury is crucial. The ubiquitous plasticizer di-2-ethylhexyl phthalate (DEHP) in the environment has been shown to potentially cause damage to LCs. However, the underlying mechanisms remain unclear. The present study utilized scRNA-seq analysis, the advantage of which is the ability to explore the characteristics of various testicular cells, combined with studies in vitro and in vivo, to assay the changes in and damage processes of LCs during DEHP exposure. We found that DEHP disrupted the structure and function of LCs. GO analysis suggested that a series of pathways changed, among which the most significant were the "steroid synthesis" and "oxidative stress" pathways. Moreover, DEHP dramatically changed the manner of interaction between LCs and other cells, and the most significant type was the cell-cell contact, which included NECTIN, APP, CADM, and CD39. In addition, the activity of multiple transcription factors (TFs) decreased after DEHP exposure, and the activity of steroidogenic factor 1 (SF-1, Nr5a1) was the most obviously altered. Next, we found that the LCs region indeed experienced oxidative stress, including increased ROS signals, the decreased SOD activity and T-AOC, and increased concentration of 8-OHdG and MDA content. The testosterone level, as well as the expression of StAR, P450scc, and 3β-HSD, was also reduced. To study the association between testosterone synthesis and oxidative stress, the antioxidants N-acetyl-L-cysteine (NAC) and H2O2 were used, and we found that mono-2-ethylhexyl ester (MEHP, a major biometabolite of DEHP) disrupted testosterone synthesis through the inhibition of the cAMP/PKA/SF-1/StAR pathway by inducing oxidative stress. Our study provides new insights into the role and mechanisms of DEHP in LCs injury.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Depei Kong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xin Yan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Kai Ma
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yunfei Yu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Curi TZ, Passoni MT, Tolouei SEL, de Araújo Ramos AT, de Almeida SCF, Romano RM, de Oliveira JM, Dalsenter PR, Martino-Andrade AJ. In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Phthalates Alters Hypothalamic Gene Expression and Sexual Preference in Rats. ENVIRONMENTAL TOXICOLOGY 2025; 40:54-65. [PMID: 39248502 DOI: 10.1002/tox.24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Several phthalates, mainly used as plasticizers, are known for their adverse effects on the male genital system. Previously, we demonstrated that an environmentally relevant mixture of six antiandrogenic phthalates (PMix), derived from a biomonitoring study in pregnant Brazilian women, was able to disrupt the reproductive development in male rats. Experimental groups (control, 0.1, 0.5, and 500 mg PMix/kg/day) were established starting from the extrapolated human dose (0.1 mg/kg/day), followed by doses 5 times and 5000 times higher. Pregnant rats received daily oral gavage administration of either vehicle (control) or PMix from gestational day 13 to postnatal day 10. Here, we examined male and female offspring regarding changes in gene expression of key reproductive factors in the hypothalamus and pituitary gland at adulthood and conducted a battery of behavioral tests in males, including partner preference, sexual behavior, and male attractiveness tests. PMix induced some changes in mating-related behavior in males, as demonstrated by the absence of preference for females against males and a higher number of penetrations up to ejaculation in the 0.5 dose group. PMix decreased Esr2 expression in the male hypothalamus across all three doses, and in females at mid and high doses in both the hypothalamus and pituitary. In male hypothalamus, we also observed decreased Kiss1 transcripts in these groups and a reduction in AR at the 0.5 dose group. In summary, our results provide further evidence that phthalates in a mixture, even at low doses, may exert cumulative effects on the structures underlying sexual behavior, which seems to be more sensitive than reproductive endpoints for the same experimental design.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Samara Christina França de Almeida
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
3
|
Li K, Zhang Y, Li L, Cui K, Li Y, Li C, Dai Y, Xiao W, Wang Q. Identification of sensitive endpoints for the assessment of phthalates-induced reproductive and developmental toxicity: A literature mining study. Food Chem Toxicol 2024; 188:114686. [PMID: 38663762 DOI: 10.1016/j.fct.2024.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), two common types of phthalates, are known to cause reproductive and developmental toxicity in animals and humans. The reference doses (RfD) of DBP and DEHP should be determined by sensitive endpoints. We here aimed to identify sensitive endpoints for DBP- and DEHP-induced such toxicity using published literatures. By examining the impacts of maternal exposure to DBP or DEHP on anogenital distance (AGD) and semen quality of offspring, we discovered that DBP or DEHP caused AGD decline in boys but increase in girls with DBP being more potent and the first 14weeks of pregnancy being more susceptible, suggesting a chemical- and time-dependent phenomenon. We also identified AGD shortening and total sperm count reduction as two sensitive endpoints for DBP- or DEHP-induced reproductive and developmental toxicity, respectively. Based upon these two endpoints and the employment of the Bayesian benchmark dose approach with an uncertainty factor of 3,000, we estimated the RfD values of DBP and DEHP were 15 μg/kg/day and 36 μg/kg/day, respectively. Thus, we uncover previously unrecognized phenomena of DBP- or DEHP-induced reproductive and developmental toxicity and establish new and comparable or more conservative RfDs for the risk assessment of phthalates exposure in humans.
Collapse
Affiliation(s)
- Kai Li
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yiping Zhang
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kanglong Cui
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Chunying Li
- Peking University Health Science Library, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yufei Dai
- National Institute of Environmental Health, China CDC, 7 Panjiayuan South Li, Chaoyang District, Beijing, 100021, China.
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Wise LD. Rodent anogenital distance recommendations. Birth Defects Res 2024; 116:e2347. [PMID: 38822636 DOI: 10.1002/bdr2.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Measurement of rat anogenital distance (AGD) dates to at least 1912. Increased interest in endocrine disrupting chemicals and the use of AGD as a biomarker for fetal androgen effects have increased the number of studies with this endpoint in recent decades. A literature review revealed different landmarks, methods of measurement, and methods to adjust for body weight differences. AGD is often reported to hundredths of millimeters and as such, deserves precision in all these aspects. This paper presents recommendations for the measurement and analysis of rodent AGD. METHODS Literature and regulatory guidance documents that mentioned or measured rodent AGD were reviewed. Four adjustment methods were evaluated using available online data from three rat studies each with two generations of offspring. RESULTS Tabulation of studies reveals that species/stocks and time of data collection, but more importantly anatomical landmarks and methods of measurement have produced a variety of results which are difficult to compare. Not all studies have adjusted for test article effects on body weight (and thus size). The four adjustment methods were fairly comparable. CONCLUSION Recommendations are as follows. A microscopic method should be used to measure AGD of late rodent fetuses and early postnatal pups. The caudal edge of the genital tubercle and the cranial edge of the anus are clear and identifiable landmarks. The simplest adjustment is to divide individual AGDs by the cube root of animals' body weight. These recommendations will help ensure data consistency and accuracy, and facilitate meaningful comparisons across laboratories and chemical classes.
Collapse
Affiliation(s)
- L David Wise
- Independent Teratologist, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Curi TZ, Passoni MT, Lima Tolouei SE, de Araújo Ramos AT, França de Almeira SC, Scinskas ABAF, Romano RM, de Oliveira JM, Spercoski KM, Carvalho Dos Santos A, Dalsenter PR, Koch HM, Martino-Andrade AJ. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol Sci 2023; 197:1-15. [PMID: 37788136 DOI: 10.1093/toxsci/kfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Samara Christina França de Almeira
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anna Beatriz Abreu Ferraz Scinskas
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | | | - Ariany Carvalho Dos Santos
- Histopathology Laboratory, Department of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS 9804-970, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bochum 44789, Germany
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| |
Collapse
|
6
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Khishdost M, Dobaradaran S, Goudarzi G, Takdastan A, Babaei AA. Contaminant occurrence, distribution and ecological risk assessment of phthalate esters in the Persian Gulf. PLoS One 2023; 18:e0287504. [PMID: 37418450 PMCID: PMC10328224 DOI: 10.1371/journal.pone.0287504] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023] Open
Abstract
Due to the increasing population of the world, the presence of harmful compounds, especially phthalate esters (PAEs), are one of the important problems of environmental pollution. These compounds are known as carcinogenic compounds and Endocrine-disrupting chemicals (EDCs) for humans. In this study, the occurrence of PAEs and the evaluation of its ecological risks were carried out in the Persian Gulf. Water samples were collected from two industrial sites, a rural site and an urban site. Samples were analyzed using magnetic solid phase extraction (MSPE) and gas chromatography-mass spectrometry (GC/MS) technique to measure seven PAEs including Di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), Dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), and Di-iso-butyl phthalate (DIBP). The BBP was not detected in any of the samples. The total concentration of six PAEs (Σ6PAEs) ranged from 7.23 to 23.7 μg/L, with a mean concentration of 13.7μg/L. The potential ecological risk of each target PAEs was evaluated by using the risk quotient (RQ) method in seawater samples, and the relative results declined in the sequence of DEHP >DIBP > DBP > DEP > DMP in examined water samples. DEHP had a high risk to algae, crustaceans and fish at all sites. While DMP and DEP showed lower risk for all mentioned trophic levels. The results of this study will be helpful for the implementation of effective control measures and remedial strategies for PAEs pollution in the Persian Gulf.
Collapse
Affiliation(s)
- Maria Khishdost
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Matouskova K, Szabo GK, Daum J, Fenton SE, Christiansen S, Soto AM, Kay JE, Cardona B, Vandenberg LN. Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reprod Toxicol 2022; 112:51-67. [PMID: 35764275 PMCID: PMC9491517 DOI: 10.1016/j.reprotox.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Work from numerous fields of study suggests that exposures to hormonally active chemicals during sensitive windows of development can alter mammary gland development, function, and disease risk. Stronger links between many environmental pollutants and disruptions to breast health continue to be documented in human populations, and there remain concerns that the methods utilized to identify, characterize, and prioritize these chemicals for risk assessment and risk management purposes are insufficient. There are also concerns that effects on the mammary gland have been largely ignored by regulatory agencies. Here, we provide technical guidance that is intended to enhance collection and evaluation of the mammary gland in mice and rats. We review several features of studies that should be controlled to properly evaluate the mammary gland, and then describe methods to appropriately collect the mammary gland from rodents. Furthermore, we discuss methods for preparing whole mounted mammary glands and numerous approaches that are available for the analysis of these samples. Finally, we conclude with several examples where analysis of the mammary gland revealed effects of environmental toxicants at low doses. Our work argues that the rodent mammary gland should be considered in chemical safety, hazard and risk assessments. It also suggests that improved measures of mammary gland outcomes, such as those we present in this review, should be included in the standardized methods evaluated by regulatory agencies such as the test guidelines used for identifying reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jessica Daum
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK 2800, Denmark
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
9
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
10
|
Oldenburger MM, Doomen MJ, Lourens NJJ, Beekhuijzen M. Unnecessary use of additional animals for determination of sexual maturation in the EOGRTS. Reprod Toxicol 2022; 112:14-22. [PMID: 35714935 DOI: 10.1016/j.reprotox.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
The Extended-One-Generation Study [EOGRTS, OECD 443] is a study in which the toxic effects of test substances on reproduction (Cohort 1), neurodevelopment (Cohort 2), and development of the immune system (Cohort 3) in rats are evaluated. The latter two Cohorts are not always required according to the European Chemicals Agency (ECHA) based on data from previously performed toxicity studies. Although the Cohorts for developmental neurotoxicity (DNT) and developmental immunotoxicity (DIT) are often omitted, the F1-animals normally required for these Cohorts are still maintained for evaluation of sexual maturation since three F1-animals/sex/litter/group are required according to OECD Guidance Document (GD) No. 151. This review investigates whether two F1-animals/sex/litter/group would suffice for this endpoint by investigating the rationale provided by the GD and by comparing results of eighteen EOGRTSs in which three versus two F1-animals/sex/litter/group were evaluated. After a comprehensive literature research, we concluded that the rationale in the GD does not substantiate the decision to use three F1-animals/sex/litter/group. The scientific papers provided as rationale focused on male observations and the observations discussed do not match the observations for sexual maturation mentioned by the guidelines. The investigation using data from eighteen EOGRTSs showed that the toxicological conclusions, whether the test substance affected sexual maturation or not, matched when comparing data of two F1-animals/sex/litter/group to three F1-animals/sex/litter/group. To conclude, two F1-animals/sex/litter/group would suffice for the evaluation of sexual maturation, which negates the requirement for a so called "Cohort 1 C" (i.e. 160 animals (80 males and 80 females)) per EOGRTS, as well as the number of regulated procedures that need to be performed.
Collapse
|
11
|
Heidari T, Batavani RA, Malekinejad H, Hobbenaghi R. Evaluation of di-n-butyl phthalate reproductive toxicity in pregnant rats and their offspring and assessment of vitamin E administration in reducing toxicity. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:201-208. [PMID: 35919841 PMCID: PMC9340285 DOI: 10.30466/vrf.2020.118147.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/02/2020] [Indexed: 11/23/2022]
Abstract
Phthalates are environmental contaminants mostly used as plasticizers and additives in different products. Having endocrine-disrupting properties, phthalates are known as potential reproductive toxicants. The present study was conducted to evaluate the reproductive toxicity of di-n-butyl phthalate (DBP) in pregnant rats and their offspring and also to assess the ability of vitamin E in the elimination or reducing reproductive toxicity of DBP. Sixty-six pregnant Wistar rats were exposed to 100, 500 or 1,000 mg kg-1 per day DBP or 500 mg kg-1 per day DBP along with 100 mg kg-1 per day vitamin E during gestation. After delivery, they were divided into two groups. In one group gavage was finished after litter while in the other DBP administration was continued till weaning. The results showed that DBP affected many aspects of reproductive performance in pregnant rats and their offspring. It could be suggested that vitamin E could ameliorate the adverse effects of DBP, especially in male pups.
Collapse
Affiliation(s)
- Toktam Heidari
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Rooz Ali Batavani
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; ,Correspondence Rooz Ali Batavani. DVM, DVSc, Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail:
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran;
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
12
|
Basso CG, de Araujo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: a literature review. Reprod Toxicol 2022; 109:61-79. [DOI: 10.1016/j.reprotox.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
13
|
Conley JM, Lambright CS, Evans N, Cardon M, Medlock-Kakaley E, Wilson VS, Gray LE. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. ENVIRONMENT INTERNATIONAL 2021; 156:106615. [PMID: 34000504 PMCID: PMC8380680 DOI: 10.1016/j.envint.2021.106615] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
14
|
Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM, Svingen T. On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. FRONTIERS IN TOXICOLOGY 2021; 3:730752. [PMID: 35295101 PMCID: PMC8915873 DOI: 10.3389/ftox.2021.730752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Areola/nipple retention (NR) is an established biomarker for an anti-androgenic mode of action in rat toxicity studies. It is a mandatory measurement under several OECD test guidelines and is typically assessed in combination with anogenital distance (AGD). Both NR and AGD are considered retrospective biomarkers of insufficient androgen signaling during the masculinization programming window in male fetuses. However, there are still aspects concerning NR as a biomarker for endocrine disruption that remains to be clarified. For instance, can NR be regarded a permanent adverse effect? Is it a redundant measurement if AGD is assessed in the same study? Is NR equally sensitive and specific to anti-androgenic chemical substances as a shortening of male AGD? In this review we discuss these and other aspects concerning the use of NR as a biomarker in toxicity studies. We have collected available literature from rat toxicity studies that have reported on NR and synthesized the data in order to draw a clearer picture about the sensitivity and specificity of NR as an effect biomarker for an anti-androgenic mode of action, including comparisons to AGD measurements. We carefully conclude that NR and AGD in rats for the most part display similar sensitivity and specificity, but that there are clear exceptions which support the continued assessment of both endpoints in relevant reproductive toxicity studies. Available literature also support the view that NR in infant male rats signifies a high risk for permanent nipples in adulthood. Finally, the literature suggests that the mechanisms of action leading from a chemical stressor event to either NR or short AGD in male offspring are overlapping with respect to canonical androgen signaling, yet differ with respect to other mechanisms of action.
Collapse
|
15
|
Development of a putative adverse outcome pathway network for male rat reproductive tract abnormalities with specific considerations for the androgen sensitive window of development. Curr Res Toxicol 2021; 2:254-271. [PMID: 34401750 PMCID: PMC8350458 DOI: 10.1016/j.crtox.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Structured approaches like the adverse outcome pathway (AOP) framework offer great potential for depicting complex toxicological processes in a manner that can facilitate informed integration of mechanistic information in regulatory decisions. While this concept provides a structure for organizing evidence and facilitates consistency in evidence integration; the process, inputs, and manner in which AOPs and AOP networks are developed is still evolving. Following the OECD guiding principles of AOP development, we propose three AOPs for male reproductive tract abnormalities and derive a putative AOP network. The AOPs were developed using a fundamental understanding of the developmental biology of the organs of interest, paying close attention to the gestational timing of key events (KEs) to very specifically inform the domain of life stage applicability for the key event relationships (KERs). Chemical stressor data primarily from studies on low molecular weight phthalates (LMWPs) served to 'bound' the pathways of focus in this dynamic period of development and were integrated with the developmental biology data through an iterative process to define KEs and conclude on the extent of evidence in support of the KERs. The AOPs developed describe the linkage between 1) a decrease in Insl3 gene expression and cryptorchidism, 2) the sustained expression of Coup-tfII and hypospadias and 3) the sustained expression of Coup-tfII and altered Wolffian duct development/ epididymal agenesis. A putative AOP network linking AOP2 and AOP3 through decreased steroidogenic biosynthetic protein expression and converging of all AOPS at the population level impaired fertility adverse outcome is proposed. The network depiction specifies and displays the KEs aligned with their occurrence in gestational time. The pathways and network described herein are intended to catalyze collaborative initiatives for expansion into a larger network to enable effective data collection and inform alternative approaches for identifying stressors impacting this sensitive period of male reproductive tract development.
Collapse
Key Words
- AGD, Anogenital distance
- AO, Adverse Outcome
- AOP, Adverse Outcome Pathway
- Adverse outcome pathway
- Adverse outcome pathway network
- DBP, Dibutyl phthalate
- DEHP, Di(2-ethylhexyl)phthalate
- DHT, 5α-dihydrotestosterone
- DPP, Dipentyl phthalate
- E, Embryonic day (ED1=GD1 gestational day 1)
- GD, Gestational day (GD1=ED1 embryonic day 1)
- KE, Key event
- KER, Key event relationship
- LMWP, low molecular weight phthalate straight chain length of the esterified alcohols between 3 and 6 carbon atoms
- MPW, male programming window
- Male programming window
- Phthalate
Collapse
|
16
|
Fu X, Han H, Li Y, Xu B, Dai W, Zhang Y, Zhou F, Ma H, Pei X. Di-(2-ethylhexyl) phthalate exposure induces female reproductive toxicity and alters the intestinal microbiota community structure and fecal metabolite profile in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:1226-1242. [PMID: 33665894 PMCID: PMC8251547 DOI: 10.1002/tox.23121] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most commonly used plasticizers, and it is widely applied in various plastic products. DEHP is an endocrine-disrupting chemical (EDC) that has been shown to disrupt the function of reproductive system in females. Although many studies have shown that DEHP potentially causes female reproductive toxicity, including depletion of the primordial follicle and decreased sex hormone production, the specific mechanisms by which DEHP affects female reproduction remain unknown. In recent years, research focused on the intestinal flora has provided an idea to eliminate our confusion, and gut bacterial dysbiosis may contribute to female reproductive toxicity. In the present study, the feces of DEHP-exposed mice were collected and analyzed using 16S rRNA amplicon sequencing and untargeted global metabolite profiling of metabolomics. DEHP obviously causes reproductive toxicity, including the ovarian organ coefficient, estradiol level, histological features of the ovary and estrus. Furthermore, DEHP exposure alters the structure of the intestinal microbiota community and fecal metabolite profile in mice, suggesting that the reproductive toxicity may be caused by gut bacterial dysbiosis and altered metabolites, such as changes in the levels of short-chain fatty acid (SCFA). Additionally, it is well known that changes in gut microbiota and fecal metabolites cause inflammation and tissue oxidative stress, expectedly, we found oxidative stress in the ovary and systemic inflammation in DEHP exposed mice. Thus, based on our findings, DEHP exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to oxidative stress in the ovary and systemic inflammation to ultimately induce female reproductive toxicity.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Yaoxu Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Feng Zhou
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| |
Collapse
|
17
|
Androgens and the masculinization programming window: human-rodent differences. Biochem Soc Trans 2021; 48:1725-1735. [PMID: 32779695 PMCID: PMC7458408 DOI: 10.1042/bst20200200] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
Human male reproductive disorders are common and may have a fetal origin - the testicular dysgenesis syndrome (TDS) hypothesis. In rats, experimentally induced TDS disorders result from disruption of fetal androgen production/action specifically in the masculinization programming window (MPW). MPW androgen action also programs longer anogenital distance (AGD) in male versus female rats; shorter male AGD is correlated with risk and severity of induced TDS disorders. AGD thus provides a lifelong, calibrated readout of MPW androgen exposure and predicts likelihood of reproductive dysfunction. Pregnant rat exposure to environmental chemicals, notably certain phthalates (e.g. diethyl hexl phthalate, DEHP; dibutyl phthalate, DBP), pesticides or paracetamol, can reduce fetal testis testosterone and AGD and induce TDS disorders, provided exposure includes the MPW. In humans, AGD is longer in males than females and the presumptive MPW is 8-14 weeks' gestation. Some, but not all, epidemiological studies of maternal DEHP (or pesticides) exposure reported shorter AGD in sons, but this occurred at DEHP exposure levels several thousand-fold lower than are effective in rats. In fetal human testis culture/xenografts, DEHP/DBP do not reduce testosterone production, whereas therapeutic paracetamol exposure does. In humans, androgen production in the MPW is controlled differently (human chorionic gonadotrophin-driven) than in rats (paracrine controlled), and other organs (placenta, liver, adrenals) contribute to MPW androgens, essential for normal masculinization, via the 'backdoor pathway'. Consequently, early placental dysfunction, which is affected by maternal lifestyle and diet, and maternal painkiller use, may be more important than environmental chemical exposures in the origin of TDS in humans.
Collapse
|
18
|
Wang H, Yang X, Li J, Qi Z, Liu B, Liu W, Xu B, Xu Z, Deng Y. Research progress on the effect of Di-(2-ethylhexyl) phthalate (DEHP) on reproductive health at different periods in life. Reprod Fertil Dev 2021; 33:RD20135. [PMID: 33941309 DOI: 10.1071/rd20135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a representative endocrine-disrupting chemical (EDC) that has reproductive, developmental, neurological and immune toxicity in humans and rodents, of which damage to the reproductive system is the most serious. However, exposure to DEHP at different stages of life may produce different symptoms. Studies on this substance are also controversial. This review describes the reproductive effects of DEHP in males and females at different life stages, including infancy, childhood and adulthood.
Collapse
|
19
|
Perinatal Exposure to Phthalates: From Endocrine to Neurodevelopment Effects. Int J Mol Sci 2021; 22:ijms22084063. [PMID: 33920043 PMCID: PMC8070995 DOI: 10.3390/ijms22084063] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022] Open
Abstract
Phthalates, as other endocrine disrupting chemicals (EDCs), may alter the homeostasis and the action of hormones and signaling molecules, causing adverse health outcomes. This is true especially for infants, who are both more exposed and sensitive to their effects. Phthalates are particularly harmful when the exposure occurs during certain critical temporal windows of the development, such as the prenatal and the early postnatal phases. Phthalates may also interfere with the neuroendocrine systems (e.g., thyroid hormone signaling or metabolism), causing disruption of neuronal differentiation and maturation, increasing the risk of behavioral and cognitive disorders (ADHD and autistic behaviors, reduced mental, psychomotor, and IQ development, and emotional problems). Despite more studies being needed to better understand the role of these substances, plenty of evidence suggests the impact of phthalates on the neuroendocrine system development and function. This review aims to update the knowledge on the neuroendocrine consequences of neonatal and perinatal exposure to phthalates.
Collapse
|
20
|
Metabolic, reproductive and thyroid effects of bis(2-ethylhexyl) phthalate (DEHP) orally administered to male and female juvenile rats at dose levels derived from children biomonitoring study. Toxicology 2020; 449:152653. [PMID: 33309551 DOI: 10.1016/j.tox.2020.152653] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 12/05/2020] [Indexed: 01/11/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a plasticizer used in several items, non-covalently bound to plastics and easily released, since metabolites were found in human matrices. DEHP is an endocrine disrupter and children are particularly vulnerable and susceptible to DEHP effects due to higher exposure levels and developmental stage. A juvenile toxicity study was performed to identify DEHP hazard and mode of action in Sprague-Dawley rats of both sexes during peri-pubertal period - corresponding to childhood phase - from weaning, post-natal day (PND) 23, to full sexual maturity (PND60); the dose levels of 0, 9, 21 and 48 mg/kg bw/day were derived from LIFE PERSUADED biomonitoring study in children. DEHP was administered by gavage for 28 days (5 days/week); timing of preputial separation and vaginal opening was observed during treatment. Histopathological analysis was performed on: adrenals, spleen, liver, thyroid and reproductive organs. The following serum biomarkers were assessed: estradiol, testosterone, anti-Mullerian hormone, tetraiodothyronine, thyroid stimulating hormone, adiponectin and leptin. Gene expression on hypothalamic-pituitary area was focused on follicle stimulating, luteinizing, and thyroid stimulating hormones. The results showed that main targets of DEHP during juvenile period were liver and metabolic system in both sexes, while sex-specific effects were recorded in reproductive system (male rats) and in thyroid (female rats). DEHP exposure during peri-pubertal period at dose levels derived from biomonitoring study in children can induce sex-specific imbalances identifying the juvenile animal model as a sound tool to identify hazards for a reliable risk assessment targeted to children.
Collapse
|
21
|
Insights into the interactions of bisphenol and phthalate compounds with unamended and carnitine-amended montmorillonite clays. Comput Chem Eng 2020; 143. [PMID: 33122868 PMCID: PMC7591107 DOI: 10.1016/j.compchemeng.2020.107063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Montmorillonite clays could be promising sorbents to mitigate toxic compound exposures. Bisphenols A (BPA) and S (BPS) as well as phthalates, dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), are ubiquitous environmental contaminants linked to adverse health effects. Here, we combined computational and experimental methods to investigate the ability of montmorillonite clays to sorb these compounds. Molecular dynamics simulations predicted that parent, unamended, clay has higher binding propensity for BPA and BPS than for DBP and DEHP; carnitine-amended clay improved BPA and BPS binding, through carnitine simultaneously anchoring to the clay through its quaternary ammonium cation and forming hydrogen bonds with BPA and BPS. Experimental isothermal analysis confirmed that carnitine-amended clay has enhanced BPA binding capacity, affinity and enthalpy. Our studies demonstrate how computational and experimental methods, combined, can characterize clay binding and sorption of toxic compounds, paving the way for future investigation of clays to reduce BPA and BPS exposure.
Collapse
|
22
|
Dostalova P, Zatecka E, Ded L, Elzeinova F, Valaskova E, Kubatova A, Korenkova V, Langerova L, Komrskova K, Peknicova J. Gestational and pubertal exposure to low dose of di-(2-ethylhexyl) phthalate impairs sperm quality in adult mice. Reprod Toxicol 2020; 96:175-184. [PMID: 32619501 DOI: 10.1016/j.reprotox.2020.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) is a compound widely used as a plasticizer, which can leach from plastics into the environment and thus influence human health. The aim of this study was to analyze whether exposure to an environmentally relevant dose of DEHP during mice fetal development or puberty can cause long-lasting changes detectable month/s after the last exposure. We used a DEHP concentration relevant to a daily human intake of 2.4-3 μg/kg of body weight/day. CD1 outbred mice were treated either in utero or postnatally during puberty and analyzed in adulthood. Analyzing fertility parameters using morphometric, histologic, genomic and proteomic methods we showed that DEHP exposure leads to decreased sperm concentration and quality, in both experimental groups. Moreover, the changes in anogenital distance, seminal vesicle weight, and testicular gene expression suggest a disturbance of androgen signaling in exposed animals. In conclusion, we hereby present, that the prenatal and pubertal exposure to a low dose of DEHP negatively influenced reproductive endpoints in male mice, and some of the effects were persistent until adulthood.
Collapse
Affiliation(s)
- Pavla Dostalova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Eva Zatecka
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Fatima Elzeinova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alena Kubatova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Vlasta Korenkova
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Lucie Langerova
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
23
|
Application of a combined aggregate exposure pathway and adverse outcome pathway (AEP-AOP) approach to inform a cumulative risk assessment: A case study with phthalates. Toxicol In Vitro 2020; 66:104855. [PMID: 32278033 DOI: 10.1016/j.tiv.2020.104855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Advancements in measurement and modeling capabilities are providing unprecedented access to estimates of chemical exposure and bioactivity. With this influx of new data, there is a need for frameworks that help organize and disseminate information on chemical hazard and exposure in a manner that is accessible and transparent. A case study approach was used to demonstrate integration of the Adverse Outcome Pathway (AOP) and Aggregate Exposure Pathway (AEP) frameworks to support cumulative risk assessment of co-exposure to two phthalate esters that are ubiquitous in the environment and that are associated with disruption of male sexual development in the rat: di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP). A putative AOP was developed to guide selection of an in vitro assay for derivation of bioactivity values for DEHP and DnBP and their metabolites. AEPs for DEHP and DnBP were used to extract key exposure data as inputs for a physiologically based pharmacokinetic (PBPK) model to predict internal metabolite concentrations. These metabolite concentrations were then combined using in vitro-based relative potency factors for comparison with an internal dose metric, resulting in an estimated margin of safety of ~13,000. This case study provides an adaptable workflow for integrating exposure and toxicity data by coupling AEP and AOP frameworks and using in vitro and in silico methodologies for cumulative risk assessment.
Collapse
|
24
|
Chen JR, Wu SM, Tsai SC, Hsien FC, Huang CT. Changes in vitellogenin and estrogen receptor expression and 17β-estradiol concentration in male juvenile tilapia can be used to evaluate endocrine-disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108682. [PMID: 31816426 DOI: 10.1016/j.cbpc.2019.108682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 11/25/2022]
Abstract
The effects of endocrine disruption with respect to potential human toxicities have been extensively evaluated to date. However, the standard testing methods used have not always taken the most pertinent approach. In this study, we used juvenile male tilapia (Oreochromis niloticus) as an animal model to test for endocrine disruption by chemicals. We measured 17β-estradiol (E2) concentrations, and the mRNA relative expression ratio (RER; treatment/control) of vitellogenin (vtg2) and estrogen receptors (ERs) to assess whether the effluent concentration of selected plasticizers disrupt E2 function in fish. We found that the vtg2 RER was significantly increased after exposure to 2.52 nM E2 for 5 days, 0.438 μM of bisphenol A (BPA) for 7 days, or 2.865 μM Cd2+ for 7 days. These data support vtg2 transcript level as a sensitive biomarker to evaluate contamination of water by endocrine disrupting chemicals (EDCs). However, vtg2 expression did not respond to fluctuations of E2 concentrations in the tilapia juveniles exposed to selected plasticizers. However, the RER of three types of ERs appeared to change dramatically upon exposure to plasticizers. ERα significantly increased, but ERβ2 decreased with 3.6 μM DEP exposure. Both ERα and ERβ2 decreased significantly after 1.44 μM DIBP exposure. We suggest that changes of vtg2 mRNA RER, E2 levels and ERs mRNA expression should be taken into consideration at the same time to determine if chemical contaminants in the water are endocrine disrupters.
Collapse
Affiliation(s)
- Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City 82445, Taiwan.
| | - Su Mei Wu
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 60004, Taiwan
| | - Shu Chuan Tsai
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Fang-Chun Hsien
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 60004, Taiwan
| | - Chieh Ting Huang
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 60004, Taiwan
| |
Collapse
|
25
|
Blessinger TD, Euling SY, Wang L, Hogan KA, Cai C, Klinefelter G, Saillenfait AM. Ordinal dose-response modeling approach for the phthalate syndrome. ENVIRONMENT INTERNATIONAL 2020; 134:105287. [PMID: 31783243 PMCID: PMC7323710 DOI: 10.1016/j.envint.2019.105287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The phthalate syndrome (PS) is a collection of related male reproductive developmental effects, ranging in severity, that have been observed in rats after gestational exposure to developmentally-toxic phthalates. For statistical purposes, the PS is defined as a single endpoint and one dose-response analysis is conducted, rather than conducting multiple analyses on each individual endpoint. OBJECTIVE To improve dose-response modeling approaches for the PS and other syndromes of effects by accounting for differing severity levels among the endpoints. METHODS Ordinal dose-response modeling was performed on PS data from a published study of diisobutyl phthalate (DIBP) gestational exposure to male Sprague-Dawley rats. To incorporate PS endpoint severity, the endpoints were categorized into ordinal levels based on the expected impact of male developmental endpoint's on fertility. Then, a benchmark dose was estimated for each ordinal level. A bootstrap procedure was used to account for the nested nature of the data, and a sensitivity analysis was performed to assess the bootstrap results. A comparison of the estimates between the ordinal and the dichotomous model was performed. RESULTS The ordinal version of the log-logistic model applied to the data categorized by PS endpoint severity level provided benchmark dose estimates that were closer to each other in value and had lower variability than the traditional dichotomous application. The sensitivity analysis confirmed the validity of the bootstrap results. CONCLUSION The ordinal dose-response modeling method accounts for severity differences among dichotomous PS endpoints, can be expanded in the future to include more severity levels, and can be used in both single and cumulative phthalate risk assessments.
Collapse
Affiliation(s)
- Todd D Blessinger
- Center for Public Health and Environmental Assessment (CPHEA), Mail code 8623R, USA; United States (US) Environmental Protection Agency, Washington, DC 20460, USA.
| | - Susan Y Euling
- Office of Children's Health Protection (OCHP), Mail code 1107T, USA; United States (US) Environmental Protection Agency, Washington, DC 20460, USA
| | - Lily Wang
- CPHEA, US Environmental Protection Agency, Mail code B243-01, Research Triangle Park, NC 27711, USA
| | - Karen A Hogan
- Center for Public Health and Environmental Assessment (CPHEA), Mail code 8623R, USA; United States (US) Environmental Protection Agency, Washington, DC 20460, USA
| | - Christine Cai
- Center for Public Health and Environmental Assessment (CPHEA), Mail code 8623R, USA; United States (US) Environmental Protection Agency, Washington, DC 20460, USA
| | - Gary Klinefelter
- National Health and Environmental Effects Research Lab (NHEERL), USA; United States (US) Environmental Protection Agency, Washington, DC 20460, USA
| | | |
Collapse
|
26
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Silano V, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Cravedi J, Fortes C, Tavares Poças MDF, Waalkens‐Berendsen I, Wölfle D, Arcella D, Cascio C, Castoldi AF, Volk K, Castle L. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J 2019; 17:e05838. [PMID: 32626195 PMCID: PMC7008866 DOI: 10.2903/j.efsa.2019.5838] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) was asked by the European Commission to update its 2005 risk assessments of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP), which are authorised for use in plastic food contact material (FCM). Dietary exposure estimates (mean and high (P95)) were obtained by combining literature occurrence data with consumption data from the EFSA Comprehensive Database. The highest exposure was found for DINP, ranging from 0.2 to 4.3 and from 0.4 to 7.0 μg/kg body weight (bw) per day for mean and high consumers, respectively. There was not enough information to draw conclusions on how much migration from plastic FCM contributes to dietary exposure to phthalates. The review of the toxicological data focused mainly on reproductive effects. The CEP Panel derived the same critical effects and individual tolerable daily intakes (TDIs) (mg/kg bw per day) as in 2005 for all the phthalates, i.e. reproductive effects for DBP (0.01), BBP (0.5), DEHP (0.05), and liver effects for DINP and DIDP (0.15 each). Based on a plausible common mechanism (i.e. reduction in fetal testosterone) underlying the reproductive effects of DEHP, DBP and BBP, the Panel considered it appropriate to establish a group-TDI for these phthalates, taking DEHP as index compound as a basis for introducing relative potency factors. The Panel noted that DINP also affected fetal testosterone levels at doses around threefold higher than liver effects and therefore considered it conservative to include it within the group-TDI which was established to be 50 μg/kg bw per day, expressed as DEHP equivalents. The aggregated dietary exposure for DBP, BBP, DEHP and DINP was estimated to be 0.9-7.2 and 1.6-11.7 μg/kg bw per day for mean and high consumers, respectively, thus contributing up to 23% of the group-TDI in the worst-case scenario. For DIDP, not included in the group-TDI, dietary exposure was estimated to be always below 0.1 μg/kg bw per day and therefore far below the TDI of 150 μg/kg bw per day. This assessment covers European consumers of any age, including the most sensitive groups. Based on the limited scope of the mandate and the uncertainties identified, the Panel considered that the current assessment of the five phthalates, individually and collectively, should be on a temporary basis.
Collapse
|
27
|
Luo Y, Li XN, Zhao Y, Du ZH, Li JL. DEHP triggers cerebral mitochondrial dysfunction and oxidative stress in quail (Coturnix japonica) via modulating mitochondrial dynamics and biogenesis and activating Nrf2-mediated defense response. CHEMOSPHERE 2019; 224:626-633. [PMID: 30844593 DOI: 10.1016/j.chemosphere.2019.02.142] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) in the environment and food chain may impact cerebrum development and neurobehavioral in humans and wildlife. However, it is unclear that DEHP exposure caused cerebral toxicity. This experiment used gavage to expose female quail to 0, 250, 500, and 1000 mg/kg BW/day for 45 days to assess the potential neurotoxicity of DEHP to the cerebrum. It can be observed that there will be obvious neurological abnormalities in the experiment. Cerebrum histological lesions can be observed with HE-staining. Detecting oxidative stress indices, Nrf2 pathway, and mitochondrial dynamics factor, by analyzing the results, these results were observed that DEHP exposure can cause damage to the cerebrum by causing oxidative stress and affecting the balance of mitochondrial dynamics. Nrf2-mediated defense is not activated by exposure to 250 mg/kg DEHP. Nrf2-mediated defense is activated but is not resistant to exposure to medium and high doses of DEHP (500 mg/kg; 1000 mg/kg). DEHP triggers cerebral mitochondrial dysfunction via modulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Yu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng-Hai Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
28
|
A Review of Biomonitoring of Phthalate Exposures. TOXICS 2019; 7:toxics7020021. [PMID: 30959800 PMCID: PMC6630674 DOI: 10.3390/toxics7020021] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have been recognized as substances of high concern. Human exposure to phthalates occurs mainly via dietary sources, dermal absorption, and air inhalation. Phthalates are excreted as conjugated monoesters in urine, and some phthalates, such as di-2-ethylhexyl phthalate (DEHP), undergo secondary metabolism, including oxidative transformation, prior to urinary excretion. The occurrence of phthalates and their metabolites in urine, serum, breast milk, and semen has been widely reported. Urine has been the preferred matrix in human biomonitoring studies, and concentrations on the order of several tens to hundreds of nanograms per milliliter have been reported for several phthalate metabolites. Metabolites of diethyl phthalate (DEP), dibutyl- (DBP) and diisobutyl- (DiBP) phthalates, and DEHP were the most abundant compounds measured in urine. Temporal trends in phthalate exposures varied among countries. In the United States (US), DEHP exposure has declined since 2005, whereas DiNP exposure has increased. In China, DEHP exposure has increased since 2000. For many phthalates, exposures in children are higher than those in adults. Human epidemiological studies have shown a significant association between phthalate exposures and adverse reproductive outcomes in women and men, type II diabetes and insulin resistance, overweight/obesity, allergy, and asthma. This review compiles biomonitoring studies of phthalates and exposure doses to assess health risks from phthalate exposures in populations across the globe.
Collapse
|
29
|
Beverly BEJ, Furr JR, Lambright CS, Wilson VS, McIntyre BS, Foster PMD, Travlos G, Earl Gray L. In utero exposure to simvastatin reduces postnatal survival and permanently alters reproductive tract development in the Crl:CD(SD) male rat. Toxicol Appl Pharmacol 2019; 365:112-123. [PMID: 30639414 DOI: 10.1016/j.taap.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/01/2019] [Indexed: 12/27/2022]
Abstract
We showed previously that in utero exposure to the cholesterol-lowering drug simvastatin (SMV) during sex differentiation lowers fetal lipids and testicular testosterone production (T Prod) in Hsd:SD rats. Here, the effects of SMV on fetal lipids and T Prod in Crl:CD(SD) rats were correlated with postnatal alterations in F1 males. The current study was conducted in two parts: 1) a prenatal assessment to confirm and further characterize the dose response relationship among previously reported alterations of SMV on fetal T Prod and the fetal lipid profile and 2) a postnatal assessment to determine the effects of SMV exposure during the periods of major organogenesis and/or sexual differentiation on F1 offspring growth and development. We hypothesized that SMV would have adverse effects on postnatal development and sexual differentiation as a consequence of the disruptions of fetal lipid levels and testicular T Prod since fetal cholesterol is essential for normal intrauterine growth and development and steroid synthesis. In the prenatal assessment, SMV was administered orally at 0, 15.6, 31.25, 62.5, 80, 90, 100, and 110 mg SMV/kg/d from GD 14-18, the period that cover the critical window of sex differentiation in the male rat fetus. T Prod was maximally reduced by ~40% at 62.5 mg/kg/d, and higher doses induced overt maternal and toxicity. In the postnatal assessment, SMV was administered at 0, 15.6, 31.25, and 62.5 mg/kg/d from GD 8-18 to determine if it altered postnatal development. We found that exposure during this time frame to 62.5 mg SMV/kg/d reduced pup viability by 92%, decreased neonatal anogenital distance, and altered testis histology and morphology in 17% of the F1 males. In another group, SMV was administered only during the masculinizing window (GD14-18) at 62.5 mg/kg/d to determine if male rat sexual differentiation and postnatal reproductive development were altered. SMV-exposed F1 males displayed female-like areolae/nipples, delayed puberty, and reduced seminal vesicle and levator ani-bulbocavernosus weights. Together, these results demonstrate that in utero exposure to SMV reduces offspring viability and permanently disrupts reproductive tract development in the male offspring. While the effects of high dose, short term in utero exposure to SMV in the adult male are likely androgen-dependent and consistent with the 40% reduction in T Prod in the fetal testes, long-term, lower dose administration induced some effects that were likely not mediated by decreased T Prod.
Collapse
Affiliation(s)
- Brandiese E J Beverly
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, United States.
| | - Johnathan R Furr
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| | - Christy S Lambright
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| | - Vickie S Wilson
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| | - Barry S McIntyre
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| | - Paul M D Foster
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| | - Greg Travlos
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| | - L Earl Gray
- Reproductive Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, B105-04, 109 TW Alexander Dr., Research Triangle Park, NC 27709, United States.
| |
Collapse
|
30
|
Tran-Lam TT, Dao YH, Nguyen DT, Ma HK, Pham TQ, Le GT. Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam. TOXICS 2018; 6:toxics6040069. [PMID: 30463241 PMCID: PMC6316763 DOI: 10.3390/toxics6040069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023]
Abstract
A novel method was developed for the sensitive, cheap and fast quantitation of 10 phthalates in non-alcoholic beverages by liquid–liquid extraction (LLE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS). The best results were obtained when n-hexane was used as extraction solvent. A central composite design (CCD) was applied to select the most appreciated operating condition. The method performance was evaluated according to the SANTE/11945/2015 guidelines and was linear in the 0.1 to 200 µg/L range for 10 phthalate compounds, with r2 > 0.996 and individual residuals <15%. Repeatability (RSDr), within-laboratory reproducibility (RSDwr), and the trueness range were from 2.7 to 9.1%, from 3.4 to 14.3% and from 91.5 to 118.1%, respectively. The limit of detection (LOD) was between 0.5 to 1.0 ng/L and the limit of quantitation (LOQ) was between 1.5 to 3.0 ng/L for all 10 compounds. The developed method was successfully applied to the analysis of non-alcoholic beverages.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| | - Duong Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| | - Hoi Kim Ma
- University of Science, Vietnam National University HCMC, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 720400, Vietnam.
| | - Trung Quoc Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| |
Collapse
|
31
|
Li PC, Li XN, Du ZH, Wang H, Yu ZR, Li JL. Di (2-ethyl hexyl) phthalate (DEHP)-induced kidney injury in quail (Coturnix japonica) via inhibiting HSF1/HSF3-dependent heat shock response. CHEMOSPHERE 2018; 209:981-988. [PMID: 30114749 DOI: 10.1016/j.chemosphere.2018.06.158] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 05/04/2023]
Abstract
Di (2-ethyl hexyl) phthalate (DEHP) as a plasticizer can leach away from the plastic and hence entrances into the animal food chain which caused serious hazard in organs of animals, but there are few studies on DEHP kidney toxicity. The heat-shock response (HSR) consisting of the HSPs and HSFs plays an important role in various toxicity stress conditions. To investigate the influence on kidney toxicity and the modulation of HSR during DEHP exposure, female quail were fed the diet with 0, 250, 500 and 750 mg/kg DEHP by gavage administration for 45 days. The shrinkages of glomeruli and dilation of kidney tubule epithelia cells were observed in the kidney of DEHP-exposed quail. DEHP treatment could significantly decrease the expressions of HSP25, HSP27, HSP47, HSP60, while the expressions of HSP10, HSP40, HSP70, HSP90, HSP110 were upregulated in the kidney. In addition, the expression levels of HSF1 and HSF3 were significantly increased under DEHP. This is the first study to demonstrate quail exposure to DEHP is in fact detrimental to bird kidney. Besides, DEHP could attack HSR by affecting the synthesis of HSFs to mediate the transcription of the HSPs resulting in kidney damage.
Collapse
Affiliation(s)
- Peng-Cheng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng-Hai Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhuo-Ran Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
32
|
Barakat R, Lin PC, Park CJ, Best-Popescu C, Bakry HH, Abosalem ME, Abdelaleem NM, Flaws JA, Ko C. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice. Toxicol Sci 2018; 164:439-452. [PMID: 29688563 PMCID: PMC6061835 DOI: 10.1093/toxsci/kfy103] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200 μg, 500 mg, or 750 mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16-22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by Spatial light interference microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing to the impaired neurobehavior in the DEHP mice.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - Catherine Best-Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Hatem H Bakry
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Mohamed E Abosalem
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Nabila M Abdelaleem
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| |
Collapse
|
33
|
Albert O, Nardelli TC, Lalancette C, Hales BF, Robaire B. Effects of In Utero and Lactational Exposure to New Generation Green Plasticizers on Adult Male Rats: A Comparative Study With Di(2-Ethylhexyl) Phthalate. Toxicol Sci 2018; 164:129-141. [PMID: 29945229 PMCID: PMC6016686 DOI: 10.1093/toxsci/kfy072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, is a ubiquitous environmental contaminant and may act as an endocrine disruptor. Early life exposures to DEHP may result in anti-androgenic effects, impairing the development of the male reproductive tract. However, data on the long-lasting consequences of such DEHP exposures on adult male reproductive function are still rare and discrepant. Previously, we identified 2 novel plasticizers, 1,4-butanediol dibenzoate (BDB) and dioctyl succinate (DOS), as potential substitutes for DEHP that did not reproduce classically described endocrine disrupting phenotypes in prepubertal male offspring after maternal exposure. Here, we investigated the consequences of in utero and lactational exposure to BDB and DOS on adult male rat reproductive function in a comparative study with DEHP and a commercially available alternative plasticizer, 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH). Timed pregnant Sprague Dawley rats were gavaged with vehicle or a test chemical (30 or 300 mg/kg/day) from gestation day 8 to postnatal day 21. While DEHP exposure (300 mg/kg/day) significantly increased epididymal weight in the adult, exposure to DINCH, BDB, or DOS did not affect reproductive organ weights, steroid levels, or sperm quality. Using a toxicogenomic microarray approach, we found that adult testicular gene expression was affected by exposure to the higher dose of DEHP; transcripts such as Nr5a2, Ltf, or Runx2 were significantly downregulated, suggesting that DEHP was targeting estrogen signaling. Lesser effects were observed after treatment with either DINCH or BDB. DOS exposure did not produce such effects, confirming its potential as a responsible substitute for DEHP.
Collapse
Affiliation(s)
- Océane Albert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Thomas C Nardelli
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Claudia Lalancette
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H4A3J1, Canada
| |
Collapse
|
34
|
Conley JM, Lambright CS, Evans N, Cardon M, Furr J, Wilson VS, Gray LE. Mixed "Antiandrogenic" Chemicals at Low Individual Doses Produce Reproductive Tract Malformations in the Male Rat. Toxicol Sci 2018; 164:166-178. [PMID: 29945228 PMCID: PMC6677127 DOI: 10.1093/toxsci/kfy069] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biomonitoring efforts have clearly shown that all humans are exposed to chemical mixtures. Of concern is whether or not exposure to mixtures during pregnancy contributes to congenital abnormalities in children even when each chemical is at an individual dose that does not affect the fetus. Here, we hypothesized that in utero exposure to a mixture of chemicals covering multiple "antiandrogenic" mechanisms of action at doses that individually have no adverse effect would result in permanent reproductive tract alterations in the male rat after birth. Pregnant dams were exposed to a range of dilutions (100%, 50%, 25%, 12.5%, 6.25%, or vehicle control) of a mixture containing pesticides, phthalates, and drugs (p, p'-DDE, linuron, prochloraz, procymidone, pyrifluquinazon, vinclozolin, finasteride, flutamide, simvastatin, and 9 phthalates [dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl]). The top dose contained each chemical at 20% of its lowest observed adverse effect level (LOAEL) for the most sensitive male reproductive alteration following in utero exposure. We found that male rat offspring displayed a variety of neonatal, pubertal, and permanent adult effects across all dose levels. Even at the lowest dose (each chemical approximately 80-fold below lowest observed adverse effect level) there were permanent reductions in several reproductive tract tissue weights. In the top dose group, 100% of male offspring displayed permanent severe birth defects including genital malformations. Despite acting via 5 different molecular initiating events, a mixture of 18 chemicals can combine to produce additive effects even when each compound is at is at a relatively low dose.
Collapse
Affiliation(s)
- Justin M. Conley
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Christy S. Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Nicki Evans
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Johnathan Furr
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
- Southern Research, Birmingham, AL 35205
| | - Vickie S. Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - L. Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| |
Collapse
|
35
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:207-226. [PMID: 30199328 DOI: 10.1080/10937404.2018.1505354.systematic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Male reproductive alterations found in animals and humans following in utero phthalate exposure include decreased anogenital distance (AGD) and other reproductive-tract malformations. The aim of this investigation was to conduct systematic reviews of human and animal evidence of the effect of in utero exposure to diethylhexyl phthalate (DEHP) on anogenital distance (AGD) in males. PubMed, Embase, and Toxline were searched for relevant human and experimental animal studies on August 15, 2016. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated for quality and data extracted for analysis. Confidence in the human and animal bodies of evidence was assessed and hazard conclusions reached by integrating evidence streams. The search yielded 6 relevant human studies and 19 animal studies. Meta-analysis of 5 human observational prospective cohort studies showed that increased maternal urinary concentrations of DEHP metabolites were associated with decreased AGD in boys (-4.07 [CI, -6.49 to -1.66] % decrease per log10 rise in DEHP metabolites). Meta-analysis and meta-regression of the 19 experimental animal studies found reduced AGD with DEHP treatment, with a dose-response gradient, and with heterogeneity explained by species and strain. There is a moderate level of evidence from human investigations and a high level of data from animal studies that in utero exposure to DEHP decreases AGD. Based upon the available human and animal evidence, and consideration of mechanistic data, DEHP is presumed to be a reproductive hazard to humans on the basis of effects on AGD.
Collapse
Affiliation(s)
- David C Dorman
- a Department of Molecular and Biomedical Sciences, College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Weihsueh Chiu
- b Department of Veterinary Integrative Biosciences, College of Veterinary Medicine , Texas A&M University , College Station , TX , USA
| | - Barbara F Hales
- c Department of Pharmacology and Therapeutics , McGill University , Montreal , Quebec , Canada
| | - Russ Hauser
- d Department of Environmental Health and Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Kamin J Johnson
- e Predictive Safety Center , The Dow Chemical Company , Midland , MI , USA
| | - Ellen Mantus
- f Board on Environmental Studies and Toxicology at the National Academies of Sciences , Engineering, and Medicine , Washington , DC , USA
| | - Susan Martel
- f Board on Environmental Studies and Toxicology at the National Academies of Sciences , Engineering, and Medicine , Washington , DC , USA
| | - Karen A Robinson
- g Department of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - Andrew A Rooney
- h Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park , NC , USA
| | | | - Sheela Sathyanarayana
- j Department of Pediatrics , University of Washington, Seattle Children's Research Institute , Seattle , WA , USA
| | - Susan L Schantz
- k Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Katrina M Waters
- l Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
36
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:207-226. [PMID: 30199328 PMCID: PMC6786271 DOI: 10.1080/10937404.2018.1505354] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Male reproductive alterations found in animals and humans following in utero phthalate exposure include decreased anogenital distance (AGD) and other reproductive-tract malformations. The aim of this investigation was to conduct systematic reviews of human and animal evidence of the effect of in utero exposure to diethylhexyl phthalate (DEHP) on anogenital distance (AGD) in males. PubMed, Embase, and Toxline were searched for relevant human and experimental animal studies on August 15, 2016. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated for quality and data extracted for analysis. Confidence in the human and animal bodies of evidence was assessed and hazard conclusions reached by integrating evidence streams. The search yielded 6 relevant human studies and 19 animal studies. Meta-analysis of 5 human observational prospective cohort studies showed that increased maternal urinary concentrations of DEHP metabolites were associated with decreased AGD in boys (-4.07 [CI, -6.49 to -1.66] % decrease per log10 rise in DEHP metabolites). Meta-analysis and meta-regression of the 19 experimental animal studies found reduced AGD with DEHP treatment, with a dose-response gradient, and with heterogeneity explained by species and strain. There is a moderate level of evidence from human investigations and a high level of data from animal studies that in utero exposure to DEHP decreases AGD. Based upon the available human and animal evidence, and consideration of mechanistic data, DEHP is presumed to be a reproductive hazard to humans on the basis of effects on AGD.
Collapse
Affiliation(s)
- David C. Dorman
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Barbara F. Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kamin J. Johnson
- Predictive Safety Center, The Dow Chemical Company, Midland, MI, USA
| | - Ellen Mantus
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Susan Martel
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Karen A. Robinson
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew A. Rooney
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Susan L. Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
37
|
Renaut SD, Whiteley M. A study to support regulatory submission assessing effects of Tri(2-ethylhexyl) trimellitate (TEHTM) upon pre and post-natal development in the rat, with a comparative group receiving Di(2-ethyl hexyl) phthalate (DEHP) included. Reprod Toxicol 2017; 74:59-69. [PMID: 28870490 DOI: 10.1016/j.reprotox.2017.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
Oral exposure of rodents to the plasticizer, Di(2-ethyl hexyl) phthalate (DEHP), elicits birth defects and effects upon the reproductive tract. There is currently limited published information regarding potential developmental effects in rodents of another phthalate ester, TEHTM.
Collapse
|
38
|
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and other phthalates are ubiquitous environmental contaminants with endocrine disrupting properties. Two novel plasticizers, 1,4 butanediol dibenzoate (BDB) and dioctyl succinate (DOS), have been proposed as potential replacements. Both have desirable properties as plasticizers and minimal in vitro biological effects. Herein, we present an in utero and lactational exposure study comparing DEHP with BDB, DOS, and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), a commercial alternative. Timed-pregnant Sprague-Dawley rats were gavaged with vehicle or one of these chemicals at 30 or 300 mg/kg/day from gestational day 8 until postnatal day (PND) 21. The offspring were examined for effects on developmental and endocrine markers until PND 46. DEHP treatment (300 mg/kg) decreased heart weights in dams and induced a significant decrease in anogenital index and an increase in hemorrhagic testes and multinucleated gonocytes in PND 3 male pups. An increase in the incidence of hemorrhagic testes was also observed on PND 8 after exposure to DINCH (30 and 300 mg/kg). The only other effects observed were decreases in serum alanine transaminase and magnesium in BDB 30 exposed dams. These data suggest that both BDB and DOS are viable alternative plasticizers.
Collapse
|
39
|
Gray LE. Twenty-five years after "Wingspread"- Environmental endocrine disruptors (EDCs) and human health. CURRENT OPINION IN TOXICOLOGY 2017; 3:40-47. [PMID: 29806043 DOI: 10.1016/j.cotox.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this paper is to provide the reader with a view of the Endocrine Disruptor Chemical (EDC) research field and its relevance to human health. My perspective is from working on the effects of EDCs that act via the androgen (A) or estrogen (E) signaling pathways in a regulatory agency for the last four decades with the objective of producing data that risk assessors could use to reduce the uncertainty in risk assessment. In vitro and in vivo data from our studies has contributed to regulatory agencies decision-making since the 1990s (https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-113201_7-Apr-98_238.pdf). From the start, we were evaluating the utility of in vitro and short-term in vivo effects to predict the adverse effects in developing animals [1; 2]. This approach has expanded greatly to include what is now known as Adverse Outcome Pathways (AOP) and networks (AOPn) [3; 4]. The AOP framework for the effects of chemicals that disrupt androgen signaling during sexual differentiation of the fetal male rat provides biological context for extrapolating mechanistic information from in vitro and in vivo assays in rodents to other species including humans. Such an approach has biological validity because the E and A pathways are highly conserved in vertebrates, including humans and laboratory animals.
Collapse
Affiliation(s)
- Leon Earl Gray
- US ENVIRONMENTAL PROTECTION AGENCY, 109 TW Alexander Drive, Durham, North Carolina 27705, United States
| |
Collapse
|
40
|
Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24642-24693. [PMID: 27714658 DOI: 10.1007/s11356-016-7648-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 05/23/2023]
Abstract
Di (ethylhexyl) phthalate (DEHP) is a global environmental pollutant. This study aims to systematically review the literature on health effects of exposure to DEHP including effects on reproductive health, carcinogenesis, pregnancy outcome, and respiratory system. The literature search was done through Scopus, ISI Web of Science, Google Scholar, PubMed, Medline, and the reference lists of previous review articles to identify relevant articles published to June 2016 in each subject area. The inclusion criteria were as follows: original research, cross-sectional studies, case-control studies, cohort studies, interventional studies, and review articles. Both human and animal studies were included. The search was limited to English language papers. Conference papers, editorials, and letters were not included. The systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Overall, 152 of the 407 papers met the inclusion criteria. We provided an up-to-date comprehensive and critical assessment of both human and animal studies undertaken to explore the effects of DEHP. It revealed that in experimental studies, exposure to DEHP mainly targeted the reproductive, neurodevelopment, and respiratory systems. Human studies reported that exposure to this contaminant had carcinogenic effects and influenced neurodevelopment in early life. This systematic review underscored the adverse health effects of DEHP for pregnant women and the pediatric age group. It summarizes different response of humans and experimental animals to DEHP exposure, and some suggested underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Khalighinejad
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Kimia Gostar Saba, Isfahan, Iran
| | - Mohammadmehdi Amin
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Howdeshell KL, Hotchkiss AK, Gray LE. Cumulative effects of antiandrogenic chemical mixtures and their relevance to human health risk assessment. Int J Hyg Environ Health 2016; 220:179-188. [PMID: 27923611 DOI: 10.1016/j.ijheh.2016.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 11/28/2022]
Abstract
Toxicological studies of defined chemical mixtures assist human health risk assessment by establishing how chemicals interact with one another to induce an effect. This paper reviews how antiandrogenic chemical mixtures can alter reproductive tract development in rats with a focus on the reproductive toxicant phthalates. The reviewed studies compare observed mixture data to mathematical mixture model predictions based on dose addition or response addition to determine how the individual chemicals in a mixture interact (e.g., additive, greater, or less than additive). Phthalate mixtures were observed to act in a dose additive manner based on the relative potency of the individual phthalates to suppress fetal testosterone production. Similar dose additive effects have been reported for mixtures of phthalates with antiandrogenic pesticides of differing mechanisms of action. Overall, data from these phthalate experiments in rats can be used in conjunction with human biomonitoring data to determine individual hazard indices, and recent cumulative risk assessments in humans indicate an excess risk to antiandrogenic chemical mixtures that include phthalates only or phthalates in combination with other antiandrogenic chemicals.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), PO Box 12233, Mail Drop K2-04, Research Triangle Park, NC 27709-2233, USA.
| | - Andrew K Hotchkiss
- National Center for Environmental Assessment (NCEA), National Health and Environmental Effects Research Laboratories (NHEERL), Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - L Earl Gray
- Toxicology Assessment Division, National Health and Environmental Effects Research Laboratories (NHEERL), Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
42
|
Yang JF, Yang LM, Zheng LY, Ying GG, Liu CB, Luo SL. Phthalates in plastic bottled non-alcoholic beverages from China and estimated dietary exposure in adults. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 10:44-50. [DOI: 10.1080/19393210.2016.1245679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Fiandanese N, Borromeo V, Berrini A, Fischer B, Schaedlich K, Schmidt JS, Secchi C, Pocar P. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring. Reprod Toxicol 2016; 65:123-132. [DOI: 10.1016/j.reprotox.2016.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
44
|
Martino-Andrade AJ, Liu F, Sathyanarayana S, Barrett ES, Redmon JB, Nguyen RHN, Levine H, Swan SH. Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns. Andrology 2016; 4:585-93. [PMID: 27062102 DOI: 10.1111/andr.12180] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Prior studies report that penile size and male anogenital distance (AGD), sensitive markers of androgen action in utero, may be shortened by prenatal exposure to certain phthalates, including diethylhexyl phthalate (DEHP), but no human study has investigated the importance of exposure timing in these associations. The aim of this study was to examine the significance of exposure timing on the action of prenatal phthalates in particular DEHP, on male infant penile size and AGD. In The Infant Development and the Environment Study (TIDES) we measured penile width (PW) as well as anoscrotal distance (AGDAS ) and anopenile distance (AGPAP ) in newborn males. We modeled these endpoints in relation to phthalate metabolite concentrations in maternal urine samples collected in each trimester (T1, T2, and T3) in a subset of TIDES mothers (N = 168). PW was inversely associated with T2 oxidized DEHP metabolites, mono-2-ethyl-5-oxohexyl (MEOHP, β=-0.48; 95% confidence interval, -0.93, -0.02), MEHHP (-0.48; -0.92, -0.05), mono-2-ethyl-5-carboxypentyl (MECPP, -0.51; -1.01, -0.004), although no appreciable associations were seen between PW and T1 and T3 DEHP metabolite concentrations in this subset. Concentrations of DEHP metabolites in T1 urine samples were inversely related to male AGD. For example, in T1 samples in this subset of women mono-2-ethyl-5-hydroxyhexyl (MEHHP) was inversely associated with male AGDAP (β = -1.73; 95% confidence interval, -3.45, 0.0004). However, no appreciable associations were seen between AGD measures and any DEHP metabolite in T2 and T3 samples. These data suggest that DEHP exposure is inversely associated with AGD and PW, with PW primarily associated with T2 exposure and AGD associations seen only for T1 exposure, but no associations were found between T3 DEHP metabolites and any of these genital endpoints. These findings are consistent with data on critical windows in rodent studies, supporting the biological plausibility of these associations in humans.
Collapse
Affiliation(s)
- A J Martino-Andrade
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Physiology, Federal University of Parana, Curitiba, Brazil
| | - F Liu
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - E S Barrett
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - J B Redmon
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - R H N Nguyen
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - H Levine
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Braun School of Public Health and Community Medicine, Hebrew University-Hadassah and the Hebrew University Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel
| | - S H Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
45
|
Abstract
Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias.
Collapse
Affiliation(s)
- Sisir Botta
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gerald R Cunha
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
46
|
Gray LE, Furr J, Tatum-Gibbs KR, Lambright C, Sampson H, Hannas BR, Wilson VS, Hotchkiss A, Foster PMD. Establishing the "Biological Relevance" of Dipentyl Phthalate Reductions in Fetal Rat Testosterone Production and Plasma and Testis Testosterone Levels. Toxicol Sci 2015; 149:178-91. [PMID: 26454885 DOI: 10.1093/toxsci/kfv224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phthalate esters (PEs) constitute a large class of compounds that are used for many consumer product applications. Many of the C2-C7 di-ortho PEs reduce fetal testicular hormone and gene expression levels in rats resulting in adverse effects seen later in life but it appears that relatively large reductions in fetal testosterone (T) levels and testis gene expression may be required to adversely affect reproductive development (Hannas, B. R., Lambright, C. S., Furr, J., Evans, N., Foster, P. M., Gray, E. L., and Wilson, V. S. (2012). Genomic biomarkers of phthalate-induced male reproductive developmental toxicity: a targeted RT-PCR array approach for defining relative potency. Toxicol. Sci. 125, 544-557). The objectives of this study were (1) to model the relationships between changes in fetal male rat plasma testosterone (PT), T levels in the testis (TT), T production (PROD), and testis gene expression with the reproductive malformation rates, and (2) to quantify the "biologically relevant reductions" (BRRs) in fetal T necessary to induce adverse effects in the offspring. In the fetal experiment, Harlan Sprague-Dawley rats were dosed with dipentyl phthalate (DPeP) at 0, 11, 33, 100, and 300 mg/kg/day from gestational days (GD) 14-18 and fetal testicular T, PT levels, and T Prod and gene expression were assessed on GD 18. In the postnatal experiment, rats were dosed with DPeP from GD 8-18 and reproductive development was monitored through adulthood. The dose-response curves for TT levels (ED(50) = 53 mg/kg) and T PROD (ED(50) = 45 mg/kg) were similar, whereas PT was reduced at ED50 = 19 mg/kg. When the reductions in TPROD and Insl3 mRNA were compared with the postnatal effects of in utero DPeP, dose-related reproductive alterations were noted when T PROD and Insl3 mRNA were reduced by >45% and 42%, respectively. The determination of BRR levels may enable risk assessors to utilize fetal endocrine data to help establish points of departure for quantitative risk assessments.
Collapse
Affiliation(s)
- Leon Earl Gray
- *Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27711;
| | - Johnathan Furr
- *Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27711
| | - Katoria R Tatum-Gibbs
- *Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27711
| | - Christy Lambright
- *Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27711
| | | | - Bethany R Hannas
- *Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27711
| | - Vickie S Wilson
- *Reproductive Toxicology Branch, Toxicology Assessment Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27711
| | | | - Paul M D Foster
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709
| |
Collapse
|
47
|
Wang Y, Liu W, Yang Q, Yu M, Zhang Z. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Howdeshell KL, Rider CV, Wilson VS, Furr JR, Lambright CR, Gray LE. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats. Toxicol Sci 2015; 148:488-502. [PMID: 26350170 DOI: 10.1093/toxsci/kfv196] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- *Division of the National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), PO Box 12233, Research Triangle Park (RTP), North Carolina 27709 and
| | - Cynthia V Rider
- *Division of the National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), PO Box 12233, Research Triangle Park (RTP), North Carolina 27709 and
| | - Vickie S Wilson
- Reproductive Toxicology Branch, Toxicology Assessment Division (TAD), National Health and Environmental Effects Research Laboratories, Office of Research and Development, US Environmental Protection Agency (US EPA), RTP, North Carolina 27711
| | - Johnathan R Furr
- Reproductive Toxicology Branch, Toxicology Assessment Division (TAD), National Health and Environmental Effects Research Laboratories, Office of Research and Development, US Environmental Protection Agency (US EPA), RTP, North Carolina 27711
| | - Christy R Lambright
- Reproductive Toxicology Branch, Toxicology Assessment Division (TAD), National Health and Environmental Effects Research Laboratories, Office of Research and Development, US Environmental Protection Agency (US EPA), RTP, North Carolina 27711
| | - L Earl Gray
- Reproductive Toxicology Branch, Toxicology Assessment Division (TAD), National Health and Environmental Effects Research Laboratories, Office of Research and Development, US Environmental Protection Agency (US EPA), RTP, North Carolina 27711
| |
Collapse
|
49
|
Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 2015; 219:74-88. [PMID: 25448254 DOI: 10.1016/j.ygcen.2014.11.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility.
Collapse
Affiliation(s)
- Justine Mathieu-Denoncourt
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Sarah J Wallace
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Shane R de Solla
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
50
|
Ishii S, Katagiri R, Minobe Y, Kuribara I, Wada T, Wada M, Imai S. Investigation of the amount of transdermal exposure of newborn babies to phthalates in paper diapers and certification of the safety of paper diapers. Regul Toxicol Pharmacol 2015; 73:85-92. [PMID: 26123074 DOI: 10.1016/j.yrtph.2015.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 11/24/2022]
Abstract
A risk assessment study of seven phthalates in paper diapers for newborn babies produced in Japan was performed. The diapers were purchased and the contents of the seven phthalates were determined and estimated amounts of exposure were calculated based on the eluted rate into artificial medium of urine or sweat, average weight of infants, and frequency of use. Di-2-ethylhexyl phthalate and di-n-butyl phthalate were detected in the topsheets and determined to be 0.6 μg/g and 0.2 μg/g, respectively. The daily estimated exposure volume was calculated to be in the range of 1.86 × 10(-10)-2.98 × 10(-6) mg/kg/day as follows: content of seven phthalates in the topsheet (0.1-1 μg/g) × eluted rate of phthalates into artificial sweat (0.0006-2.4%) × weight of the topsheet of a diaper (1.5 g) × the number of diapers used per day (12 sheets) × skin absorption rate (0.005-0.1)/average body weight (2.9 kg). For hazard assessment, we used 0.2-300 mg/kg/day for the seven phthalates based on the data available at international agencies. The margin of exposure to the seven phthalates was 6.71 × 10(4)-1.99 × 10(11), indicating that the risk of exposure to phthalates from the diapers produced in Japan was negligible.
Collapse
Affiliation(s)
- Satoko Ishii
- Chemicals Evaluation and Research Institute, Tokyo, Japan.
| | | | - Yasushi Minobe
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Isamu Kuribara
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Takeharu Wada
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | | | | |
Collapse
|